1
|
Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity? Brain Struct Funct 2024; 229:1775-1793. [PMID: 37833544 PMCID: PMC11485216 DOI: 10.1007/s00429-023-02717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Sorrells SF. Which neurodevelopmental processes continue in humans after birth? Front Neurosci 2024; 18:1434508. [PMID: 39308952 PMCID: PMC11412957 DOI: 10.3389/fnins.2024.1434508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Once we are born, the number and location of nerve cells in most parts of the brain remain unchanged. These types of structural changes are therefore a significant form of flexibility for the neural circuits where they occur. In humans, the postnatal birth of neurons is limited; however, neurons do continue to migrate into some brain regions throughout infancy and even into adolescence. In human infants, multiple migratory pathways deliver interneurons to destinations across the frontal and temporal lobe cortex. Shorter-range migration of excitatory neurons also appears to continue during adolescence, particularly near the amygdala paralaminar nucleus, a region that follows a delayed trajectory of growth from infancy to adulthood. The significance of the timing for when different brain regions recruit new neurons through these methods is unknown; however, both processes of protracted migration and maturation are prominent in humans. Mechanisms like these that reconfigure neuronal circuits are a substrate for critical periods of plasticity and could contribute to distinctive circuit functionality in human brains.
Collapse
|
3
|
Alshebib Y, Hori T, Goel A, Fauzi AA, Kashiwagi T. Adult human neurogenesis: A view from two schools of thought. IBRO Neurosci Rep 2023; 15:342-347. [PMID: 38025659 PMCID: PMC10665662 DOI: 10.1016/j.ibneur.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 12/01/2023] Open
Abstract
Are we truly losing neurons as we grow older? If yes, why, and how can the lost neurons be replaced or compensated for? Is so-called adult neurogenesis (ANG) still a controversial process, particularly in the human cerebral cortex? How do adult-born neurons -if proven to exist- contribute to brain functions? Is adult neurogenesis a disease-relevant process, meaning that neural progenitor cells are dormant in adulthood, but they may be reactivated, for example, following stroke? Is the earnest hope to cure neurological diseases justifying the readiness to accept ANG claim uncritically? These are all fundamental issues that have not yet been firmly explained. Although it is completely understandable that some researchers believe that we can add new neurons to our inevitably deteriorating brain, the brain regeneration process still possesses intellectually and experimentally diverting views, as until now, there has been significant confusion about the concept of ANG. This paper is not intended to be an extensively analytical review distilling all findings and conclusions presented in the ANG literature. Instead, it is an attempt to discuss the commonly entertained opinions and then present our reflective insight concerning the current status quo of the field, which might help redirect research questions, avoid marketing an exaggerated hope, and more importantly, save the ever-limited resources, namely, intellectuals' time, facilities, and grants.
Collapse
Affiliation(s)
- Yasir Alshebib
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134–0088, Japan
| | - Tomokatsu Hori
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134–0088, Japan
| | - Atul Goel
- Department of Neurosurgery. K.E.M. Hospital and Seth G.S. Medical College, Parel, Mumbai 400 012, Maharashtra, India
| | - Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Jl. Prof. Dr. Moestopo 6–8, Surabaya, Indonesia
| | - Taichi Kashiwagi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
4
|
Ghibaudi M, Marchetti N, Vergnano E, La Rosa C, Benedetti B, Couillard-Despres S, Farioli-Vecchioli S, Bonfanti L. Age-related changes in layer II immature neurons of the murine piriform cortex. Front Cell Neurosci 2023; 17:1205173. [PMID: 37576566 PMCID: PMC10416627 DOI: 10.3389/fncel.2023.1205173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The recent identification of a population of non-newly born, prenatally generated "immature" neurons in the layer II of the piriform cortex (cortical immature neurons, cINs), raises questions concerning their maintenance or depletion through the lifespan. Most forms of brain structural plasticity progressively decline with age, a feature that is particularly prominent in adult neurogenesis, due to stem cell depletion. By contrast, the entire population of the cINs is produced during embryogenesis. Then these cells simply retain immaturity in postnatal and adult stages, until they "awake" to complete their maturation and ultimately integrate into neural circuits. Hence, the question remains open whether the cINs, which are not dependent on stem cell division, might follow a similar pattern of age-related reduction, or in alternative, might leave a reservoir of young, undifferentiated cells in the adult and aging brain. Here, the number and features of cINs were analyzed in the mouse piriform cortex from postnatal to advanced ages, by using immunocytochemistry for the cytoskeletal marker doublecortin. The abundance and stage of maturation of cINs, along with the expression of other markers of maturity/immaturity were investigated. Despite a marked decrease in this neuronal population during juvenile stages, reminiscent of that observed in hippocampal neurogenesis, a small amount of highly immature cINs persisted up to advanced ages. Overall, albeit reducing in number with increasing age, we report that the cINs are present through the entire animal lifespan.
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Nicole Marchetti
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Elena Vergnano
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Ghibaudi M, Amenta A, Agosti M, Riva M, Graïc JM, Bifari F, Bonfanti L. Consistency and Variation in Doublecortin and Ki67 Antigen Detection in the Brain Tissue of Different Mammals, including Humans. Int J Mol Sci 2023; 24:2514. [PMID: 36768845 PMCID: PMC9916846 DOI: 10.3390/ijms24032514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, a population of "immature" neurons generated prenatally, retaining immaturity for long periods and finally integrating in adult circuits has been described in the cerebral cortex. Moreover, comparative studies revealed differences in occurrence/rate of different forms of neurogenic plasticity across mammals, the "immature" neurons prevailing in gyrencephalic species. To extend experimentation from laboratory mice to large-brained mammals, including humans, it is important to detect cell markers of neurogenic plasticity in brain tissues obtained from different procedures (e.g., post-mortem/intraoperative specimens vs. intracardiac perfusion). This variability overlaps with species-specific differences in antigen distribution or antibody species specificity, making it difficult for proper comparison. In this work, we detect the presence of doublecortin and Ki67 antigen, markers for neuronal immaturity and cell division, in six mammals characterized by widely different brain size. We tested seven commercial antibodies in four selected brain regions known to host immature neurons (paleocortex, neocortex) and newly born neurons (hippocampus, subventricular zone). In selected human brains, we confirmed the specificity of DCX antibody by performing co-staining with fluorescent probe for DCX mRNA. Our results indicate that, in spite of various types of fixations, most differences were due to the use of different antibodies and the existence of real interspecies variation.
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Miriam Agosti
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| |
Collapse
|
6
|
Sun XY, Yu XL, Zhu J, Li LJ, Zhang L, Huang YR, Liu DQ, Ji M, Sun X, Zhang LX, Zhou WW, Zhang D, Jiao J, Liu RT. Fc effector of anti-Aβ antibody induces synapse loss and cognitive deficits in Alzheimer's disease-like mouse model. Signal Transduct Target Ther 2023; 8:30. [PMID: 36693826 PMCID: PMC9873795 DOI: 10.1038/s41392-022-01273-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 01/26/2023] Open
Abstract
Passive immunotherapy is one of the most promising interventions for Alzheimer's disease (AD). However, almost all immune-modulating strategies fail in clinical trials with unclear causes although they attenuate neuropathology and cognitive deficits in AD animal models. Here, we showed that Aβ-targeting antibodies including their lgG1 and lgG4 subtypes induced microglial engulfment of neuronal synapses by activating CR3 or FcγRIIb via the complex of Aβ, antibody, and complement. Notably, anti-Aβ antibodies without Fc fragment, or with blockage of CR3 or FcγRIIb, did not exert these adverse effects. Consistently, Aβ-targeting antibodies, but not their Fab fragments, significantly induced acute microglial synapse removal and rapidly exacerbated cognitive deficits and neuroinflammation in APP/PS1 mice post-treatment, whereas the memory impairments in mice were gradually rescued thereafter. Since the recovery rate of synapses in humans is much lower than that in mice, our findings may clarify the variances in the preclinical and clinical studies assessing AD immunotherapies. Therefore, Aβ-targeting antibodies lack of Fc fragment, or with reduced Fc effector function, may not induce microglial synaptic pruning, providing a safer and more efficient therapeutic alternative for passive immunotherapy for AD.
Collapse
Affiliation(s)
- Xiao-ying Sun
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049 China
| | - Xiao-lin Yu
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.9227.e0000000119573309Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jie Zhu
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049 China
| | - Ling-jie Li
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049 China
| | - Lun Zhang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.9227.e0000000119573309Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ya-ru Huang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049 China
| | - Dong-qun Liu
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Mei Ji
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xun Sun
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ling-xiao Zhang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Wei-wei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.9227.e0000000119573309Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Dongming Zhang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianwei Jiao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Rui-tian Liu
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.9227.e0000000119573309Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
7
|
Ghibaudi M, Bonfanti L. How Widespread Are the “Young” Neurons of the Mammalian Brain? Front Neurosci 2022; 16:918616. [PMID: 35733930 PMCID: PMC9207312 DOI: 10.3389/fnins.2022.918616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
After the discovery of adult neurogenesis (stem cell-driven production of new neuronal elements), it is conceivable to find young, undifferentiated neurons mixed with mature neurons in the neural networks of the adult mammalian brain. This “canonical” neurogenesis is restricted to small stem cell niches persisting from embryonic germinal layers, yet, the genesis of new neurons has also been reported in various parenchymal brain regions. Whichever the process involved, several populations of “young” neurons can be found at different locations of the brain. Across the years, further complexity emerged: (i) molecules of immaturity can also be expressed by non-dividing cells born during embryogenesis, then maintaining immature features later on; (ii) remarkable interspecies differences exist concerning the types, location, amount of undifferentiated neurons; (iii) re-expression of immaturity can occur in aging (dematuration). These twists are introducing a somewhat different definition of neurogenesis than normally assumed, in which our knowledge of the “young” neurons is less sharp. In this emerging complexity, there is a need for complete mapping of the different “types” of young neurons, considering their role in postnatal development, plasticity, functioning, and interspecies differences. Several important aspects are at stake: the possible role(s) that the young neurons may play in maintaining brain efficiency and in prevention/repair of neurological disorders; nonetheless, the correct translation of results obtained from laboratory rodents. Hence, the open question is: how many types of undifferentiated neurons do exist in the brain, and how widespread are they?
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- *Correspondence: Luca Bonfanti,
| |
Collapse
|
8
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
9
|
Mercau ME, Patwa S, Bhat KPL, Ghosh S, Rothlin CV. Cell death in development, maintenance, and diseases of the nervous system. Semin Immunopathol 2022; 44:725-738. [PMID: 35508671 DOI: 10.1007/s00281-022-00938-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Cell death, be it of neurons or glial cells, marks the development of the nervous system. Albeit relatively less so than in tissues such as the gut, cell death is also a feature of nervous system homeostasis-especially in context of adult neurogenesis. Finally, cell death is commonplace in acute brain injuries, chronic neurodegenerative diseases, and in some central nervous system tumors such as glioblastoma. Recent studies are enumerating the various molecular modalities involved in the execution of cells. Intimately linked with cell death are mechanisms of disposal that remove the dead cell and bring about a tissue-level response. Heretofore, the association between these methods of dying and physiological or pathological responses has remained nebulous. It is envisioned that careful cartography of death and disposal may reveal novel understandings of disease states and chart new therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Maria E Mercau
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Siraj Patwa
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA. .,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Benedetti B, Couillard-Despres S. Why Would the Brain Need Dormant Neuronal Precursors? Front Neurosci 2022; 16:877167. [PMID: 35464307 PMCID: PMC9026174 DOI: 10.3389/fnins.2022.877167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Dormant non-proliferative neuronal precursors (dormant precursors) are a unique type of undifferentiated neuron, found in the adult brain of several mammalian species, including humans. Dormant precursors are fundamentally different from canonical neurogenic-niche progenitors as they are generated exquisitely during the embryonic development and maintain a state of protracted postmitotic immaturity lasting up to several decades after birth. Thus, dormant precursors are not pluripotent progenitors, but to all effects extremely immature neurons. Recently, transgenic models allowed to reveal that with age virtually all dormant precursors progressively awaken, abandon the immature state, and become fully functional neurons. Despite the limited common awareness about these cells, the deep implications of recent discoveries will likely lead to revisit our understanding of the adult brain. Thus, it is timely to revisit and critically assess the essential evidences that help pondering on the possible role(s) of these cells in relation to cognition, aging, and pathology. By highlighting pivoting findings as well as controversies and open questions, we offer an exciting perspective over the field of research that studies these mysterious cells and suggest the next steps toward the answer of a crucial question: why does the brain need dormant neuronal precursors?
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- *Correspondence: Sebastien Couillard-Despres,
| |
Collapse
|
11
|
Bonfanti L, Seki T. The PSA-NCAM-Positive "Immature" Neurons: An Old Discovery Providing New Vistas on Brain Structural Plasticity. Cells 2021; 10:2542. [PMID: 34685522 PMCID: PMC8534119 DOI: 10.3390/cells10102542] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven adult neurogenesis is an exception in the substantially static mammalian brain, yet, it has dominated the research in neurodevelopmental biology during the last thirty years. Studies of comparative neuroplasticity have revealed that neurogenic processes are reduced in large-brained mammals, including humans. On the other hand, large-brained mammals, with respect to rodents, host large populations of special "immature" neurons that are generated prenatally but express immature markers in adulthood. The history of these "immature" neurons started from studies on adhesion molecules carried out at the beginning of the nineties. The identity of these neurons as "stand by" cells "frozen" in a state of immaturity remained un-detected for long time, because of their ill-defined features and because clouded by research ef-forts focused on adult neurogenesis. In this review article, the history of these cells will be reconstructed, and a series of nuances and confounding factors that have hindered the distinction between newly generated and "immature" neurons will be addressed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 160-8402, Japan
| |
Collapse
|
12
|
Jacobs B, Rally H, Doyle C, O'Brien L, Tennison M, Marino L. Putative neural consequences of captivity for elephants and cetaceans. Rev Neurosci 2021; 33:439-465. [PMID: 34534428 DOI: 10.1515/revneuro-2021-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
The present review assesses the potential neural impact of impoverished, captive environments on large-brained mammals, with a focus on elephants and cetaceans. These species share several characteristics, including being large, wide-ranging, long-lived, cognitively sophisticated, highly social, and large-brained mammals. Although the impact of the captive environment on physical and behavioral health has been well-documented, relatively little attention has been paid to the brain itself. Here, we explore the potential neural consequences of living in captive environments, with a focus on three levels: (1) The effects of environmental impoverishment/enrichment on the brain, emphasizing the negative neural consequences of the captive/impoverished environment; (2) the neural consequences of stress on the brain, with an emphasis on corticolimbic structures; and (3) the neural underpinnings of stereotypies, often observed in captive animals, underscoring dysregulation of the basal ganglia and associated circuitry. To this end, we provide a substantive hypothesis about the negative impact of captivity on the brains of large mammals (e.g., cetaceans and elephants) and how these neural consequences are related to documented evidence for compromised physical and psychological well-being.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, CO, 80903, USA
| | - Heather Rally
- Foundation to Support Animal Protection, Norfolk, VA, 23510, USA
| | - Catherine Doyle
- Performing Animal Welfare Society, P.O. Box 849, Galt, CA, 95632, USA
| | - Lester O'Brien
- Palladium Elephant Consulting Inc., 2408 Pinewood Dr. SE, Calgary, AB, T2B1S4, Canada
| | - Mackenzie Tennison
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Lori Marino
- Whale Sanctuary Project, Kanab, UT, 84741, USA
| |
Collapse
|
13
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
14
|
Rethinavel HS, Ravichandran S, Radhakrishnan RK, Kandasamy M. COVID-19 and Parkinson's disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia. J Chem Neuroanat 2021; 115:101965. [PMID: 33989761 PMCID: PMC8111887 DOI: 10.1016/j.jchemneu.2021.101965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022]
Abstract
Anosmia, a neuropathogenic condition of loss of smell, has been recognized as a key pathogenic hallmark of the current pandemic SARS-CoV-2 infection responsible for COVID-19. While the anosmia resulting from olfactory bulb (OB) pathology is the prominent clinical characteristic of Parkinson's disease (PD), SARS-CoV-2 infection has been predicted as a potential risk factor for developing Parkinsonism-related symptoms in a significant portion of COVID-19 patients and survivors. SARS-CoV-2 infection appears to alter the dopamine system and induce the loss of dopaminergic neurons that have been known to be the cause of PD. However, the underlying biological basis of anosmia and the potential link between COVID-19 and PD remains obscure. Ample experimental studies in rodents suggest that the occurrence of neural stem cell (NSC) mediated neurogenesis in the olfactory epithelium (OE) and OB is important for olfaction. Though the occurrence of neurogenesis in the human forebrain has been a subject of debate, considerable experimental evidence strongly supports the incidence of neurogenesis in the human OB in adulthood. To note, various viral infections and neuropathogenic conditions including PD with olfactory dysfunctions have been characterized by impaired neurogenesis in OB and OE. Therefore, this article describes and examines the recent reports on SARS-CoV-2 mediated OB dysfunctions and defects in the dopaminergic system responsible for PD. Further, the article emphasizes that COVID-19 and PD associated anosmia could result from the regenerative failure in the replenishment of the dopaminergic neurons in OB and olfactory sensory neurons in OE.
Collapse
Affiliation(s)
- Harini Sri Rethinavel
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Sowbarnika Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, 110002, India.
| |
Collapse
|
15
|
Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, Page CE, Sandoval K, Knox A, Connolly A, Huang EJ, Garcia-Verdugo JM, Oldham MC, Yang Z, Alvarez-Buylla A. Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. J Neurosci 2021; 41:2554-2565. [PMID: 33762407 PMCID: PMC8018729 DOI: 10.1523/jneurosci.0676-20.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023] Open
Abstract
Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Mercedes F Paredes
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, P.R. 200032 China
| | - Gugene Kang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Oier Pastor-Alonso
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Sean Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Chloe E Page
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kadellyn Sandoval
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Anthony Knox
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Andrew Connolly
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Valencia 46980, Spain
| | - Michael C Oldham
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, P.R. 200032 China
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
16
|
Lunardi P, Mansk LMZ, Jaimes LF, Pereira GS. On the novel mechanisms for social memory and the emerging role of neurogenesis. Brain Res Bull 2021; 171:56-66. [PMID: 33753208 DOI: 10.1016/j.brainresbull.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.
Collapse
Affiliation(s)
- Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
17
|
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano; Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
18
|
A 25-y longitudinal dolphin cohort supports that long-lived individuals in same environment exhibit variation in aging rates. Proc Natl Acad Sci U S A 2020; 117:20950-20958. [PMID: 32778591 PMCID: PMC7456138 DOI: 10.1073/pnas.1918755117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aging is a degradative process that varies among individuals. Due to limitations in defining and differentiating aging rates in human populations, understanding why some people appear to age slower than others has proven difficult. We analyzed 44 blood-based indices of health as candidate aging rate biomarkers collected over a 25-y period on a relevant, long-lived population of dolphins. Evidence of subsets of dolphins exhibiting slow and accelerated aging rates were detected, despite sharing the same environment, diet, and health care. Furthermore, some dolphin subsets were more likely to develop clinically relevant conditions, including anemia and immunosenescence. Our results support the notion that aging rates in long-lived mammals may be defined and provide insight into novel interventions to delay aging. While it is believed that humans age at different rates, a lack of robust longitudinal human studies using consensus biomarkers meant to capture aging rates has hindered an understanding of the degree to which individuals vary in their rates of aging. Because bottlenose dolphins are long-lived mammals that develop comorbidities of aging similar to humans, we analyzed data from a well-controlled, 25-y longitudinal cohort of 144 US Navy dolphins housed in the same oceanic environment. Our analysis focused on 44 clinically relevant hematologic and clinical chemistry measures recorded during routine blood draws throughout the dolphins’ lifetimes. Using stepwise regression and general linear models that accommodate correlations between measures obtained on individual dolphins, we demonstrate that, in a manner similar to humans, dolphins exhibit independent and linear age-related declines in four of these measures: hemoglobin, alkaline phosphatase, platelets, and lymphocytes. Using linear regressions and analyses of covariance with post hoc Tukey–Kramer tests to compare slopes (i.e., linear age-related rates) of our four aging rate biomarkers among 34 individual dolphins aging from 10 y to up to 40 y old, we could identify slow and accelerated agers and differentiate subgroups that were more or less likely to develop anemia and lymphopenia. This study successfully documents aging rate differences over the lifetime of long-lived individuals in a controlled environment. Our study suggests that nonenvironmental factors influencing aging rate biomarkers, including declining hemoglobin and anemia, may be targeted to delay the effects of aging in a compelling model of human biology.
Collapse
|
19
|
La Rosa C, Cavallo F, Pecora A, Chincarini M, Ala U, Faulkes CG, Nacher J, Cozzi B, Sherwood CC, Amrein I, Bonfanti L. Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. eLife 2020; 9:55456. [PMID: 32690132 PMCID: PMC7373429 DOI: 10.7554/elife.55456] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
The adult mammalian brain is mainly composed of mature neurons. A limited amount of stem cell-driven neurogenesis persists in postnatal life and is reduced in large-brained species. Another source of immature neurons in adult brains is cortical layer II. These cortical immature neurons (cINs) retain developmentally undifferentiated states in adulthood, though they are generated before birth. Here, the occurrence, distribution and cellular features of cINs were systematically studied in 12 diverse mammalian species spanning from small-lissencephalic to large-gyrencephalic brains. In spite of well-preserved morphological and molecular features, the distribution of cINs was highly heterogeneous, particularly in neocortex. While virtually absent in rodents, they are present in the entire neocortex of many other species and their linear density in cortical layer II generally increased with brain size. These findings suggest an evolutionary developmental mechanism for plasticity that varies among mammalian species, granting a reservoir of young cells for the cerebral cortex. To acquire new skills or recover after injuries, the mammalian brain relies on plasticity, the ability for the brain to change its architecture and its connections during the lifetime of an animal. Creating new nerve cells is one way to achieve plasticity, but this process is rarer in humans than it is in mammals with smaller brains. In particular, it is absent in the human cortex: this region is enlarged in species with large brains, where it carries out complex tasks such as learning and memory. Producing new cells in the cortex would threaten the stability of the structures that retain long-term memories. Another route to plasticity is to reshape the connections between existing, mature nerve cells. This process takes place in the human brain during childhood and adolescence, as some connections are strengthened and others pruned away. An alternative mechanism relies on keeping some nerve cells in an immature, ‘adolescent’ state. When needed, these nerve cells emerge from their state of arrested development and ‘grow up’, connecting with the appropriate brain circuits. This mechanism does not involve producing new nerve cells, and so it would be suitable to maintain plasticity in the cortex. Consistent with this idea, in mice some dormant nerve cells are present in a small, primitive part of the cortex. La Rosa et al. therefore wanted to determine if the location and number of immature cells in the cortex differed between mammals, and if so, whether these differences depended on brain size. The study spanned 12 mammal species, from small-brained species like mice to larger-brained animals including sheep and non-human primates. Microscopy imaging was used to identify immature nerve cells in brain samples, which revealed that the cortex in larger-brained species contained more adolescent cells than its mouse counterpart. The difference was greatest in a region called the neocortex, which has evolved most recently. This area is most pronounced in primates – especially humans – where it carries out high-level cognitive tasks. These results identify immature nerve cells as a potential mechanism for plasticity in the cortex. La Rosa et al. hope that the work will inspire searches for similar reservoirs of young cells in humans, which could perhaps lead to new treatments for brain disorders like dementia.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Torino, Italy
| | - Francesca Cavallo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Alessandra Pecora
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Matteo Chincarini
- Università degli Studi di Teramo, Facoltà di Medicina Veterinaria, Teramo, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Torino, Italy
| | - Chris G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Juan Nacher
- Neurobiology Unit, BIOTECMED, Universitat de València, and Spanish Network for Mental Health Research CIBERSAM, València, Spain
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, United States
| | - Irmgard Amrein
- D-HEST, ETH, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Torino, Italy
| |
Collapse
|
20
|
Gómez-Oliva R, Geribaldi-Doldán N, Domínguez-García S, Carrascal L, Verástegui C, Nunez-Abades P, Castro C. Vitamin D deficiency as a potential risk factor for accelerated aging, impaired hippocampal neurogenesis and cognitive decline: a role for Wnt/β-catenin signaling. Aging (Albany NY) 2020; 12:13824-13844. [PMID: 32554862 PMCID: PMC7377904 DOI: 10.18632/aging.103510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D is an essential fat-soluble vitamin that participates in several homeostatic functions in mammalian organisms. Lower levels of vitamin D are produced in the older population, vitamin D deficiency being an accelerating factor for the progression of the aging process. In this review, we focus on the effect that vitamin D exerts in the aged brain paying special attention to the neurogenic process. Neurogenesis occurs in the adult brain in neurogenic regions, such as the dentate gyrus of the hippocampus (DG). This region generates new neurons that participate in cognitive tasks. The neurogenic rate in the DG is reduced in the aged brain because of a reduction in the number of neural stem cells (NSC). Homeostatic mechanisms controlled by the Wnt signaling pathway protect this pool of NSC from being depleted. We discuss in here the crosstalk between Wnt signaling and vitamin D, and hypothesize that hypovitaminosis might cause failure in the control of the neurogenic homeostatic mechanisms in the old brain leading to cognitive impairment. Understanding the relationship between vitamin D, neurogenesis and cognitive performance in the aged brain may facilitate prevention of cognitive decline and it can open a door into new therapeutic fields by perspectives in the elderly.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Verástegui
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| |
Collapse
|
21
|
Moreno A. Molecular mechanisms of forgetting. Eur J Neurosci 2020; 54:6912-6932. [DOI: 10.1111/ejn.14839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Moreno
- Danish Institute of Translational Neuroscience (DANDRITE) Aarhus University Aarhus C Denmark
| |
Collapse
|
22
|
Akter M, Kaneko N, Herranz-Pérez V, Nakamura S, Oishi H, García-Verdugo JM, Sawamoto K. Dynamic Changes in the Neurogenic Potential in the Ventricular-Subventricular Zone of Common Marmoset during Postnatal Brain Development. Cereb Cortex 2020; 30:4092-4109. [PMID: 32108222 DOI: 10.1093/cercor/bhaa031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022] Open
Abstract
Even after birth, neuronal production continues in the ventricular-subventricular zone (V-SVZ) and hippocampus in many mammals. The immature new neurons ("neuroblasts") migrate and then mature at their final destination. In humans, neuroblast production and migration toward the neocortex and the olfactory bulb (OB) occur actively only for a few months after birth and then sharply decline with age. However, the precise spatiotemporal profiles and fates of postnatally born neurons remain unclear due to methodological limitations. We previously found that common marmosets, small nonhuman primates, share many features of V-SVZ organization with humans. Here, using marmosets injected with thymidine analogue(s) during various postnatal periods, we demonstrated spatiotemporal changes in neurogenesis during development. V-SVZ progenitor proliferation and neuroblast migration toward the OB and neocortex sharply decreased by 4 months, most strikingly in a V-SVZ subregion from which neuroblasts migrated toward the neocortex. Postnatally born neurons matured within a few months in the OB and hippocampus but remained immature until 6 months in the neocortex. While neurogenic activity was sustained for a month after birth, the distribution and/or differentiation diversity was more restricted in 1-month-born cells than in the neonatal-born population. These findings shed light on distinctive features of postnatal neurogenesis in primates.
Collapse
Affiliation(s)
- Mariyam Akter
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.,Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.,Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki 444-8787, Japan
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, 46980 Valencia, Spain.,Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Sayuri Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Jose Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, 46980 Valencia, Spain
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.,Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
23
|
La Rosa C, Parolisi R, Bonfanti L. Brain Structural Plasticity: From Adult Neurogenesis to Immature Neurons. Front Neurosci 2020; 14:75. [PMID: 32116519 PMCID: PMC7010851 DOI: 10.3389/fnins.2020.00075] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Brain structural plasticity is an extraordinary tool that allows the mature brain to adapt to environmental changes, to learn, to repair itself after lesions or disease, and to slow aging. A long history of neuroscience research led to fascinating discoveries of different types of plasticity, involving changes in the genetically determined structure of nervous tissue, up to the ultimate dream of neuronal replacement: a stem cell-driven “adult neurogenesis” (AN). Yet, this road does not seem a straight one, since mutable dogmas, conflicting results and conflicting interpretations continue to warm the field. As a result, after more than 10,000 papers published on AN, we still do not know its time course, rate or features with respect to other kinds of structural plasticity in our brain. The solution does not appear to be behind the next curve, as differences among mammals reveal a very complex landscape that cannot be easily understood from rodents models alone. By considering evolutionary aspects, some pitfalls in the interpretation of cell markers, and a novel population of undifferentiated cells that are not newly generated [immature neurons (INs)], we address some conflicting results and controversies in order to find the right road forward. We suggest that considering plasticity in a comparative framework might help assemble the evolutionary, anatomical and functional pieces of a very complex biological process with extraordinary translational potential.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
24
|
A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct Funct 2019; 224:2281-2295. [PMID: 31278571 DOI: 10.1007/s00429-019-01917-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
There is a widespread belief that neurogenesis exists in adult human brain, especially in the dentate gyrus, and it is to be maintained and, if possible, augmented with different stimuli including exercise and certain drugs. Here, we examine the evidence for adult human neurogenesis and note important limitations of the methodologies used to study it. A balanced review of the literature and evaluation of the data indicate that adult neurogenesis in human brain is improbable. In fact, in several high-quality recent studies in adult human brain, unlike in adult brains of other species, neurogenesis was not detectable. These findings suggest that the human brain requires a permanent set of neurons to maintain acquired knowledge for decades, which is essential for complex high cognitive functions unique to humans. Thus, stimulation and/or injection of neural stem cells into human brains may not only disrupt brain homeostatic systems, but also disturb normal neuronal circuits. We propose that the focus of research should be the preservation of brain neurons by prevention of damage, not replacement.
Collapse
|
25
|
Sorrells SF, Paredes MF, Velmeshev D, Herranz-Pérez V, Sandoval K, Mayer S, Chang EF, Insausti R, Kriegstein AR, Rubenstein JL, Manuel Garcia-Verdugo J, Huang EJ, Alvarez-Buylla A. Immature excitatory neurons develop during adolescence in the human amygdala. Nat Commun 2019; 10:2748. [PMID: 31227709 PMCID: PMC6588589 DOI: 10.1038/s41467-019-10765-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply decreases in infants. Using single nuclei RNA sequencing, we identify the transcriptional profile of immature excitatory neurons in the human amygdala between 4-15 years. We conclude that the human PL contains excitatory neurons that remain immature for decades, a possible substrate for persistent plasticity at the interface of the hippocampus and amygdala.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Dmitry Velmeshev
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071, Castelló de la Plana, Spain
| | - Kadellyn Sandoval
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Simone Mayer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine and CRIB, University of Castilla-La Mancha, 02006, Albacete, Spain
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - John L Rubenstein
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA, 94158-2324, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
26
|
La Rosa C, Ghibaudi M, Bonfanti L. Newly Generated and Non-Newly Generated "Immature" Neurons in the Mammalian Brain: A Possible Reservoir of Young Cells to Prevent Brain Aging and Disease? J Clin Med 2019; 8:jcm8050685. [PMID: 31096632 PMCID: PMC6571946 DOI: 10.3390/jcm8050685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] Open
Abstract
Brain plasticity is important for translational purposes since most neurological disorders and brain aging problems remain substantially incurable. In the mammalian nervous system, neurons are mostly not renewed throughout life and cannot be replaced. In humans, the increasing life expectancy explains the increase in brain health problems, also producing heavy social and economic burden. An exception to the “static” brain is represented by stem cell niches leading to the production of new neurons. Such adult neurogenesis is dramatically reduced from fish to mammals, and in large-brained mammals with respect to rodents. Some examples of neurogenesis occurring outside the neurogenic niches have been reported, yet these new neurons actually do not integrate in the mature nervous tissue. Non-newly generated, “immature” neurons (nng-INs) are also present: Prenatally generated cells continuing to express molecules of immaturity (mostly shared with the newly born neurons). Of interest, nng-INs seem to show an inverse phylogenetic trend across mammals, being abundant in higher-order brain regions not served by neurogenesis and providing structural plasticity in rather stable areas. Both newly generated and nng-INs represent a potential reservoir of young cells (a “brain reserve”) that might be exploited for preventing the damage of aging and/or delay the onset/reduce the impact of neurological disorders.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| |
Collapse
|
27
|
Oppenheim RW. Adult Hippocampal Neurogenesis in Mammals (and Humans): The Death of a Central Dogma in Neuroscience and its Replacement by a New Dogma. Dev Neurobiol 2019; 79:268-280. [DOI: 10.1002/dneu.22674] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Ronald W. Oppenheim
- Department of Neurobiology and Anatomy, The Neuroscience Program Wake Forest School of Medicine Medical Center Blvd. Winston‐Salem NC 27157‐1010
| |
Collapse
|
28
|
Fujioka T, Kaneko N, Sawamoto K. Blood vessels as a scaffold for neuronal migration. Neurochem Int 2019; 126:69-73. [PMID: 30851365 DOI: 10.1016/j.neuint.2019.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/19/2022]
Abstract
Neurogenesis and angiogenesis share regulatory factors that contribute to the formation of vascular networks and neuronal circuits in the brain. While crosstalk mechanisms between neural stem cells (NSCs) and the vasculature have been extensively investigated, recent studies have provided evidence that blood vessels also play an essential role in neuronal migration in the brain during development and regeneration. The mechanisms of the neuronal migration along blood vessels, referred to as "vascular-guided migration," are now being elucidated. The vascular endothelial cells secrete soluble factors that attract and promote neuronal migration in collaboration with astrocytes that enwrap the blood vessels. In addition, especially in the adult brain, the blood vessels serve as a migration scaffold for adult-born immature neurons generated in the ventricular-subventricular zone (V-SVZ), a germinal zone surrounding the lateral ventricles. The V-SVZ-derived immature neurons use the vascular scaffold to assist their migration toward an injured area after ischemic stroke, and contribute to neuronal regeneration. Here we review the current knowledge about the role of vasculature in neuronal migration and the molecular mechanisms controlling this process. While most of this research has been done in rodents, a comprehensive understanding of vasculature-guided neuronal migration could contribute to new therapeutic approaches for increasing new neurons in the brain after injury.
Collapse
Affiliation(s)
- Teppei Fujioka
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
29
|
La Rosa C, Bonfanti L. Brain Plasticity in Mammals: An Example for the Role of Comparative Medicine in the Neurosciences. Front Vet Sci 2018; 5:274. [PMID: 30443551 PMCID: PMC6221904 DOI: 10.3389/fvets.2018.00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
Comparative medicine deals with similarities and differences between veterinary and human medicine. All mammals share most basic cellular and molecular mechanisms, thus justifying murine animal models in a translational perspective; yet “mice are not men,” thus some biases can emerge when complex biological processes are concerned. Brain plasticity is a cutting-edge, expanding topic in the field of Neurosciences with important translational implications, yet, with remarkable differences among mammals, as emerging from comparative studies. In particular, adult neurogenesis (the genesis of new neurons from brain stem cell niches) is a life-long process in laboratory rodents but a vestigial, mostly postnatal remnant in humans and dolphins. Another form of “whole cell” plasticity consisting of a population of “immature” neurons which are generated prenatally but continue to express markers of immaturity during adulthood has gained interest more recently, as a reservoir of young neurons in the adult brain. The distribution of the immature neurons also seems quite heterogeneous among different animal species, being confined within the paleocortex in rodents while extending into neocortex in other mammals. A recent study carried out in sheep, definitely showed that gyrencephalic, large-sized brains do host higher amounts of immature neurons, also involving subcortical, white, and gray matter regions. Hence, “whole cell” plasticity such as adult neurogenesis and immature neurons are biological processes which, as a whole, cannot be studied exclusively in laboratory rodents, but require investigation in comparative medicine, involving large-sized, long-living mammals, in order to gain insights for translational purposes.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|