1
|
Verma P, Ranasinghe K, Prasad J, Cai C, Xie X, Lerner H, Mizuiri D, Miller B, Rankin K, Vossel K, Cheung SW, Nagarajan SS, Raj A. Impaired long-range excitatory time scale predicts abnormal neural oscillations and cognitive deficits in Alzheimer's disease. Alzheimers Res Ther 2024; 16:62. [PMID: 38504361 PMCID: PMC10953266 DOI: 10.1186/s13195-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia, progressively impairing cognitive abilities. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify global abnormal biophysical mechanisms underlying the spatial and spectral electrophysiological patterns in AD, we estimated the parameters of a biophysical spectral graph model (SGM). METHODS SGM is an analytic neural mass model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. Unlike other coupled neuronal mass models, the SGM is linear, available in closed-form, and parameterized by a small set of biophysical interpretable global parameters. This facilitates their rapid and unambiguous inference which we performed here on a well-characterized clinical population of patients with AD (N = 88, age = 62.73 +/- 8.64 years) and a cohort of age-matched controls (N = 88, age = 65.07 +/- 9.92 years). RESULTS Patients with AD showed significantly elevated long-range excitatory neuronal time scales, local excitatory neuronal time scales and local inhibitory neural synaptic strength. The long-range excitatory time scale had a larger effect size, compared to local excitatory time scale and inhibitory synaptic strength and contributed highest for the accurate classification of patients with AD from controls. Furthermore, increased long-range time scale was associated with greater deficits in global cognition. CONCLUSIONS These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the local spectral signatures and cognition in the human brain, and how it might be a parsimonious factor underlying altered neuronal activity in AD. Our findings provide new insights into mechanistic links between abnormal local spectral signatures and global connectivity measures in AD.
Collapse
Affiliation(s)
- Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Surgical Services, Veterans Affairs, San Francisco, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Verma P, Ranasinghe K, Prasad J, Cai C, Xie X, Lerner H, Mizuiri D, Miller B, Rankin K, Vossel K, Cheung SW, Nagarajan S, Raj A. Impaired long-range excitatory time scale predicts abnormal neural oscillations and cognitive deficits in Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2579392. [PMID: 36993350 PMCID: PMC10055509 DOI: 10.21203/rs.3.rs-2579392/v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, progressively impairing memory and cognition. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify abnormal biophysical mechanisms underlying these abnormal electrophysiological patterns, we estimated the parameters of a spectral graph-theory model (SGM). SGM is an analytic model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. The long-range excitatory time scale was associated with greater deficits in global cognition and was able to distinguish AD patients from controls with high accuracy. These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the spatiospectral signatures and cognition in AD.
Collapse
Affiliation(s)
- Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Surgical Services, Veterans Affairs, San Francisco, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Sreenivasan K, Bayram E, Zhuang X, Longhurst J, Yang Z, Cordes D, Ritter A, Caldwell J, Cummings JL, Mari Z, Litvan I, Bluett B, Mishra VR. Topological reorganization of functional hubs in patients with Parkinson's disease with freezing of gait. J Neuroimaging 2023; 33:547-557. [PMID: 37080778 PMCID: PMC10523899 DOI: 10.1111/jon.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Resting-state functional MRI (rs-fMRI) studies in Parkinson's disease (PD) patients with freezing of gait (FOG) have implicated dysfunctional connectivity over multiple resting-state networks (RSNs). While these findings provided network-specific insights and information related to the aberrant or altered regional functional connectivity (FC), whether these alterations have any effect on topological reorganization in PD-FOG patients is incompletely understood. Understanding the higher order functional organization, which could be derived from the "hub" and the "rich-club" organization of the functional networks, could be crucial to identifying the distinct and unique pattern of the network connectivity associated with PD-FOG. METHODS In this study, we use rs-fMRI data and graph theoretical approaches to explore the reorganization of RSN topology in PD-FOG when compared to those without FOG. We also compared the higher order functional organization derived using the hub and rich-club measures in the FC networks of these PD-FOG patients to understand whether there is a topological reorganization of these hubs in PD-FOG. RESULTS We found that the PD-FOG patients showed a noticeable reorganization of hub regions. Regions that are part of the prefrontal cortex, primary somatosensory, motor, and visuomotor coordination areas were some of the regions exhibiting altered hub measures in PD-FOG patients. We also found a significantly altered feeder and local connectivity in PD-FOG. CONCLUSIONS Overall, our findings demonstrate a widespread topological reorganization and disrupted higher order functional network topology in PD-FOG that may further assist in improving our understanding of functional network disturbances associated with PD-FOG.
Collapse
Affiliation(s)
| | - Ece Bayram
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jason Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, St. Louis, Missouri, USA
| | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
- Department of Radiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jessica Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Brent Bluett
- Central California Movement Disorders, Pismo Beach, California, USA
| | - Virendra R. Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
- Department of Radiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Ashinoff BK, Mayhew SD, Mevorach C. The same, but different: Preserved distractor suppression in old age is implemented through an age-specific reactive ventral fronto-parietal network. Hum Brain Mapp 2020; 41:3938-3955. [PMID: 32573907 PMCID: PMC7469802 DOI: 10.1002/hbm.25097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown age-related impairments in the ability to suppress salient distractors. One possibility is that this is mediated by age-related impairments in the recruitment of the left intraparietal sulcus (Left IPS), which has been shown to mediate the suppression of salient distractors in healthy, young participants. Alternatively, this effect may be due to a shift in engagement from proactive control to reactive control, possibly to compensate for age-related impairments in proactive control. Another possibility is that this is due to changes in the functional specificity of brain regions that mediate salience suppression, expressed in changes in spontaneous connectivity of these regions. We assessed these possibilities by having participants engage in a proactive distractor suppression task while in an fMRI scanner. Although we did not find any age-related differences in behavior, the young (N = 15) and older (N = 15) cohorts engaged qualitatively distinctive brain networks to complete the task. Younger participants engaged the predicted proactive control network, including the Left IPS. On the other hand, older participants simultaneously engaged both a proactive and a reactive network, but this was not a consequence of reduced network specificity as resting state functional connectivity was largely comparable in both age groups. Furthermore, improved behavioral performance for older adults was associated with increased resting state functional connectivity between these two networks. Overall, the results of this study suggest that age-related differences in the recruitment of a left lateralized ventral fronto-parietal network likely reflect the specific recruitment of reactive control mechanisms for distractor inhibition.
Collapse
Affiliation(s)
- Brandon K. Ashinoff
- Centre for Human Brain Health (CHBH), School of PsychologyUniversity of BirminghamEdgbastonUK
| | - Stephen D. Mayhew
- Centre for Human Brain Health (CHBH), School of PsychologyUniversity of BirminghamEdgbastonUK
| | - Carmel Mevorach
- Centre for Human Brain Health (CHBH), School of PsychologyUniversity of BirminghamEdgbastonUK
| |
Collapse
|
5
|
Mishra VR, Sreenivasan KR, Zhuang X, Yang Z, Cordes D, Banks SJ, Bernick C. Understanding white matter structural connectivity differences between cognitively impaired and nonimpaired active professional fighters. Hum Brain Mapp 2019; 40:5108-5122. [PMID: 31403734 DOI: 10.1002/hbm.24761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/20/2019] [Accepted: 07/31/2019] [Indexed: 11/06/2022] Open
Abstract
Long-term traumatic brain injury due to repeated head impacts (RHI) has been shown to be a risk factor for neurodegenerative disorders, characterized by a loss in cognitive performance. Establishing the correlation between changes in the white matter (WM) structural connectivity measures and neuropsychological test scores might help to identify the neural correlates of the scores that are used in daily clinical setting to investigate deficits due to repeated head blows. Hence, in this study, we utilized high angular diffusion MRI (dMRI) of 69 cognitively impaired and 70 nonimpaired active professional fighters from the Professional Fighters Brain Health Study, and constructed structural connectomes to understand: (a) whether there is a difference in the topological WM organization between cognitively impaired and nonimpaired active professional fighters, and (b) whether graph-theoretical measures exhibit correlations with neuropsychological scores in these groups. A dMRI derived structural connectome was constructed for every participant using brain regions defined in AAL atlas as nodes, and the product of fiber number and average fractional anisotropy of the tracts connecting the nodes as edges. Our study identified a topological WM reorganization due to RHI in fighters prone to cognitive decline that was correlated with neuropsychological scores. Furthermore, graph-theoretical measures were correlated differentially with neuropsychological scores between groups. We also found differentiated WM connectivity involving regions of hippocampus, precuneus, and insula within our cohort of cognitively impaired fighters suggesting that there is a discernible WM topological reorganization in fighters prone to cognitive decline.
Collapse
Affiliation(s)
- Virendra R Mishra
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada
| | | | - Xiaowei Zhuang
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada
| | - Zhengshi Yang
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada
| | - Dietmar Cordes
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada.,Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Sarah J Banks
- Department of Neurosciences, University of California at San Diego, San Diego, California
| | - Charles Bernick
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada
| |
Collapse
|