1
|
Alushaj E, Hemachandra D, Ganjavi H, Seergobin KN, Sharma M, Kashgari A, Barr J, Reisman W, Khan AR, MacDonald PA. Increased mean diffusivity of the caudal motor SNc identifies patients with REM sleep behaviour disorder and Parkinson's disease. NPJ Parkinsons Dis 2024; 10:128. [PMID: 38951528 PMCID: PMC11217278 DOI: 10.1038/s41531-024-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Idiopathic rapid eye movement sleep behaviour disorder (iRBD)-a Parkinson's disease (PD) prodrome-might exhibit neural changes similar to those in PD. Substantia nigra pars compacta (SNc) degeneration underlies motor symptoms of PD. In iRBD and early PD (ePD), we measured diffusion MRI (dMRI) in the caudal motor SNc, which overlaps the nigrosome-1-the earliest-degenerating dopaminergic neurons in PD-and in the striatum. Nineteen iRBD, 26 ePD (1.7 ± 0.03 years), and 46 age-matched healthy controls (HCs) were scanned at Western University, and 47 iRBD, 115 ePD (0.9 ± 0.01 years), and 56 HCs were scanned through the Parkinson's Progression Markers Initiative, using 3T MRI. We segmented the SNc and striatum into subregions using automated probabilistic tractography to the cortex. We measured mean diffusivity (MD) and fractional anisotropy (FA) along white-matter bundles and subregional surfaces. We performed group-level and classification analyses. Increased caudal motor SNc surface MD was the only iRBD-HCs and ePD-HCs difference replicating across datasets (padj < 0.05). No iRBD-ePD differences emerged. Caudal motor SNc surface MD classified patient groups from HCs at the single-subject level with good-to-excellent balanced accuracy in an independent sample (0.91 iRBD and 0.86 iRBD and ePD combined), compared to fair performance for total SNc surface MD (0.72 iRBD and ePD). Caudal motor SNc surface MD correlated significantly with MDS-UPDRS-III scores in ePD patients. Using dMRI and automated segmentation, we detected changes suggesting altered microstructural integrity in iRBD and ePD in the nigrostriatal subregion known to degenerate first in PD. Surface MD of the caudal motor SNc presents a potential measure for inclusion in neuroimaging biomarkers of iRBD and PD.
Collapse
Affiliation(s)
- Erind Alushaj
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Dimuthu Hemachandra
- Robarts Research Institute, Western University, London, ON, Canada
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Hooman Ganjavi
- Department of Psychiatry, Western University, London, ON, Canada
| | - Ken N Seergobin
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Manas Sharma
- Department of Radiology, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Alia Kashgari
- Department of Medicine, Respirology Division, Western University, London, ON, Canada
| | - Jennifer Barr
- Department of Psychiatry, Western University, London, ON, Canada
| | - William Reisman
- Department of Medicine, Respirology Division, Western University, London, ON, Canada
| | - Ali R Khan
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Penny A MacDonald
- Western Institute for Neuroscience, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Grimaldi S, Guye M, Bianciardi M, Eusebio A. Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review. Brain Sci 2023; 13:1398. [PMID: 37891767 PMCID: PMC10604962 DOI: 10.3390/brainsci13101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of MRI studies focused on prodromal Parkinson's Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
| | - Maxime Guye
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
- Division of Sleep Medicine, Harvard University, Boston, MA 02114, USA
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Institut de Neurosciences de la Timone, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
3
|
Spetsieris PG, Eidelberg D. Parkinson's disease progression: Increasing expression of an invariant common core subnetwork. Neuroimage Clin 2023; 39:103488. [PMID: 37660556 PMCID: PMC10491857 DOI: 10.1016/j.nicl.2023.103488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Notable success has been achieved in the study of neurodegenerative conditions using reduction techniques such as principal component analysis (PCA) and sparse inverse covariance estimation (SICE) in positron emission tomography (PET) data despite their widely differing approach. In a recent study of SICE applied to metabolic scans from Parkinson's disease (PD) patients, we showed that by using PCA to prespecify disease-related partition layers, we were able to optimize maps of functional metabolic connectivity within the relevant networks. Here, we show the potential of SICE, enhanced by disease-specific subnetwork partitions, to identify key regional hubs and their connections, and track their associations in PD patients with increasing disease duration. This approach enabled the identification of a core zone that included elements of the striatum, pons, cerebellar vermis, and parietal cortex and provided a deeper understanding of progressive changes in their connectivity. This subnetwork constituted a robust invariant disease feature that was unrelated to phenotype. Mean expression levels for this subnetwork increased steadily in a group of 70 PD patients spanning a range of symptom durations between 1 and 21 years. The findings were confirmed in a validation sample of 69 patients with up to 32 years of symptoms. The common core elements represent possible targets for disease modification, while their connections to external regions may be better suited for symptomatic treatment.
Collapse
Affiliation(s)
- Phoebe G Spetsieris
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States; Molecular Medicine and Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States.
| |
Collapse
|
4
|
de Natale ER, Wilson H, Politis M. Predictors of RBD progression and conversion to synucleinopathies. Curr Neurol Neurosci Rep 2022; 22:93-104. [PMID: 35274191 PMCID: PMC9001233 DOI: 10.1007/s11910-022-01171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Purpose of review Rapid eye movement (REM) sleep behaviour disorder (RBD) is considered the expression of the initial neurodegenerative process underlying synucleinopathies and constitutes the most important marker of their prodromal phase. This article reviews recent research from longitudinal research studies in isolated RBD (iRBD) aiming to describe the most promising progression biomarkers of iRBD and to delineate the current knowledge on the level of prediction of future outcome in iRBD patients at diagnosis. Recent findings Longitudinal studies revealed the potential value of a variety of biomarkers, including clinical markers of motor, autonomic, cognitive, and olfactory symptoms, neurophysiological markers such as REM sleep without atonia and electroencephalography, genetic and epigenetic markers, cerebrospinal fluid and serum markers, and neuroimaging markers to track the progression and predict phenoconversion. To-date the most promising neuroimaging biomarker in iRBD to aid the prediction of phenoconversion is striatal presynaptic striatal dopaminergic dysfunction. Summary There is a variety of potential biomarkers for monitoring disease progression and predicting iRBD conversion into synucleinopathies. A combined multimodal biomarker model could offer a more sensitive and specific tool. Further longitudinal studies are warranted to iRBD as a high-risk population for early neuroprotective interventions and disease-modifying therapies.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.
| |
Collapse
|
5
|
Moya-Sáez E, Peña-Nogales Ó, Luis-García RD, Alberola-López C. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 210:106371. [PMID: 34525411 DOI: 10.1016/j.cmpb.2021.106371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Synthetic magnetic resonance imaging (MRI) is a low cost procedure that serves as a bridge between qualitative and quantitative MRI. However, the proposed methods require very specific sequences or private protocols which have scarcely found integration in clinical scanners. We propose a learning-based approach to compute T1, T2, and PD parametric maps from only a pair of T1- and T2-weighted images customarily acquired in the clinical routine. METHODS Our approach is based on a convolutional neural network (CNN) trained with synthetic data; specifically, a synthetic dataset with 120 volumes was constructed from the anatomical brain model of the BrainWeb tool and served as the training set. The CNN learns an end-to-end mapping function to transform the input T1- and T2-weighted images to their underlying T1, T2, and PD parametric maps. Then, conventional weighted images unseen by the network are analytically synthesized from the parametric maps. The network can be fine tuned with a small database of actual weighted images and maps for better performance. RESULTS This approach is able to accurately compute parametric maps from synthetic brain data achieving normalized squared error values predominantly below 1%. It also yields realistic parametric maps from actual MR brain acquisitions with T1, T2, and PD values in the range of the literature and with correlation values above 0.95 compared to the T1 and T2 maps obtained from relaxometry sequences. Further, the synthesized weighted images are visually realistic; the mean square error values are always below 9% and the structural similarity index is usually above 0.90. Network fine tuning with actual maps improves performance, while training exclusively with a small database of actual maps shows a performance degradation. CONCLUSIONS These results show that our approach is able to provide realistic parametric maps and weighted images out of a CNN that (a) is trained with a synthetic dataset and (b) needs only two inputs, which are in turn obtained from a common full-brain acquisition that takes less than 8 min of scan time. Although a fine tuning with actual maps improves performance, synthetic data is crucial to reach acceptable performance levels. Hence, we show the utility of our approach for both quantitative MRI in clinical viable times and for the synthesis of additional weighted images to those actually acquired.
Collapse
Affiliation(s)
- Elisa Moya-Sáez
- Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain. http://www.lpi.tel.uva.es
| | - Óscar Peña-Nogales
- Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain
| | | | | |
Collapse
|
6
|
A comparison of prediction approaches for identifying prodromal Parkinson disease. PLoS One 2021; 16:e0256592. [PMID: 34437600 PMCID: PMC8389479 DOI: 10.1371/journal.pone.0256592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022] Open
Abstract
Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66–90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential.
Collapse
|
7
|
Svaldi DO, Goñi J, Abbas K, Amico E, Clark DG, Muralidharan C, Dzemidzic M, West JD, Risacher SL, Saykin AJ, Apostolova LG. Optimizing differential identifiability improves connectome predictive modeling of cognitive deficits from functional connectivity in Alzheimer's disease. Hum Brain Mapp 2021; 42:3500-3516. [PMID: 33949732 PMCID: PMC8249900 DOI: 10.1002/hbm.25448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Functional connectivity, as estimated using resting state functional MRI, has shown potential in bridging the gap between pathophysiology and cognition. However, clinical use of functional connectivity biomarkers is impeded by unreliable estimates of individual functional connectomes and lack of generalizability of models predicting cognitive outcomes from connectivity. To address these issues, we combine the frameworks of connectome predictive modeling and differential identifiability. Using the combined framework, we show that enhancing the individual fingerprint of resting state functional connectomes leads to robust identification of functional networks associated to cognitive outcomes and also improves prediction of cognitive outcomes from functional connectomes. Using a comprehensive spectrum of cognitive outcomes associated to Alzheimer's disease (AD), we identify and characterize functional networks associated to specific cognitive deficits exhibited in AD. This combined framework is an important step in making individual level predictions of cognition from resting state functional connectomes and in understanding the relationship between cognition and connectivity.
Collapse
Affiliation(s)
| | - Joaquín Goñi
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Kausar Abbas
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
| | - Enrico Amico
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
| | - David G. Clark
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | - John D. West
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | | |
Collapse
|
8
|
Kiser KJ, Barman A, Stieb S, Fuller CD, Giancardo L. Novel Autosegmentation Spatial Similarity Metrics Capture the Time Required to Correct Segmentations Better Than Traditional Metrics in a Thoracic Cavity Segmentation Workflow. J Digit Imaging 2021; 34:541-553. [PMID: 34027588 PMCID: PMC8329111 DOI: 10.1007/s10278-021-00460-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/28/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Automated segmentation templates can save clinicians time compared to de novo segmentation but may still take substantial time to review and correct. It has not been thoroughly investigated which automated segmentation-corrected segmentation similarity metrics best predict clinician correction time. Bilateral thoracic cavity volumes in 329 CT scans were segmented by a UNet-inspired deep learning segmentation tool and subsequently corrected by a fourth-year medical student. Eight spatial similarity metrics were calculated between the automated and corrected segmentations and associated with correction times using Spearman’s rank correlation coefficients. Nine clinical variables were also associated with metrics and correction times using Spearman’s rank correlation coefficients or Mann–Whitney U tests. The added path length, false negative path length, and surface Dice similarity coefficient correlated better with correction time than traditional metrics, including the popular volumetric Dice similarity coefficient (respectively ρ = 0.69, ρ = 0.65, ρ = − 0.48 versus ρ = − 0.25; correlation p values < 0.001). Clinical variables poorly represented in the autosegmentation tool’s training data were often associated with decreased accuracy but not necessarily with prolonged correction time. Metrics used to develop and evaluate autosegmentation tools should correlate with clinical time saved. To our knowledge, this is only the second investigation of which metrics correlate with time saved. Validation of our findings is indicated in other anatomic sites and clinical workflows. Novel spatial similarity metrics may be preferable to traditional metrics for developing and evaluating autosegmentation tools that are intended to save clinicians time.
Collapse
Affiliation(s)
- Kendall J. Kiser
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Arko Barman
- Center for Precision Health, UT Health School of Biomedical Informatics, Houston, TX USA
| | - Sonja Stieb
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Clifton D. Fuller
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Luca Giancardo
- Center for Precision Health, UT Health School of Biomedical Informatics, Houston, TX USA
| |
Collapse
|
9
|
Vitale A, Villa R, Ugga L, Romeo V, Stanzione A, Cuocolo R. Artificial intelligence applied to neuroimaging data in Parkinsonian syndromes: Actuality and expectations. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1753-1773. [PMID: 33757209 DOI: 10.3934/mbe.2021091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Idiopathic Parkinson's Disease (iPD) is a common motor neurodegenerative disorder. It affects more frequently the elderly population, causing a significant emotional burden both for the patient and caregivers, due to the disease-related onset of motor and cognitive disabilities. iPD's clinical hallmark is the onset of cardinal motor symptoms such as bradykinesia, rest tremor, rigidity, and postural instability. However, these symptoms appear when the neurodegenerative process is already in an advanced stage. Furthermore, the greatest challenge is to distinguish iPD from other similar neurodegenerative disorders, "atypical parkinsonisms", such as Multisystem Atrophy, Progressive Supranuclear Palsy and Cortical Basal Degeneration, since they share many phenotypic manifestations, especially in the early stages. The diagnosis of these neurodegenerative motor disorders is essentially clinical. Consequently, the diagnostic accuracy mainly depends on the professional knowledge and experience of the physician. Recent advances in artificial intelligence have made it possible to analyze the large amount of clinical and instrumental information in the medical field. The application machine learning algorithms to the analysis of neuroimaging data appear to be a promising tool for identifying microstructural alterations related to the pathological process in order to explain the onset of symptoms and the spread of the neurodegenerative process. In this context, the search for quantitative biomarkers capable of identifying parkinsonian patients in the prodromal phases of the disease, of correctly distinguishing them from atypical parkinsonisms and of predicting clinical evolution and response to therapy represent the main goal of most current clinical research studies. Our aim was to review the recent literature and describe the current knowledge about the contribution given by machine learning applications to research and clinical management of parkinsonian syndromes.
Collapse
Affiliation(s)
- Annalisa Vitale
- Department of Advanced Biomedical Sciences, University of Naples "Federico Ⅱ", Via S. Pansini 5, 80131-Naples, Italy
| | - Rossella Villa
- Department of Advanced Biomedical Sciences, University of Naples "Federico Ⅱ", Via S. Pansini 5, 80131-Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico Ⅱ", Via S. Pansini 5, 80131-Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico Ⅱ", Via S. Pansini 5, 80131-Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico Ⅱ", Via S. Pansini 5, 80131-Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico Ⅱ", Via S. Pansini 5, 80131-Naples, Italy
| |
Collapse
|
10
|
Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020; 4:041503. [PMID: 33094213 PMCID: PMC7556883 DOI: 10.1063/5.0011697] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for analyzing complex medical data and extracting meaningful relationships in datasets, for several clinical aims. Specifically, in the brain care domain, several innovative approaches have achieved remarkable results and open new perspectives in terms of diagnosis, planning, and outcome prediction. In this work, we present an overview of different artificial intelligent techniques used in the brain care domain, along with a review of important clinical applications. A systematic and careful literature search in major databases such as Pubmed, Scopus, and Web of Science was carried out using "artificial intelligence" and "brain" as main keywords. Further references were integrated by cross-referencing from key articles. 155 studies out of 2696 were identified, which actually made use of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance, and postoperative assessment). Artificial neural networks have risen to prominent positions among the most widely used analytical tools. Classic machine learning approaches such as support vector machine and random forest are still widely used. Task-specific algorithms are designed for solving specific problems. Brain images are one of the most used data types. AI has the possibility to improve clinicians' decision-making ability in neuroscience applications. However, major issues still need to be addressed for a better practical use of AI in the brain. To this aim, it is important to both gather comprehensive data and build explainable AI algorithms.
Collapse
Affiliation(s)
- Alice Segato
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Francesco Calimeri
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
11
|
Bergamino M, Keeling EG, Mishra VR, Stokes AM, Walsh RR. Assessing White Matter Pathology in Early-Stage Parkinson Disease Using Diffusion MRI: A Systematic Review. Front Neurol 2020; 11:314. [PMID: 32477235 PMCID: PMC7240075 DOI: 10.3389/fneur.2020.00314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Structural brain white matter (WM) changes such as axonal caliber, density, myelination, and orientation, along with WM-dependent structural connectivity, may be impacted early in Parkinson disease (PD). Diffusion magnetic resonance imaging (dMRI) has been used extensively to understand such pathological WM changes, and the focus of this systematic review is to understand both the methods utilized and their corresponding results in the context of early-stage PD. Diffusion tensor imaging (DTI) is the most commonly utilized method to probe WM pathological changes. Previous studies have suggested that DTI metrics are sensitive in capturing early disease-associated WM changes in preclinical symptomatic regions such as olfactory regions and the substantia nigra, which is considered to be a hallmark of PD pathology and progression. Postprocessing analytic approaches include region of interest-based analysis, voxel-based analysis, skeletonized approaches, and connectome analysis, each with unique advantages and challenges. While DTI has been used extensively to study WM disorganization in early-stage PD, it has several limitations, including an inability to resolve multiple fiber orientations within each voxel and sensitivity to partial volume effects. Given the subtle changes associated with early-stage PD, these limitations result in inaccuracies that severely impact the reliability of DTI-based metrics as potential biomarkers. To overcome these limitations, advanced dMRI acquisition and analysis methods have been employed, including diffusion kurtosis imaging and q-space diffeomorphic reconstruction. The combination of improved acquisition and analysis in DTI may yield novel and accurate information related to WM-associated changes in early-stage PD. In the current article, we present a systematic and critical review of dMRI studies in early-stage PD, with a focus on recent advances in DTI methodology. Yielding novel metrics, these advanced methods have been shown to detect diffuse WM changes in early-stage PD. These findings support the notion of early axonal damage in PD and suggest that WM pathology may go unrecognized until symptoms appear. Finally, the advantages and disadvantages of different dMRI techniques, analysis methods, and software employed are discussed in the context of PD-related pathology.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Elizabeth G. Keeling
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Virendra R. Mishra
- Imaging Research, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Ashley M. Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ryan R. Walsh
- Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
12
|
Pena D, Barman A, Suescun J, Jiang X, Schiess MC, Giancardo L. Quantifying Neurodegenerative Progression With DeepSymNet, an End-to-End Data-Driven Approach. Front Neurosci 2019; 13:1053. [PMID: 31636533 PMCID: PMC6788344 DOI: 10.3389/fnins.2019.01053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/19/2019] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and is one of the leading sources of morbidity and mortality in the aging population. There is a long preclinical period followed by mild cognitive impairment (MCI). Clinical diagnosis and the rate of decline is variable. Progression monitoring remains a challenge in AD, and it is imperative to create better tools to quantify this progression. Brain magnetic resonance imaging (MRI) is commonly used for patient assessment. However, current approaches for analysis require strong a priori assumptions about regions of interest used and complex preprocessing pipelines including computationally expensive non-linear registrations and iterative surface deformations. These preprocessing steps are composed of many stacked processing layers. Any error or bias in an upstream layer will be propagated throughout the pipeline. Failures or biases in the non-linear subject registration and the subjective choice of atlases of specific regions are common in medical neuroimaging analysis and may hinder the translation of many approaches to the clinical practice. Here we propose a data-driven method based on an extension of a deep learning architecture, DeepSymNet, that identifies longitudinal changes without relying on prior brain regions of interest, an atlas, or non-linear registration steps. Our approach is trained end-to-end and learns how a patient's brain structure dynamically changes between two-time points directly from the raw voxels. We compare our approach with Freesurfer longitudinal pipelines and voxel-based methods using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model can identify AD progression with comparable results to existing Freesurfer longitudinal pipelines without the need of predefined regions of interest, non-rigid registration algorithms, or iterative surface deformation at a fraction of the processing time. When compared to other voxel-based methods which share some of the same benefits, our model showed a statistically significant performance improvement. Additionally, we show that our model can differentiate between healthy subjects and patients with MCI. The model's decision was investigated using the epsilon layer-wise propagation algorithm. We found that the predictions were driven by the pallidum, putamen, and the superior temporal gyrus. Our novel longitudinal based, deep learning approach has the potential to diagnose patients earlier and enable new computational tools to monitor neurodegeneration in clinical practice.
Collapse
Affiliation(s)
- Danilo Pena
- School of Biomedical Informatics, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- Center for Precision Health, UTHealth, Houston, TX, United States
| | - Arko Barman
- School of Biomedical Informatics, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- Center for Precision Health, UTHealth, Houston, TX, United States
| | - Jessika Suescun
- Department of Neurology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Mya C. Schiess
- Department of Neurology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Luca Giancardo
- School of Biomedical Informatics, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- Center for Precision Health, UTHealth Diagnostic and Interventional Imaging, McGovern Medical School, UTHealth Institute for Stroke and Cerebrovascular Diseases, UTHealth, Houston, TX, United States
| | | |
Collapse
|