1
|
Yeh TC, Lin YY, Tzeng NS, Kao YC, Chung YA, Chang CC, Fang HW, Chang HA. Effects of online high-definition transcranial direct current stimulation over left dorsolateral prefrontal cortex on predominant negative symptoms and EEG functional connectivity in patients with schizophrenia: a randomized, double-blind, controlled trial. Psychiatry Clin Neurosci 2024. [PMID: 39317963 DOI: 10.1111/pcn.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
AIMS Schizophrenia, a debilitating mental disorder, is characterized by persistent negative symptoms such as avolition and anhedonia. Currently, there are no effective treatments available for these symptoms. Thus, our study aims to assess the efficacy of online high-definition transcranial direct current stimulation (online HD-tDCS) in addressing the negative symptoms of schizophrenia, utilizing a double-blind, randomized, sham-controlled trial design. METHODS Fifty-nine patients with schizophrenia were randomized to receive either active HD-tDCS or sham stimulation, targeting the left dorsolateral prefrontal cortex. Outcomes were measured by changes in the Positive and Negative Syndrome Scale Factor Score for Negative Symptom (PANSS-FSNS). Exact low-resolution electromagnetic tomography was used to assess the functional connectivity. RESULTS All 59 participants, including 50.84% females with an average age of 43.36 years, completed the trial. In the intention-to-treat analysis, patients receiving active HD-tDCS showed greater improvement in PANSS-FSNS scores compared to those receiving the sham procedure. The differences were 2.34 (95% confidence interval [CI], 1.28-3.40), 4.28 (95% CI, 2.93-5.62), and 4.91 (95% CI, 3.29-6.52) after the intervention, as well as at 1-week and 1-month follow-ups, respectively. A tingling sensation on the scalp was more common in the active group (63.3%) compared to the sham group (10.3%). Additionally, HD-tDCS was associated with a decrease in delta-band connectivity within the default mode network. CONCLUSIONS High-definition transcranial direct current stimulation was effective and safe in ameliorating negative symptoms in patients with schizophrenia when combined with online functional targeting.
Collapse
Affiliation(s)
- Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital Beitou Branch, National Defense Medical Center, Taipei, Taiwan
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Leodori G, Mancuso M, Maccarrone D, Tartaglia M, Ianniello A, Certo F, Ferrazzano G, Malimpensa L, Belvisi D, Pozzilli C, Berardelli A, Conte A. Insight into motor fatigue mechanisms in natalizumab treated multiple sclerosis patients with wearing off. Sci Rep 2024; 14:17654. [PMID: 39085330 PMCID: PMC11291752 DOI: 10.1038/s41598-024-68322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Motor fatigue in Multiple Sclerosis (MS) is due to reduced motor cortex (M1) output and altered sensorimotor network (SMN) modulation. Natalizumab, a disease-modifying therapy, reduces neuroinflammation and improves fatigue. However, some patients treated with natalizumab experience fatigue recurrence ('wearing-off') before subsequent infusions. Wearing-off provides a valuable window into MS-related motor fatigue mechanisms in a controlled, clinically stable, setting. This study investigates whether wearing-off is associated with worsening motor fatigue and its neurophysiological mechanisms and assesses natalizumab's effect on MS-related fatigue. Forty-five relapsing-remitting MS patients with wearing-off symptoms were evaluated pre- and post-natalizumab infusion. Assessments included evaluating disability levels, depressive symptoms, and the impact of fatigue symptoms on cognitive, physical, and psychosocial functioning. The motor fatigue index was computed through the number of blocks completed during a fatiguing task and peripheral, central, and supraspinal fatigue (M1 output) were evaluated by measuring the superimposed twitches evoked by peripheral nerve and transcranial magnetic stimulation of M1. Transcranial magnetic stimulation-electroencephalography assessed M1 effective connectivity by measuring TMS-evoked potentials (TEPs) within the SMN before- and after the task. We found that wearing-off was associated with increased motor fatigue index, increased central and supraspinal fatigue, and diminished task-related modulation of TEPs compared to post-natalizumab infusion. Wearing-off was also associated with worsened fatigue impact and depression symptom scores. We conclude that the wearing-off phenomenon is associated with worsening motor fatigue due to altered M1 output and modulation of the SMN. Motor fatigue in MS may reflect reversible, inflammation-related changes in the SMN that natalizumab can modulate. Our findings apply primarily to MS patients receiving natalizumab, emphasizing the need for further research on other treatments with wearing-off.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy.
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Davide Maccarrone
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Matteo Tartaglia
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Antonio Ianniello
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Francesco Certo
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Leonardo Malimpensa
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Daniele Belvisi
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Carlo Pozzilli
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| | - Antonella Conte
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università, 30, 00185, Rome, Italy
| |
Collapse
|
3
|
Xu J, Mawase F, Schieber MH. Evolution, biomechanics, and neurobiology converge to explain selective finger motor control. Physiol Rev 2024; 104:983-1020. [PMID: 38385888 PMCID: PMC11380997 DOI: 10.1152/physrev.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.
Collapse
Affiliation(s)
- Jing Xu
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
| | - Firas Mawase
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel
| | - Marc H Schieber
- Departments of Neurology and Neuroscience, University of Rochester, Rochester, New York, United States
| |
Collapse
|
4
|
Harquel S, Cadic-Melchior A, Morishita T, Fleury L, Witon A, Ceroni M, Brügger J, Meyer NH, Evangelista GG, Egger P, Beanato E, Menoud P, Van de Ville D, Micera S, Blanke O, Léger B, Adolphsen J, Jagella C, Constantin C, Alvarez V, Vuadens P, Turlan JL, Mühl A, Bonvin C, Koch PJ, Wessel MJ, Hummel FC. Stroke Recovery-Related Changes in Cortical Reactivity Based on Modulation of Intracortical Inhibition. Stroke 2024; 55:1629-1640. [PMID: 38639087 DOI: 10.1161/strokeaha.123.045174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Cortical excitation/inhibition dynamics have been suggested as a key mechanism occurring after stroke. Their supportive or maladaptive role in the course of recovery is still not completely understood. Here, we used transcranial magnetic stimulation (TMS)-electroencephalography coupling to study cortical reactivity and intracortical GABAergic inhibition, as well as their relationship to residual motor function and recovery longitudinally in patients with stroke. METHODS Electroencephalography responses evoked by TMS applied to the ipsilesional motor cortex were acquired in patients with stroke with upper limb motor deficit in the acute (1 week), early (3 weeks), and late subacute (3 months) stages. Readouts of cortical reactivity, intracortical inhibition, and complexity of the evoked dynamics were drawn from TMS-evoked potentials induced by single-pulse and paired-pulse TMS (short-interval intracortical inhibition). Residual motor function was quantified through a detailed motor evaluation. RESULTS From 76 patients enrolled, 66 were included (68.2±13.2 years old, 18 females), with a Fugl-Meyer score of the upper extremity of 46.8±19. The comparison with TMS-evoked potentials of healthy older revealed that most affected patients exhibited larger and simpler brain reactivity patterns (Pcluster<0.05). Bayesian ANCOVA statistical evidence for a link between abnormally high motor cortical excitability and impairment level. A decrease in excitability in the following months was significantly correlated with better motor recovery in the whole cohort and the subgroup of recovering patients. Investigation of the intracortical GABAergic inhibitory system revealed the presence of beneficial disinhibition in the acute stage, followed by a normalization of inhibitory activity. This was supported by significant correlations between motor scores and the contrast of local mean field power and readouts of signal dynamics. CONCLUSIONS The present results revealed an abnormal motor cortical reactivity in patients with stroke, which was driven by perturbations and longitudinal changes within the intracortical inhibition system. They support the view that disinhibition in the ipsilesional motor cortex during the first-week poststroke is beneficial and promotes neuronal plasticity and recovery.
Collapse
Affiliation(s)
- Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Andéol Cadic-Melchior
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Lisa Fleury
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Adrien Witon
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Health-IT, Centre de Service, Hôpital du Valais, Switzerland (A.W.)
| | - Martino Ceroni
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Julia Brügger
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Nathalie H Meyer
- Laboratory of Cognitive Neuroscience, INX and BMI, EPFL, Geneva, Switzerland (N.H.M., O.B.)
| | - Giorgia G Evangelista
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Philip Egger
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
| | - Dimitri Van de Ville
- Medical Image Processing Laboratory, INX, EPFL, Geneva, Switzerland (D.V.V.)
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Switzerland (D.V.d.V.)
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy (S.M.)
- Bertarelli Foundation Chair in Translational Neuroengineering, INX and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (S.M.)
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, INX and BMI, EPFL, Geneva, Switzerland (N.H.M., O.B.)
- Department of Neurology, Geneva University Hospital (HUG), Switzerland (O.B.)
| | - Bertrand Léger
- Clinique Romande de Réadaptation, Sion, Switzerland (B.L., P.V., J.-L.T., A.M.)
| | | | | | | | - Vincent Alvarez
- Department of Neurology, Hôpital du Valais, Sion, Switzerland (C.C., V.A., C.B.)
| | - Philippes Vuadens
- Clinique Romande de Réadaptation, Sion, Switzerland (B.L., P.V., J.-L.T., A.M.)
| | - Jean-Luc Turlan
- Clinique Romande de Réadaptation, Sion, Switzerland (B.L., P.V., J.-L.T., A.M.)
| | - Andreas Mühl
- Clinique Romande de Réadaptation, Sion, Switzerland (B.L., P.V., J.-L.T., A.M.)
| | - Christophe Bonvin
- Department of Neurology, Hôpital du Valais, Sion, Switzerland (C.C., V.A., C.B.)
| | - Philipp J Koch
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Department of Neurology, University of Lübeck, Germany (P.J.K.)
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Department of Neurology, Julius-Maximilians-University Würzburg, Germany (M.J.W.)
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland (S.H., A.C.-M., T.M., L.F., A.W., M.C., J.B., G.G.E., P.E., E.B., P.M., P.J.K., M.J.W., F.C.H.)
- Clinical Neuroscience, Geneva University Hospital, Switzerland (F.C.H.)
| |
Collapse
|
5
|
Fong PY, Rothwell JC, Rocchi L. The Past, Current and Future Research in Cerebellar TMS Evoked Responses-A Narrative Review. Brain Sci 2024; 14:432. [PMID: 38790411 PMCID: PMC11118133 DOI: 10.3390/brainsci14050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is a novel technique to investigate cortical physiology in health and disease. The cerebellum has recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports published recently. However, EEG responses obtained by cerebellar stimulation vary considerably across the literature, possibly due to different experimental methods. Compared to conventional TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone coils are used, resulting in contamination of responses by electromyographic activity and sensory potentials. Understanding technical difficulties and limitations is essential for the development of cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies, highlighting limitations in experimental design and potential issues that can result in discrepancies between experimental outcomes. Lastly, we propose a possible direction for academic and clinical research with cerebellar TMS-EEG.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Medical School, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
6
|
Gorban C, Zhang Z, Mensen A, Khatami R. The Comparison of Early Hemodynamic Response to Single-Pulse Transcranial Magnetic Stimulation following Inhibitory or Excitatory Theta Burst Stimulation on Motor Cortex. Brain Sci 2023; 13:1609. [PMID: 38002568 PMCID: PMC10670137 DOI: 10.3390/brainsci13111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
We present a new study design aiming to enhance the understanding of the mechanism by which continuous theta burst stimulation (cTBS) or intermittent theta burst stimulation (iTBS) paradigms elicit cortical modulation. Using near-infrared spectroscopy (NIRS), we compared the cortical hemodynamics of the previously inhibited (after cTBS) or excited (after iTBS) left primary motor cortex (M1) as elicited by single-pulse TMS (spTMS) in a cross-over design. Mean relative changes in hemodynamics within 6 s of the stimulus were compared using a two-sample t-test (p < 0.05) and linear mixed model between real and sham stimuli and between stimuli after cTBS and iTBS. Only spTMS after cTBS resulted in a significant increase (p = 0.04) in blood volume (BV) compared to baseline. There were no significant changes in other hemodynamic parameters (oxygenated/deoxygenated hemoglobin). spTMS after cTBS induced a larger increase in BV than spTMS after iTBS (p = 0.021) and sham stimulus after cTBS (p = 0.009). BV showed no significant difference between real and sham stimuli after iTBS (p = 0.37). The greater hemodynamic changes suggest increased vasomotor reactivity after cTBS compared to iTBS. In addition, cTBS could decrease lateral inhibition, allowing activation of surrounding areas after cTBS.
Collapse
Affiliation(s)
- Corina Gorban
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid, 5017 Barmelweid, Switzerland; (C.G.); (A.M.); (R.K.)
- Department of Neurology, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid, 5017 Barmelweid, Switzerland; (C.G.); (A.M.); (R.K.)
| | - Armand Mensen
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid, 5017 Barmelweid, Switzerland; (C.G.); (A.M.); (R.K.)
| | - Ramin Khatami
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid, 5017 Barmelweid, Switzerland; (C.G.); (A.M.); (R.K.)
- Department of Neurology, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Combined transcranial magnetic stimulation and electroencephalography reveals alterations in cortical excitability during pain. eLife 2023; 12:RP88567. [PMID: 37966464 PMCID: PMC10651174 DOI: 10.7554/elife.88567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n=29), multiple sustained thermal stimuli were administered to the forearm, with the first, second, and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures, respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45 ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n=10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian Shahmat Chowdhury
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western OntarioLondonCanada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- The Gray Centre for Mobility and Activity, University of Western OntarioLondonCanada
| |
Collapse
|
8
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Alterations in cortical excitability during pain: A combined TMS-EEG Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537735. [PMID: 37131586 PMCID: PMC10153239 DOI: 10.1101/2023.04.20.537735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n = 29), multiple sustained thermal stimuli were administered to the forearm, with the first, second and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n = 10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- The Gray Centre for Mobility and Activity, University of Western Ontario, London, Canada
| |
Collapse
|
9
|
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol 2023; 601:2827-2851. [PMID: 37254441 PMCID: PMC10952180 DOI: 10.1113/jp281885] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor-evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak-to-peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state-related changes in corticomotor excitability.
Collapse
Affiliation(s)
- Danny Adrian Spampinato
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Jaime Ibanez
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- BSICoS group, I3A Institute and IIS AragónUniversity of ZaragozaZaragozaSpain
- Department of Bioengineering, Centre for NeurotechnologiesImperial College LondonLondonUK
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - John Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| |
Collapse
|
10
|
Costanzo M, Leodori G, Cutrona C, Marchet F, De Bartolo MI, Mancuso M, Belvisi D, Conte A, Berardelli A, Fabbrini G. Motor Cortical Correlates of Paired Associative Stimulation Induced Plasticity: A TMS-EEG Study. Brain Sci 2023; 13:921. [PMID: 37371399 DOI: 10.3390/brainsci13060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Paired associative stimulation (PAS) is a non-invasive brain stimulation technique that modulates synaptic plasticity in the human motor cortex (M1). Since previous studies have primarily used motor-evoked potentials (MEPs) as outcome measure, cortical correlates of PAS-induced plasticity remain unknown. Therefore, the aim of this observational study was to investigate cortical correlates of a standard PAS induced plasticity in the primary motor cortex by using a combined TMS-EEG approach in a cohort of eighteen healthy subjects. In addition to the expected long-lasting facilitatory modulation of MEPs amplitude, PAS intervention also induced a significant increase in transcranial magnetic stimulation-evoked potentials (TEPs) P30 and P60 amplitude. No significant correlation between the magnitude of PAS-induced changes in TEP components and MEP amplitude were observed. However, the linear regression analysis revealed that the combined changes in P30 and P60 component amplitudes significantly predicted the MEP facilitation after PAS. The findings of our study offer novel insight into the neurophysiological changes associated with PAS-induced plasticity at M1 cortical level and suggest a complex relationship between TEPs and MEPs changes following PAS.
Collapse
Affiliation(s)
| | - Giorgio Leodori
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | | | - Francesco Marchet
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | | | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Daniele Belvisi
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Antonella Conte
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| |
Collapse
|
11
|
Neural bases of motor fatigue in multiple sclerosis: A multimodal approach using neuromuscular assessment and TMS-EEG. Neurobiol Dis 2023; 180:106073. [PMID: 36906073 DOI: 10.1016/j.nbd.2023.106073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Motor fatigue is one of the most common symptoms in multiple sclerosis (MS) patients. Previous studies suggested that increased motor fatigue in MS may arise at the central nervous system level. However, the mechanisms underlying central motor fatigue in MS are still unclear. This paper investigated whether central motor fatigue in MS reflects impaired corticospinal transmission or suboptimal primary motor cortex (M1) output (supraspinal fatigue). Furthermore, we sought to identify whether central motor fatigue is associated with abnormal M1 excitability and connectivity within the sensorimotor network. Twenty-two patients affected by relapsing-remitting MS and 15 healthy controls (HCs) performed repeated blocks of contraction at different percentages of maximal voluntary contraction with the right first dorsal interosseus muscle until exhaustion. Peripheral, central, and supraspinal components of motor fatigue were quantified by a neuromuscular assessment based on the superimposed twitch evoked by peripheral nerve and transcranial magnetic stimulation (TMS). Corticospinal transmission, excitability and inhibition during the task were tested by measurement of motor evoked potential (MEP) latency, amplitude, and cortical silent period (CSP). M1 excitability and connectivity was measured by TMS-evoked electroencephalography (EEG) potentials (TEPs) elicited by M1 stimulation before and after the task. Patients completed fewer blocks of contraction and showed higher values of central and supraspinal fatigue than HCs. We found no MEP or CSP differences between MS patients and HCs. Patients showed a post-fatigue increase in TEPs propagation from M1 to the rest of the cortex and in source-reconstructed activity within the sensorimotor network, in contrast to the reduction observed in HCs. Post-fatigue increase in source-reconstructed TEPs correlated with supraspinal fatigue values. To conclude, MS-related motor fatigue is caused by central mechanisms related explicitly to suboptimal M1 output rather than impaired corticospinal transmission. Furthermore, by adopting a TMS-EEG approach, we proved that suboptimal M1 output in MS patients is associated with abnormal task-related modulation of M1 connectivity within the sensorimotor network. Our findings shed new light on the central mechanisms of motor fatigue in MS by highlighting a possible role of abnormal sensorimotor network dynamics. These novel results may point to new therapeutical targets for fatigue in MS.
Collapse
|
12
|
Nuara A, Bazzini MC, Cardellicchio P, Scalona E, De Marco D, Rizzolatti G, Fabbri-Destro M, Avanzini P. The value of corticospinal excitability and intracortical inhibition in predicting motor skill improvement driven by action observation. Neuroimage 2023; 266:119825. [PMID: 36543266 DOI: 10.1016/j.neuroimage.2022.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022] Open
Abstract
The observation of other's actions represents an essential element for the acquisition of motor skills. While action observation is known to induce changes in the excitability of the motor cortices, whether such modulations may explain the amount of motor improvement driven by action observation training (AOT) remains to be addressed. Using transcranial magnetic stimulation (TMS), we first assessed in 41 volunteers the effect of action observation on corticospinal excitability, intracortical inhibition, and transcallosal inhibition. Subsequently, half of the participants (AOT-group) were asked to observe and then execute a right-hand dexterity task, while the controls had to observe a no-action video before practicing the same task. AOT participants showed greater performance improvement relative to controls. More importantly, the amount of improvement in the AOT group was predicted by the amplitude of corticospinal modulation during action observation and, even more, by the amount of intracortical inhibition induced by action observation. These relations were specific for the AOT group, while the same patterns were not found in controls. Taken together, our findings demonstrate that the efficacy of AOT in promoting motor learning is rooted in the capacity of action observation to modulate the trainee's motor system excitability, especially its intracortical inhibition. Our study not only enriches the picture of the neurophysiological effects induced by action observation onto the observer's motor excitability, but linking them to the efficacy of AOT, it also paves the way for the development of models predicting the outcome of training procedures based on the observation of other's actions.
Collapse
Affiliation(s)
- Arturo Nuara
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy.
| | | | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Emilia Scalona
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy; Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica (DSMC), Università degli studi di Brescia, Italia
| | - Doriana De Marco
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy
| | | | | | - Pietro Avanzini
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy; Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
| |
Collapse
|
13
|
Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. J Neurosci Methods 2022; 377:109631. [PMID: 35623474 DOI: 10.1016/j.jneumeth.2022.109631] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Biomarkers are essential for understanding the underlying pathologies in brain disorders and for developing effective treatments. Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging neurophysiological tool that can be used for biomarker development. This method can identify biomarkers associated with the function and dynamics of the inhibitory and excitatory neurotransmitter systems and effective connectivity between brain areas. In this review, we outline the current state of the TMS-EEG biomarker field by summarizing the existing protocols and the possibilities and challenges associated with this methodology.
Collapse
|
14
|
Bridging the gap: TMS-EEG from Lab to Clinic. J Neurosci Methods 2022; 369:109482. [PMID: 35041855 DOI: 10.1016/j.jneumeth.2022.109482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 01/06/2023]
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has reached technological maturity and has been an object of significant scientific interest for over two decades. Ιn parallel, accumulating evidence highlights the potential of TMS-EEG as a useful tool in the field of clinical neurosciences. Nevertheless, its clinical utility has not yet been established, partly because technical and methodological limitations have created a gap between an evolving scientific tool and standard clinical practice. Here we review some of the identified gaps that still prevent TMS-EEG moving from science laboratories to clinical practice. The principal and partly overlapping gaps include: 1) complex and laborious application, 2) difficulty in obtaining high-quality signals, 3) suboptimal accuracy and reliability, and 4) insufficient understanding of the neurobiological substrate of the responses. All these four aspects need to be satisfactorily addressed for the method to become clinically applicable and enter the diagnostic and therapeutic arena. In the current review, we identify steps that might be taken to address these issues and discuss promising recent studies providing tools to aid bridging the gaps.
Collapse
|
15
|
Leodori G, De Bartolo MI, Guerra A, Fabbrini A, Rocchi L, Latorre A, Paparella G, Belvisi D, Conte A, Bhatia KP, Rothwell JC, Berardelli A. Motor Cortical Network Excitability in Parkinson's Disease. Mov Disord 2022; 37:734-744. [PMID: 35001420 DOI: 10.1002/mds.28914] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Motor impairment in Parkinson's disease (PD) reflects changes in the basal ganglia-thalamocortical circuit converging on the primary motor cortex (M1) and supplementary motor area (SMA). Previous studies assessed M1 excitability in PD using transcranial magnetic stimulation (TMS)-evoked electromyographic activity. TMS-evoked electroencephalographic activity may unveil broader motor cortical network changes in PD. OBJECTIVE The aim was to assess motor cortical network excitability in PD. METHODS We compared TMS-evoked cortical potentials (TEPs) from M1 and the pre-SMA between 20 PD patients tested off and on medication and 19 healthy controls (HCs) and investigated possible correlations with bradykinesia. RESULTS Off PD patients compared to HCs had smaller P30 responses from the M1s contralateral (M1+) and ipsilateral (M1-) to the most bradykinetic side and increased pre-SMA N40. Dopaminergic therapy normalized the amplitude of M1+ and M1- P30 as well as pre-SMA N40. We found a positive correlation between M1+ P30 amplitude and bradykinesia in off PD patients. CONCLUSIONS Changes in M1 P30 and pre-SMA N40 in PD suggest that M1 excitability is reduced on both sides, whereas pre-SMA excitability is increased. The effect of dopaminergic therapy and the clinical correlation suggest that these cortical changes may reflect abnormal basal ganglia-thalamocortical activity. TMS electroencephalography provides novel insight into motor cortical network changes related to the pathophysiology of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Leodori G, Rocchi L, Mancuso M, De Bartolo MI, Baione V, Costanzo M, Belvisi D, Conte A, Defazio G, Berardelli A. The effect of stimulation frequency on transcranial evoked potentials. Transl Neurosci 2022; 13:211-217. [PMID: 35990553 PMCID: PMC9356286 DOI: 10.1515/tnsci-2022-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Transcranial magnetic stimulation-evoked electroencephalography potentials (TEPs) have been used to study motor cortical excitability in healthy subjects and several neurological conditions. However, optimal recording parameters for TEPs are still debated. Stimulation rates could affect TEP amplitude due to plasticity effects, thus confounding the assessment of cortical excitability. We tested whether short interpulse intervals (IPIs) affect TEP amplitude. Methods We investigated possible changes in TEP amplitude and global mean field amplitude (GMFA) obtained with stimulation of the primary motor cortex at IPIs of 1.1-1.4 s in a group of healthy subjects. Results We found no differences in TEP amplitude or GMFA between the first, second and last third of trials. Discussion Short IPIs do not affect TEP size and can be used without the risk of confounding effects due to short-term plasticity.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome (RM), Italy
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, SS 554 bivio Sestu - 09042 Monserrato, 09124 Cagliari (CA), Italy.,Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome (RM), Italy
| | | | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome (RM), Italy
| | - Matteo Costanzo
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome (RM), Italy
| | - Daniele Belvisi
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome (RM), Italy
| | - Antonella Conte
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome (RM), Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, University of Cagliari, SS 554 bivio Sestu - 09042 Monserrato, 09124 Cagliari (CA), Italy.,Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome (RM), Italy
| |
Collapse
|
17
|
Qiu S, Wang S, Peng W, Yi W, Zhang C, Zhang J, He H. Continuous theta-burst stimulation modulates resting-state EEG microstates in healthy subjects. Cogn Neurodyn 2021; 16:621-631. [DOI: 10.1007/s11571-021-09726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
|
18
|
Cortical mechanisms underlying variability in intermittent theta-burst stimulation-induced plasticity: A TMS-EEG study. Clin Neurophysiol 2021; 132:2519-2531. [PMID: 34454281 DOI: 10.1016/j.clinph.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To test the hypothesis that intermittent theta burst stimulation (iTBS) variability depends on the ability to engage specific neurons in the primary motor cortex (M1). METHODS In a sham-controlled interventional study on 31 healthy volunteers, we used concomitant transcranial magnetic stimulation (TMS) and electroencephalography (EEG). We compared baseline motor evoked potentials (MEPs), M1 iTBS-evoked EEG oscillations, and resting-state EEG (rsEEG) between subjects who did and did not show MEP facilitation following iTBS. We also investigated whether baseline MEP and iTBS-evoked EEG oscillations could explain inter and intraindividual variability in iTBS aftereffects. RESULTS The facilitation group had smaller baseline MEPs than the no-facilitation group and showed more iTBS-evoked EEG oscillation synchronization in the alpha and beta frequency bands. Resting-state EEG power was similar between groups and iTBS had a similar non-significant effect on rsEEG in both groups. Baseline MEP amplitude and beta iTBS-evoked EEG oscillation power explained both inter and intraindividual variability in MEP modulation following iTBS. CONCLUSIONS The results show that variability in iTBS-associated plasticity depends on baseline corticospinal excitability and on the ability of iTBS to engage M1 beta oscillations. SIGNIFICANCE These observations can be used to optimize iTBS investigational and therapeutic applications.
Collapse
|
19
|
Bologna M, Leodori G. Caffeine: Is it good or bad for neural plasticity? Clin Neurophysiol 2021; 132:1336-1338. [PMID: 33840571 DOI: 10.1016/j.clinph.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed Pozzilli (IS), Italy.
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed Pozzilli (IS), Italy
| |
Collapse
|
20
|
Abnormal motor surround inhibition associated with cortical and deep grey matter involvement in multiple sclerosis. Clin Neurophysiol 2021; 132:1151-1156. [PMID: 33774380 DOI: 10.1016/j.clinph.2021.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Motor surround inhibition (mSI) is a physiological mechanism that contributes to hand movement control by focusing voluntary movement. Growing evidence suggests that hand movement control is impaired in multiple sclerosis. The aim of the study was to evaluate mSI in MS and to investigate the brain structures involved in mSI in multiple sclerosis. METHODS We recruited 33 patients and 23 controls. To investigate mSI, we delivered transcranial magnetic single pulses during index finger flexion. Motor evoked potentials were recorded and first dorsal interosseous ("active muscle") and from the abductor digiti minimi ("surround muscle"). mSI was expressed as the ratio between Motor evoked potentials recorded from the surround muscle during movement and at rest. Participants underwent a magnetic resonance study. RESULTS Patients had impaired mSI as compared with controls. Magnetic resonance showed that basal ganglia had smaller volumes and higher mean diffusivity than controls. Impaired mSI correlated with primary motor cortex and basal ganglia involvement in multiple sclerosis. CONCLUSION Altered mSI in multiple sclerosis is related to cortical and subcortical grey matter involvement. SIGNIFICANCE Our study provides the first demonstration of a pathophysiological mechanism underlying hand movement control dysfunction in multiple sclerosis. mSI represents a new therapeutic target of multiple sclerosis rehabilitative approaches.
Collapse
|
21
|
Rawji V, Kaczmarczyk I, Rocchi L, Fong PY, Rothwell JC, Sharma N. Preconditioning Stimulus Intensity Alters Paired-Pulse TMS Evoked Potentials. Brain Sci 2021; 11:326. [PMID: 33806701 PMCID: PMC7998341 DOI: 10.3390/brainsci11030326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Motor cortex (M1) paired-pulse TMS (ppTMS) probes excitatory and inhibitory intracortical dynamics by measurement of motor-evoked potentials (MEPs). However, MEPs reflect cortical and spinal excitabilities and therefore cannot isolate cortical function. Concurrent TMS-EEG has the ability to measure cortical function, while limiting peripheral confounds; TMS stimulates M1, whilst EEG acts as the readout: the TMS-evoked potential (TEP). Whilst varying preconditioning stimulus intensity influences intracortical inhibition measured by MEPs, the effects on TEPs is undefined. TMS was delivered to the left M1 using single-pulse and three, ppTMS paradigms, each using a different preconditioning stimulus: 70%, 80% or 90% of resting motor threshold. Corticospinal inhibition was present in all three ppTMS conditions. ppTMS TEP peaks were reduced predominantly under the ppTMS 70 protocol but less so for ppTMS 80 and not at all for ppTMS 90. There was a significant negative correlation between MEPs and N45 TEP peak for ppTMS 70 reaching statistical trends for ppTMS 80 and 90. Whilst ppTMS MEPs show inhibition across a range of preconditioning stimulus intensities, ppTMS TEPs do not. TEPs after M1 ppTMS vary as a function of preconditioning stimulus intensity: smaller preconditioning stimulus intensities result in better discriminability between conditioned and unconditioned TEPs. We recommend that preconditioning stimulus intensity should be minimized when using ppTMS to probe intracortical inhibition.
Collapse
Affiliation(s)
- Vishal Rawji
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Isabella Kaczmarczyk
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Po-Yu Fong
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Nikhil Sharma
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| |
Collapse
|
22
|
Insausti-Delgado A, López-Larraz E, Omedes J, Ramos-Murguialday A. Intensity and Dose of Neuromuscular Electrical Stimulation Influence Sensorimotor Cortical Excitability. Front Neurosci 2021; 14:593360. [PMID: 33519355 PMCID: PMC7845652 DOI: 10.3389/fnins.2020.593360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) of the nervous system has been extensively used in neurorehabilitation due to its capacity to engage the muscle fibers, improving muscle tone, and the neural pathways, sending afferent volleys toward the brain. Although different neuroimaging tools suggested the capability of NMES to regulate the excitability of sensorimotor cortex and corticospinal circuits, how the intensity and dose of NMES can neuromodulate the brain oscillatory activity measured with electroencephalography (EEG) is still unknown to date. We quantified the effect of NMES parameters on brain oscillatory activity of 12 healthy participants who underwent stimulation of wrist extensors during rest. Three different NMES intensities were included, two below and one above the individual motor threshold, fixing the stimulation frequency to 35 Hz and the pulse width to 300 μs. Firstly, we efficiently removed stimulation artifacts from the EEG recordings. Secondly, we analyzed the effect of amplitude and dose on the sensorimotor oscillatory activity. On the one hand, we observed a significant NMES intensity-dependent modulation of brain activity, demonstrating the direct effect of afferent receptor recruitment. On the other hand, we described a significant NMES intensity-dependent dose-effect on sensorimotor activity modulation over time, with below-motor-threshold intensities causing cortical inhibition and above-motor-threshold intensities causing cortical facilitation. Our results highlight the relevance of intensity and dose of NMES, and show that these parameters can influence the recruitment of the sensorimotor pathways from the muscle to the brain, which should be carefully considered for the design of novel neuromodulation interventions based on NMES.
Collapse
Affiliation(s)
- Ainhoa Insausti-Delgado
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, Tübingen, Germany
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | - Jason Omedes
- Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain
- Departamento de Informática e Ingeniería de Sistemas (DIIS), University of Zaragoza, Zaragoza, Spain
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Neurotechnology Laboratory, TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| |
Collapse
|
23
|
Gu J, Zhao Z, Zeng Z, Wang Y, Qiu Z, Veeravalli B, Poh Goh BK, Kunnath Bonney G, Madhavan K, Ying CW, Kheng Choon L, Hua TC, Chow PKH. Multi-Phase Cross-modal Learning for Noninvasive Gene Mutation Prediction in Hepatocellular Carcinoma. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3549-3552. [PMID: 33019296 DOI: 10.1109/embc44109.2020.9176673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth most common cause of cancer-related death worldwide. Understanding the underlying gene mutations in HCC provides great prognostic value for treatment planning and targeted therapy. Radiogenomics has revealed an association between non-invasive imaging features and molecular genomics. However, imaging feature identification is laborious and error-prone. In this paper, we propose an end-to-end deep learning framework for mutation prediction in APOB, COL11A1 and ATRX genes using multiphasic CT scans. Considering intra-tumour heterogeneity (ITH) in HCC, multi-region sampling technology is implemented to generate the dataset for experiments. Experimental results demonstrate the effectiveness of the proposed model.
Collapse
|
24
|
Leodori G, Belvisi D, De Bartolo MI, Fabbrini A, Costanzo M, Vial F, Conte A, Hallett M, Berardelli A. Re-emergent Tremor in Parkinson's Disease: The Role of the Motor Cortex. Mov Disord 2020; 35:1002-1011. [PMID: 32175656 PMCID: PMC8448579 DOI: 10.1002/mds.28022] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Parkinson's disease patients may show a tremor that appears after a variable delay while the arms are kept outstretched (re-emergent tremor). The objectives of this study were to investigate re-emergent tremor pathophysiology by studying the role of the primary motor cortex in this tremor and making a comparison with rest tremor. METHODS We enrolled 10 Parkinson's disease patients with both re-emergent and rest tremor. Tremor was assessed by spectral analysis, corticomuscular coherence and tremor-resetting produced by transcranial magnetic stimulation over the primary motor cortex. We also recorded transcranial magnetic stimulation-evoked potentials generated by motor cortex stimulation during rest tremor, tremor suppression during wrist extension, and re-emergent tremor. Spectral analysis, corticomuscular coherence, and tremor resetting were compared between re-emergent tremor and rest tremor. RESULTS Re-emergent tremor showed significant corticomuscular coherence, causal relation between motor cortex activity and tremor muscle and tremor resetting. The P60 component of transcranial magnetic stimulation-evoked potentials reduced in amplitude during tremor suppression, recovered before re-emergent tremor, was facilitated at re-emergent tremor onset, and returned to values similar to those of rest tremor during re-emergent tremor. Compared with rest tremor, re-emergent tremor showed similar corticomuscular coherence and tremor resetting, but slightly higher frequency. CONCLUSIONS Re-emergent tremor is causally related with the activity of the primary motor cortex, which is likely a convergence node in the network that generates re-emergent tremor. Re-emergent tremor and rest tremor share common pathophysiological mechanisms in which the motor cortex plays a crucial role. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | - Matteo Costanzo
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Felipe Vial
- Human Motor Control Section, NINDS, NIH, Bethesda, Maryland, USA
- Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Bío Bío, Chile
| | - Antonella Conte
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Bethesda, Maryland, USA
| | - Alfredo Berardelli
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Advanced TMS approaches to probe corticospinal excitability during action preparation. Neuroimage 2020; 213:116746. [DOI: 10.1016/j.neuroimage.2020.116746] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
|
26
|
Qiu S, Yi W, Wang S, Zhang C, He H. The Lasting Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Resting State EEG in Healthy Subjects. IEEE Trans Neural Syst Rehabil Eng 2020; 28:832-841. [DOI: 10.1109/tnsre.2020.2977883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Thirugnanasambandam N, Leodori G, Popa T, Kassavetis P, Mandel A, Shaft A, Kee J, Kashyap S, Khodorov G, Hallett M. Parietal conditioning enhances motor surround inhibition. Brain Stimul 2019; 13:447-449. [PMID: 31879086 PMCID: PMC8214400 DOI: 10.1016/j.brs.2019.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Motor surround inhibition (mSI) is a phenomenon supportive for executing selective finger movements, wherein synergist muscles are selectively facilitated while surround muscles are inhibited. Previous studies of conditioning inputs to several intracortical and cortico-cortical inhibitory networks did not show an influence on mSI. The inhibitory posterior parietal-motor network, which is crucial for executing fine movements, however, has not been studied. OBJECTIVE/HYPOTHESIS To investigate the role of inhibitory posterior parietal-motor network in mSI. We hypothesized that conditioning this inhibitory network would enhance mSI. METHODS 11 healthy adults completed study. mSI was elicited by applying a TMS pulse over the motor cortex coupled with or without a conditioning input to an inhibitory spot in the posterior parietal cortex at 2 or 4 ms interval. RESULTS Conditioning input to the posterior parietal cortex increased mSI by ∼20% CONCLUSION: The inhibitory posterior parietal-motor network appears to contribute to the genesis of mSI.
Collapse
Affiliation(s)
- Nivethida Thirugnanasambandam
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | | | - Traian Popa
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | - Panagiotis Kassavetis
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | - Alexandra Mandel
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA; The George Washington University, Washington, D.C, USA
| | - Alexander Shaft
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA; University of Nevada School of Medicine, Reno, NV, USA
| | - Jaron Kee
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA; University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sarung Kashyap
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | - Gregg Khodorov
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA; The George Washington University, Washington, D.C, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA.
| |
Collapse
|
28
|
Tamura K, Osada T, Ogawa A, Tanaka M, Suda A, Shimo Y, Hattori N, Kamagata K, Hori M, Aoki S, Shimizu T, Enomoto H, Hanajima R, Ugawa Y, Konishi S. MRI-based visualization of rTMS-induced cortical plasticity in the primary motor cortex. PLoS One 2019; 14:e0224175. [PMID: 31648225 PMCID: PMC6812785 DOI: 10.1371/journal.pone.0224175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces changes in cortical excitability for minutes to hours after the end of intervention. However, it has not been precisely determined to what extent cortical plasticity prevails spatially in the cortex. Recent studies have shown that rTMS induces changes in “interhemispheric” functional connectivity, the resting-state functional connectivity between the stimulated region and the symmetrically corresponding region in the contralateral hemisphere. In the present study, quadripulse stimulation (QPS) was applied to the index finger representation in the left primary motor cortex (M1), while the position of the stimulation coil was constantly monitored by an online navigator. After QPS application, resting-state functional magnetic resonance imaging was performed, and the interhemispheric functional connectivity was compared with that before QPS. A cluster of connectivity changes was observed in the stimulated region in the central sulcus. The cluster was spatially extended approximately 10 mm from the center [half width at half maximum (HWHM): approximately 3 mm] and was extended approximately 20 mm long in depth (HWHM: approximately 7 mm). A localizer scan of the index finger motion confirmed that the cluster of interhemispheric connectivity changes overlapped spatially with the activation related to the index finger motion. These results indicate that cortical plasticity in M1 induced by rTMS was relatively restricted in space and suggest that rTMS can reveal functional dissociation associated with adjacent small areas by inducing neural plasticity in restricted cortical regions.
Collapse
Affiliation(s)
- Kaori Tamura
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akimitsu Suda
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Shimizu
- Department of Neurology, Tottori University School of Medicine, Tottori, Japan
| | - Hiroyuki Enomoto
- Department of Neuro-Regeneration, Fukushima Medical University, Fukushima, Japan
| | - Ritsuko Hanajima
- Department of Neurology, Tottori University School of Medicine, Tottori, Japan
| | - Yoshikazu Ugawa
- Department of Neuro-Regeneration, Fukushima Medical University, Fukushima, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University School of Medicine, Tokyo, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|