1
|
Zhang W, Liu T, Li J, Singh J, Chan A, Islam A, Petrache A, Peng Y, Harvey K, Ali AB. Decreased extrasynaptic δ-GABA A receptors in PNN-associated parvalbumin interneurons correlates with anxiety in APP and tau mouse models of Alzheimer's disease. Br J Pharmacol 2024; 181:3944-3975. [PMID: 38886118 DOI: 10.1111/bph.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with gradual memory loss and anxiety which affects ~75% of AD patients. This study investigated whether AD-associated anxiety correlated with modulation of extrasynaptic δ-subunit-containing GABAA receptors (δ-GABAARs) in experimental mouse models of AD. EXPERIMENTAL APPROACH We combined behavioural experimental paradigms to measure cognition performance, and anxiety with neuroanatomy and molecular biology, using familial knock-in (KI) mouse models of AD that harbour β-amyloid (Aβ) precursor protein App (AppNL-F) with or without humanized microtubule-associated protein tau (MAPT), age-matched to wild-type control mice at three different age windows. RESULTS AppNL-F KI and AppNL-F/MAPT AD models showed a similar magnitude of cognitive decline and elevated magnitude of anxiety correlated with neuroinflammatory hallmarks, including triggering receptor expressed on myeloid cells 2 (TREM2), reactive astrocytes and activated microglia consistent with accumulation of Aβ, tau and down-regulation of Wnt/β-catenin signalling compared to aged-matched WT controls. In both the CA1 region of the hippocampus and dentate gyrus, there was an age-dependent decline in the expression of δ-GABAARs selectively expressed in parvalbumin (PV)-expressing interneurons, encapsulated by perineuronal nets (PNNs) in the AD mouse models compared to WT mice. In vivo positive allosteric modulation of the δ-GABAARs, using a δ-selective-compound DS2, decreased the level of anxiety in the AD mouse models, which was correlated with reduced hallmarks of neuroinflammation, and 'normalisation' of the expression of δ-GABAARs. CONCLUSIONS Our data show that the δ-GABAARs could potentially be targeted for alleviating symptoms of anxiety, which would greatly improve the quality of life of AD individuals.
Collapse
|
2
|
Hamidovic A, Cho S, Davis J. Positive association between dehydroepiandrosterone (DHEA) and gene expression of the gamma-aminobutyric acid (GABA-A) receptor δ subunit. J Steroid Biochem Mol Biol 2024; 241:106525. [PMID: 38636682 DOI: 10.1016/j.jsbmb.2024.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Gamma-aminobutyric acid A (GABA-A) receptors in the cells of the immune system enhance anti-inflammatory responses by regulating cytokine secretion, cytotoxic responses, and cell activation. In the CNS, the formation of GABA-A subunits into a pentameric structure has been extensively studied; however, no such study has been conducted in the immune system. The objective of the present study was to examine associations between the levels of steroid hormones and GABA-A receptor δ subunit expression in the immune system. We focused on this subunit because GABA-A receptors that contain it become significantly more sensitive to steroid hormones. We collected 80 blood samples from reproductive age women for the purpose of analyzing dehydroepiandrosterone (DHEA), 17β-estradiol, progesterone, and allopregnanolone using liquid chromatography-mass spectrometry (LC-MS). Furthermore, we extracted peripheral blood mononuclear cells (PBMCs) for determining mRNA expression levels of GABA-A receptor genes encoding the δ and ε subunits. We constructed linear mixed effect models for each GABA-A receptor subunit with all 4 steroid hormones, age, and age of menarche as predictors. Whereas DHEA was significantly associated with δ subunit expression (t-value = 2.981; p = 0.003), in line with our hypothesis, none of the steroid hormones were significantly associated with the expression of the ε subunit. Results of this study indicate that significant interactions between hormones from the steroid hormone biosynthesis pathway and GABAergic machinery from the immune cells may be utilized to expand models examining the molecular basis of inflammatory conditions.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| | - Soojeong Cho
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - John Davis
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Puig-Bosch X, Ballmann M, Bieletzki S, Antkowiak B, Rudolph U, Zeilhofer HU, Rammes G. Neurosteroids Mediate Neuroprotection in an In Vitro Model of Hypoxic/Hypoglycaemic Excitotoxicity via δ-GABA A Receptors without Affecting Synaptic Plasticity. Int J Mol Sci 2023; 24:ijms24109056. [PMID: 37240402 DOI: 10.3390/ijms24109056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Neurosteroids and benzodiazepines are modulators of the GABAA receptors, thereby causing anxiolysis. Furthermore, benzodiazepines such as midazolam are known to cause adverse side-effects on cognition upon administration. We previously found that midazolam at nanomolar concentrations (10 nM) blocked long-term potentiation (LTP). Here, we aim to study the effect of neurosteroids and their synthesis using XBD173, which is a synthetic compound that promotes neurosteroidogenesis by binding to the translocator protein 18 kDa (TSPO), since they might provide anxiolytic activity with a favourable side-effect profile. By means of electrophysiological measurements and the use of mice with targeted genetic mutations, we revealed that XBD173, a selective ligand of the translocator protein 18 kDa (TSPO), induced neurosteroidogenesis. In addition, the exogenous application of potentially synthesised neurosteroids (THDOC and allopregnanolone) did not depress hippocampal CA1-LTP, the cellular correlate of learning and memory. This phenomenon was observed at the same concentrations that neurosteroids conferred neuroprotection in a model of ischaemia-induced hippocampal excitotoxicity. In conclusion, our results indicate that TSPO ligands are promising candidates for post-ischaemic recovery exerting neuroprotection, in contrast to midazolam, without detrimental effects on synaptic plasticity.
Collapse
Affiliation(s)
- Xènia Puig-Bosch
- Department of Anaesthesiology and Intensive Care Medicine, Medical School, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- BCN-AIM Lab, Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Markus Ballmann
- Department of Anaesthesiology and Intensive Care Medicine, Medical School, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Stefan Bieletzki
- Department of Anaesthesiology and Intensive Care Medicine, Experimental Anaesthesiology Section, Eberhard Karls University, 72072 Tübingen, Germany
| | - Bernd Antkowiak
- Department of Anaesthesiology and Intensive Care Medicine, Experimental Anaesthesiology Section, Eberhard Karls University, 72072 Tübingen, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, and Carl R. Woese Institute for Genomic Biology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8092 Zürich, Switzerland
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Medical School, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
4
|
Kalinina TS, Shishkina GT, Lanshakov DA, Sukhareva EV, Onufriev MV, Moiseeva YV, Gulyaeva NV, Dygalo NN. Comparative Investigation of Expression of Glutamatergic and GABAergic Genes in the Rat Hippocampus after Focal Brain Ischemia and Central LPS Administration. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:539-550. [PMID: 37080939 DOI: 10.1134/s0006297923040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Among the responses in the early stages of stroke, activation of neurodegenerative and proinflammatory processes in the hippocampus is of key importance for the development of negative post-ischemic functional consequences. However, it remains unclear, what genes are involved in these processes. The aim of this work was a comparative study of the expression of genes encoding glutamate and GABA transporters and receptors, as well as inflammation markers in the hippocampus one day after two types of middle cerebral artery occlusion (according to Koizumi et al. method, MCAO-MK, and Longa et al. method, MCAO-ML), and direct pro-inflammatory activation by central administration of bacterial lipopolysaccharide (LPS). Differences and similarities in the effects of these challenges on gene expression were observed. Expression of a larger number of genes associated with activation of apoptosis and neuroinflammation, glutamate reception, and markers of the GABAergic system changed after the MCAO-ML and LPS administration than after the MCAO-MK. Compared with the MCAO-ML, the MCAO-MK and LPS challenges caused changes in the expression of more genes involved in glutamate transport. The most pronounced difference between the responses to different challenges was the changes in expression of calmodulin and calmodulin-dependent kinases genes observed after MCAO, especially MCAO-ML, but not after LPS. The revealed specific features of the hippocampal gene responses to the two types of ischemia and a pro-inflammatory stimulus could contribute to further understanding of the molecular mechanisms underlying diversity of the post-stroke consequences both in the model studies and in the clinic.
Collapse
Affiliation(s)
- Tatyana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Dmitriy A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Ekaterina V Sukhareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Yulia V Moiseeva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
6
|
Sikstus S, Benkherouf AY, Soini SL, Uusi-Oukari M. The Influence of AA29504 on GABA A Receptor Ligand Binding Properties and Its Implications on Subtype Selectivity. Neurochem Res 2022; 47:667-678. [PMID: 34727270 PMCID: PMC8847198 DOI: 10.1007/s11064-021-03475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 10/26/2022]
Abstract
The unique pharmacological properties of δ-containing γ-aminobutyric acid type A receptors (δ-GABAARs) make them an attractive target for selective and persistent modulation of neuronal excitability. However, the availability of selective modulators targeting δ-GABAARs remains limited. AA29504 ([2-amino-4-(2,4,6-trimethylbenzylamino)-phenyl]-carbamic acid ethyl ester), an analog of K+ channel opener retigabine, acts as an agonist and a positive allosteric modulator (Ago-PAM) of δ-GABAARs. Based on electrophysiological studies using recombinant receptors, AA29504 was found to be a more potent and effective agonist in δ-GABAARs than in γ2-GABAARs. In comparison, AA29504 positively modulated the activity of recombinant δ-GABAARs more effectively than γ2-GABAARs, with no significant differences in potency. The impact of AA29504's efficacy- and potency-associated GABAAR subtype selectivity on radioligand binding properties remain unexplored. Using [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate ([3H]EBOB) binding assay, we found no difference in the modulatory potency of AA29504 on GABA- and THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol)-induced responses between native forebrain GABAARs of wild type and δ knock-out mice. In recombinant receptors expressed in HEK293 cells, AA29504 showed higher efficacy on δ- than γ2-GABAARs in the GABA-independent displacement of [3H]EBOB binding. Interestingly, AA29504 showed a concentration-dependent stimulation of [3H]muscimol binding to γ2-GABAARs, which was absent in δ-GABAARs. This was explained by AA29504 shifting the low-affinity γ2-GABAAR towards a higher affinity desensitized state, thereby rising new sites capable of binding GABAAR agonists with low nanomolar affinity. Hence, the potential of AA29504 to act as a desensitization-modifying allosteric modulator of γ2-GABAARs deserves further investigation for its promising influence on shaping efficacy, duration and plasticity of GABAAR synaptic responses.
Collapse
Affiliation(s)
- Sylvia Sikstus
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Ali Y Benkherouf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Sanna L Soini
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
| |
Collapse
|
7
|
Bavo F, de-Jong H, Petersen J, Falk-Petersen CB, Löffler R, Sparrow E, Rostrup F, Eliasen JN, Wilhelmsen KS, Barslund K, Bundgaard C, Nielsen B, Kristiansen U, Wellendorph P, Bogdanov Y, Frølund B. Structure-Activity Studies of 3,9-Diazaspiro[5.5]undecane-Based γ-Aminobutyric Acid Type A Receptor Antagonists with Immunomodulatory Effect. J Med Chem 2021; 64:17795-17812. [PMID: 34908407 DOI: 10.1021/acs.jmedchem.1c00290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 3,9-diazaspiro[5.5]undecane-based compounds 2027 and 018 have previously been reported to be potent competitive γ-aminobutyric acid type A receptor (GABAAR) antagonists showing low cellular membrane permeability. Given the emerging peripheral application of GABAAR ligands, we hypothesize 2027 analogs as promising lead structures for peripheral GABAAR inhibition. We herein report a study on the structural determinants of 2027 in order to suggest a potential binding mode as a basis for rational design. The study identified the importance of the spirocyclic benzamide, compensating for the conventional acidic moiety, for GABAAR ligands. The structurally simplified m-methylphenyl analog 1e displayed binding affinity in the high-nanomolar range (Ki = 180 nM) and was superior to 2027 and 018 regarding selectivity for the extrasynaptic α4βδ subtype versus the α1- and α2- containing subtypes. Importantly, 1e was shown to efficiently rescue inhibition of T cell proliferation, providing a platform to explore the immunomodulatory potential for this class of compounds.
Collapse
Affiliation(s)
- Francesco Bavo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Heleen de-Jong
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jonas Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Christina Birkedahl Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Emma Sparrow
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants SO16 6YD, United Kingdom
| | - Frederik Rostrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jannik Nicklas Eliasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kristine S Wilhelmsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper Barslund
- Translational DMPK, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | | | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Yury Bogdanov
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants SO16 6YD, United Kingdom
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Grigoras IF, Stagg CJ. Recent advances in the role of excitation-inhibition balance in motor recovery post-stroke. Fac Rev 2021; 10:58. [PMID: 34308424 PMCID: PMC8265564 DOI: 10.12703/r/10-58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Stroke affects millions of people worldwide each year, and stroke survivors are often left with motor deficits. Current therapies to improve these functional deficits are limited, making it a priority to better understand the pathophysiology of stroke recovery and find novel adjuvant options. The excitation-inhibition balance undergoes significant changes post-stroke, and the inhibitory neurotransmitter γ-aminobutyric acid (GABA) appears to play an important role in stroke recovery. In this review, we summarise the most recent studies investigating GABAergic inhibition at different stages of stroke. We discuss the proposed role of GABA in counteracting glutamate-mediated excitotoxicity in hyperacute stroke as well as the evidence linking decreased GABAergic inhibition to increased neuronal plasticity in early stroke. Then, we discuss two types of interventions that aim to modulate the excitation-inhibition balance to improve functional outcomes in stroke survivors: non-invasive brain stimulation (NIBS) and pharmacological interventions. Finding the optimal NIBS administration or adjuvant pharmacological therapies would represent an important contribution to the currently scarce therapy options.
Collapse
Affiliation(s)
- Ioana-Florentina Grigoras
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
GABAergic signaling by cells of the immune system: more the rule than the exception. Cell Mol Life Sci 2021; 78:5667-5679. [PMID: 34152447 PMCID: PMC8316187 DOI: 10.1007/s00018-021-03881-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system (CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA signaling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activation and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interactions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and diversification of function in the immune system.
Collapse
|
10
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
11
|
Joa KL, Mankhong S, Kim S, Moon S, Lee KH, Yoo YH, Hwang BH, Baek JW, Kang JH. Effects of Aerobic Exercise on Tau and Related Proteins in Rats with Photochemically-Induced Infarction. J Alzheimers Dis 2021; 76:1391-1402. [PMID: 32651316 DOI: 10.3233/jad-200250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent evidence indicates brain ischemia is associated with accumulations of abnormal tau and related proteins. However, the effects of aerobic training on these proteins have not been evaluated. OBJECTIVE We aimed to evaluate the effect of aerobic exercise on the phosphorylation and acetylation of tau and on the expressions of tau related proteins in a rat stroke model and to compare the effects of aerobic exercise with those observed in our previous study on task specific training (TST). METHODS Twenty-four Sprague- Dawley rats with photothrombotic cortical infarction were used in the current study. The rehabilitation group (RG) received treadmill training 40 min/day for 28 days, whereas the sedentary group (SG) did not receive any type of training. Functional tests such as the single pellet reaching task, rotarod, and radial arm maze tests were performed weekly for 4 weeks post-infarction. RESULTS Levels of p-taus396 and p-AMPK were found to be lower in ipsilateral cortices in the RG than in the SG (p < 0.05). Levels of p-taus262, Ac-tau, p-GSK3βS9, p-Akt, p-Sin1, and p-P70-S6K were significantly lower in ipsilateral than in contralateral cortices in the RG (p < 0.05). Aerobic training also improved motor, balance, and memory functions. CONCLUSION Aerobic training inhibited the phosphorylation and acetylation of tau and modulated the expressions of tau related proteins after stroke by modifying the p70-S6K pathway and p-AMPK. By comparison with our previous study on the effects of TST, we have evidence to suggest that TST and aerobic exercise differ, although both types of rehabilitation inhibit tau phosphorylation and acetylation.
Collapse
Affiliation(s)
- Kyung-Lim Joa
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sakulrat Mankhong
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea.,Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sujin Kim
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea.,Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea.,Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Kyoung-Hee Lee
- Department of Occupational Therapy, Baekseok University, Chungnam, Republic of Korea
| | - Young-Hwan Yoo
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Byeong-Hun Hwang
- Industry-Academia Cooperation Group, Baekseok University, Chungnam, Republic of Korea
| | - Jong-Won Baek
- Industry-Academia Cooperation Group, Baekseok University, Chungnam, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea.,Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
12
|
Falk-Petersen CB, Rostrup F, Löffler R, Buchleithner S, Harpsøe K, Gloriam DE, Frølund B, Wellendorph P. Molecular Determinants Underlying Delta Selective Compound 2 Activity at δ-Containing GABA A Receptors. Mol Pharmacol 2021; 100:46-56. [PMID: 33990405 DOI: 10.1124/molpharm.121.000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Delta selective compound 2 (DS2; 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide) is one of the most widely used tools to study selective actions mediated by δ-subunit-containing GABAA receptors. DS2 was discovered over 10 years ago, but despite great efforts, the precise molecular site of action has remained elusive. Using a combination of computational modeling, site-directed mutagenesis, and cell-based pharmacological assays, we probed three potential binding sites for DS2 and analogs at α 4 β 1 δ receptors: an α 4 (+) δ (-) interface site in the extracellular domain (ECD), equivalent to the diazepam binding site in αβγ 2 receptors, and two sites in the transmembrane domain (TMD) - one in the α 4 (+) β 1 (-) and one in the α 4 (-) β 1 (+) interface, with the α 4 (-) β 1 (+) site corresponding to the binding site for etomidate and a recently disclosed low-affinity binding site for diazepam. We show that mutations in the ECD site did not abrogate DS2 modulation. However, mutations in the TMD α 4 (+) β 1 (-) interface, either α 4(S303L) of the α 4 (+) side or β 1(I289Q) of the β 1 (-) side, convincingly disrupted the positive allosteric modulation by DS2. This was consistently demonstrated both in an assay measuring membrane potential changes and by whole-cell patch-clamp electrophysiology and rationalized by docking studies. Importantly, general sensitivity to modulators was not compromised in the mutated receptors. This study sheds important light on the long-sought molecular recognition site for DS2, refutes the misconception that the selectivity of DS2 for δ-containing receptors is caused by a direct interaction with the δ-subunit, and instead points toward a functional selectivity of DS2 and its analogs via a surprisingly well conserved binding pocket in the TMD. SIGNIFICANCE STATEMENT: δ-Containing GABAA receptors represent potential drug targets for the treatment of several neurological conditions with aberrant tonic inhibition, yet no drugs are currently in clinical use. With the identification of the molecular determinants responsible for positive modulation by the known compound delta selective compound 2, the ground is laid for design of ligands that selectively target δ-containing GABAA receptor subtypes, for better understanding of tonic inhibition, and ultimately, for rational development of novel drugs.
Collapse
Affiliation(s)
- Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Rostrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Buchleithner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Mankhong S, Kim S, Moon S, Lee KH, Jeon HE, Hwang BH, Beak JW, Joa KL, Kang JH. Effects of Aerobic Exercise on Tau and Related Proteins in Rats with the Middle Cerebral Artery Occlusion. Int J Mol Sci 2020; 21:ijms21165842. [PMID: 32823945 PMCID: PMC7461507 DOI: 10.3390/ijms21165842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Although Alzheimer's disease (AD)-like pathology is frequently found in patients with post-stroke dementia, little is known about the effects of aerobic exercise on the modifications of tau and related proteins. Therefore, we evaluated the effects of aerobic exercise on the phosphorylation and acetylation of tau and the expressions of tau-related proteins, after middle cerebral artery occlusion (MCAO) stroke. Twenty-four Sprague-Dawley rats with MCAO infarction were used in this study. The rehabilitation group (RG) received treadmill training 40 min/day for 12 weeks, whereas the sedentary group (SG) did not receive any type of training. Functional tests, such as the single pellet reaching task, rotarod, and radial arm maze tests, were performed monthly for 3 months. In ipsilateral cortices in the RG and SG groups, level of Ac-tau was lower in the RG, whereas levels of p-tauS396, p-tauS262, and p-tauS202/T205 were not significantly lower in the RG. Level of phosphorylated glycogen synthase kinase 3-beta Tyr 216 (p-GSK3βY216) was lower in the RG, but levels of p-AMPK and phosphorylated glycogen synthase kinase 3-beta Ser 9 (p-GSK3βS9) were not significantly lower. Levels of COX-2 and BDNF were not significantly different between the two groups, while SIRT1 significantly decreased in ipsilateral cortices in RG. In addition, aerobic training also improved motor, balance, and memory functions. Rehabilitation with aerobic exercise inhibited tau modification, especially tau acetylation, following infarction in the rat MCAO model, which was accompanied with the improvement of motor and cognitive functions.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sujin Kim
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sohee Moon
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon 22212, Korea
| | - Kyoung-Hee Lee
- Department of Occupational Therapy, Baekseok University, Chungnam 31065, Korea;
| | - Hyeong-Eun Jeon
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University, Incheon 22332, Korea;
| | - Byeong-Hun Hwang
- Industry-Academia Cooperation Group, Baekseok University, Chungnam 31065, Korea; (B.-H.H.); (J.-W.B.)
| | - Jong-Won Beak
- Industry-Academia Cooperation Group, Baekseok University, Chungnam 31065, Korea; (B.-H.H.); (J.-W.B.)
| | - Kyung-Lim Joa
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University, Incheon 22332, Korea;
- Correspondence: (K.-L.J.); (J.-H.K.); Tel.: +82-890-2480 (K.-L.J.); +82-32-860-9872 (J.-H.K.)
| | - Ju-Hee Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon 22212, Korea
- Correspondence: (K.-L.J.); (J.-H.K.); Tel.: +82-890-2480 (K.-L.J.); +82-32-860-9872 (J.-H.K.)
| |
Collapse
|
14
|
Sun L, Han R, Guo F, Chen H, Wang W, Chen Z, Liu W, Sun X, Gao C. Antagonistic effects of IL-17 and Astragaloside IV on cortical neurogenesis and cognitive behavior after stroke in adult mice through Akt/GSK-3β pathway. Cell Death Discov 2020; 6:74. [PMID: 32818074 PMCID: PMC7417740 DOI: 10.1038/s41420-020-00298-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to investigate the exact effect of IL-17 on regulating neural stem cells (NSCs) stemness and adult neurogenesis in ischemic cortex after stroke, how Astragaloside IV(As-IV) regulated IL-17 expression and the underlying mechanism. Photochemical brain ischemia model was established and IL-17 protein expression was observed at different time after stroke in WT mice. At 3 days after stroke, when IL-17 expression peaked, IL-17 knock out (KO) mice were used to observe cell proliferation and neurogenesis in ischemic cortex. Then, As-IV was administered intravenously to assess cell apoptosis, proliferation, neurogenesis, and cognitive deficits by immunochemistry staining, western blots, and animal behavior tests in WT mice. Furthermore, IL-17 KO mice and As-IV were used simultaneously to evaluate the mechanism of cell apoptosis and proliferation after stroke in vivo. Besides, in vitro, As-IV and recombinant mouse IL-17A was administered, respectively, into NSCs culture, and then their diameters, viable cell proliferation and pathway relevant protein was assessed. The results showed knocking out IL-17 contributed to regulating PI3K/Akt pathway, promoting NSCs proliferation, and neurogenesis after ischemic stroke. Moreover, As-IV treatment helped inhibit neural apoptosis, promote the neurogenesis and eventually relieve mice anxiety after stroke. Unsurprisingly, IL-17 protein expression could be downregulated by As-IV in vivo and in vitro and they exerted antagonistic effect on neurogenesis by regulating Akt/GSK-3β pathway, with significant regulation for apoptosis. In conclusion, IL-17 exerts negative effect on promoting NSCs proliferation, neurogenesis and cognitive deficits after ischemic stroke, which could be reversed by As-IV.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Ruili Han
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Fei Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Hai Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wen Wang
- School of Basic Medicine, Air Force Medical University, 710032 Xi’an, Shaanxi Province China
| | - Zhiyang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wei Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| |
Collapse
|
15
|
Belelli D, Hogenkamp D, Gee KW, Lambert JJ. Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 2019; 12:100207. [PMID: 32435660 PMCID: PMC7231973 DOI: 10.1016/j.ynstr.2019.100207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
In the 1980s particular endogenous metabolites of progesterone and of deoxycorticosterone were revealed to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAAR). These reports were followed by the discovery that such steroids may be synthesised not only in peripheral endocrine glands, but locally in the central nervous system (CNS), to potentially act as paracrine, or autocrine "neurosteroid" messengers, thereby fine tuning neuronal inhibition. These discoveries triggered enthusiasm to elucidate the physiological role of such neurosteroids and explore whether their levels may be perturbed in particular psychiatric and neurological disorders. In preclinical studies the GABAAR-active steroids were shown to exhibit anxiolytic, anticonvulsant, analgesic and sedative properties and at relatively high doses to induce a state of general anaesthesia. Collectively, these findings encouraged efforts to investigate the therapeutic potential of neurosteroids and related synthetic analogues. However, following over 30 years of investigation, realising their possible medical potential has proved challenging. The recent FDA approval for the natural neurosteroid allopregnanolone (brexanolone) to treat postpartum depression (PPD) should trigger renewed enthusiasm for neurosteroid research. Here we focus on the influence of neuroactive steroids on GABA-ergic signalling and on the challenges faced in developing such steroids as anaesthetics, sedatives, analgesics, anticonvulsants, antidepressants and as treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| | - Derk Hogenkamp
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Kelvin W Gee
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Jeremy J Lambert
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| |
Collapse
|