1
|
Ganguly S, Chhaya MM, Jain A, Koppula A, Raghavan M, Sridharan KS. Mark3D - A semi-automated open-source toolbox for 3D head- surface reconstruction and electrode position registration using a smartphone camera video. Med Biol Eng Comput 2024:10.1007/s11517-024-03228-3. [PMID: 39508998 DOI: 10.1007/s11517-024-03228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Source localization in EEG necessitates co-registering the EEG sensor locations with the subject's MRI, where EEG sensor locations are typically captured using electromagnetic tracking or 3D scanning of the subject's head with EEG cap, using commercially available 3D scanners. Both methods have drawbacks, where, electromagnetic tracking is slow and immobile, while 3D scanners are expensive. Photogrammetry offers a cost-effective alternative but requires multiple photos to sample the head, with good spatial sampling to adequately reconstruct the head surface. Post-reconstruction, the existing tools for electrode position labelling on the 3D head-surface have limited visual feedback and do not easily accommodate customized montages, which are typical in multi-modal measurements. We introduce Mark3D, an open-source, integrated tool for 3D head-surface reconstruction from phone camera video. It eliminates the need for keeping track of spatial sampling during image capture for video-based photogrammetry reconstruction. It also includes blur detection algorithms, a user-friendly interface for electrode and tracking, and integrates with popular toolboxes such as FieldTrip and MNE Python. The accuracy of the proposed method was benchmarked with the head-surface derived from a commercially available handheld 3D scanner Einscan-Pro + (Shining 3D Inc.,) which we treat as the "ground truth". We used reconstructed head-surfaces of ground truth (G1) and phone camera video (M1080) to mark the EEG electrode locations in 3D space using a dedicated UI provided in the tool. The electrode locations were then used to form pseudo-specific MRI templates for individual subjects to reconstruct source information. Somatosensory source activations in response to vibrotactile stimuli were estimated and compared between G1 and M1080. The mean positional errors of the EEG electrodes between G1 and M1080 in 3D space were found to be 0.09 ± 0.01 mm across different cortical areas, with temporal and occipital areas registering a relatively higher error than other regions such as frontal, central or parietal areas. The error in source reconstruction was found to be 0.033 ± 0.016 mm and 0.037 ± 0.017 mm in the left and right cortical hemispheres respectively.
Collapse
Affiliation(s)
- Suranjita Ganguly
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Malaaika Mihir Chhaya
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Ankita Jain
- Department of Heritage Science and Technology, Indian Institute of Technology, Hyderabad, India
| | - Aditya Koppula
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
- Department of Physiology, ESIC Medical College and Hospital Sanathnagar, Hyderabad, India
| | - Mohan Raghavan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
- Department of Heritage Science and Technology, Indian Institute of Technology, Hyderabad, India
| | - Kousik Sarathy Sridharan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
- Department of Heritage Science and Technology, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
2
|
Tveter M, Tveitstøl T, Nygaard T, Pérez T AS, Kulashekhar S, Bruña R, Hammer HL, Hatlestad-Hall C, Hebold Haraldsen IRJ. EEG electrodes and where to find them: automated localization from 3D scans. J Neural Eng 2024; 21:056022. [PMID: 39293479 DOI: 10.1088/1741-2552/ad7c7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
Objective.The accurate localization of electroencephalography (EEG) electrode positions is crucial for accurate source localization. Recent advancements have proposed alternatives to labor-intensive, manual methods for spatial localization of the electrodes, employing technologies such as 3D scanning and laser scanning. These novel approaches often integrate magnetic resonance imaging (MRI) as part of the pipeline in localizing the electrodes. The limited global availability of MRI data restricts its use as a standard modality in several clinical scenarios. This limitation restricts the use of these advanced methods.Approach.In this paper, we present a novel, versatile approach that utilizes 3D scans to localize EEG electrode positions with high accuracy. Importantly, while our method can be integrated with MRI data if available, it is specifically designed to be highly effective even in the absence of MRI, thus expanding the potential for advanced EEG analysis in various resource-limited settings. Our solution implements a two-tiered approach involving landmark/fiducials localization and electrode localization, creating an end-to-end framework.Main results.The efficacy and robustness of our approach have been validated on an extensive dataset containing over 400 3D scans from 278 subjects. The framework identifies pre-auricular points and achieves correct electrode positioning accuracy in the range of 85.7% to 91.0%. Additionally, our framework includes a validation tool that permits manual adjustments and visual validation if required.Significance.This study represents, to the best of the authors' knowledge, the first validation of such a method on a substantial dataset, thus ensuring the robustness and generalizability of our innovative approach. Our findings focus on developing a solution that facilitates source localization, without the need for MRI, contributing to the critical discussion on balancing cost effectiveness with methodological accuracy to promote wider adoption in both research and clinical settings.
Collapse
Affiliation(s)
- Mats Tveter
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Tveitstøl
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tønnes Nygaard
- Department of Technology Systems, University of Oslo, Oslo, Norway
| | - Ana S Pérez T
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Shrikanth Kulashekhar
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Ricardo Bruña
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Hugo L Hammer
- Department of Holistic Systems, SimulaMet, Oslo, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
| | | | | |
Collapse
|
3
|
Taberna GA, Samogin J, Zhao M, Marino M, Guarnieri R, Cuartas Morales E, Ganzetti M, Liu Q, Mantini D. Large-scale analysis of neural activity and connectivity from high-density electroencephalographic data. Comput Biol Med 2024; 178:108704. [PMID: 38852398 DOI: 10.1016/j.compbiomed.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION High-density electroencephalography (hdEEG) is a technique used for the characterization of the neural activity and connectivity in the human brain. The analysis of EEG data involves several steps, including signal pre-processing, head modelling, source localization and activity/connectivity quantification. Visual check of the analysis steps is often necessary, making the process time- and resource-consuming and, therefore, not feasible for large datasets. FINDINGS Here we present the Noninvasive Electrophysiology Toolbox (NET), an open-source software for large-scale analysis of hdEEG data, running on the cross-platform MATLAB environment. NET combines all the tools required for a complete hdEEG analysis workflow, from raw signals to final measured values. By relying on reconstructed neural signals in the brain, NET can perform traditional analyses of time-locked neural responses, as well as more advanced functional connectivity and brain mapping analyses. The extracted quantitative neural data can be exported to provide broad compatibility with other software. CONCLUSIONS NET is freely available (https://github.com/bind-group-kul/net) under the GNU public license for non-commercial use and open-source development, together with a graphical user interface (GUI) and a user tutorial. While NET can be used interactively with the GUI, it is primarily aimed at unsupervised automation to process large hdEEG datasets efficiently. Its implementation creates indeed a highly customizable program suitable for analysis automation and tight integration into existing workflows.
Collapse
Affiliation(s)
- Gaia Amaranta Taberna
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Mingqi Zhao
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, 730000, Lanzhou, PR China
| | - Marco Marino
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Roberto Guarnieri
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Ernesto Cuartas Morales
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, 202017, Colombia
| | - Marco Ganzetti
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Roche Pharma Research and Early Development (pRED), pRED Data & Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Quanying Liu
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, PR China
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; KU Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Kaneko N, Yokoyama M, Nakazawa K, Yokoyama H. Accurate digitization of EEG electrode locations by electromagnetic tracking system: The proposed head rotation method and comparison against optical system. MethodsX 2024; 12:102766. [PMID: 38808097 PMCID: PMC11131068 DOI: 10.1016/j.mex.2024.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Electroencephalogram (EEG) electrode digitization is crucial for accurate EEG source estimation, and several commercial systems are available for this purpose. The present study aimed to evaluate the digitizing accuracy of electromagnetic and optical systems. Additionally, we introduced a novel rotation method for the electromagnetic system and compared its accuracy with the conventional method of electromagnetic and optical systems. In the conventional method, the operator moves around a stationary participant to digitize, while the participant does not move their head or body. In contrast, in our proposed rotation method with an electromagnetic system, the operator rotates the participant sitting on a swivel chair to digitize in a consistent position. We showed high localization accuracy in both the optical and electromagnetic systems, with an average localization error of less than 3.6 mm. Comparisons of the digitization methods revealed that the electromagnetic system demonstrates superior digitizing accuracy compared to the optical system. Notably, the proposed rotational method is the most accurate among the three methods, which can be attributed to the consistent positioning of EEG electrode digitization within the electromagnetic field. Considering the affordability of the electromagnetic system, our findings provide valuable insights for researchers aiming for precise EEG source estimation.•The study compares the accuracy of electromagnetic and optical systems for EEG electrode digitization, introducing a novel rotation method for improved consistency and precision.•The electromagnetic system, especially with the proposed rotation method, achieves superior digitizing accuracy over the optical system.•Highlighting the cost-effectiveness and precision of the electromagnetic system with the rotation method, this research offers significant insights for achieving precise EEG source estimation.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Moeka Yokoyama
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
5
|
Bálint A, Rummel C, Caversaccio M, Weder S. Three-dimensional infrared scanning: an enhanced approach for spatial registration of probes for neuroimaging. NEUROPHOTONICS 2024; 11:024309. [PMID: 38812965 PMCID: PMC11134420 DOI: 10.1117/1.nph.11.2.024309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Significance Accurate spatial registration of probes (e.g., optodes and electrodes) for measurement of brain activity is a crucial aspect in many neuroimaging modalities. It may increase measurement precision and enable the transition from channel-based calculations to volumetric representations. Aim This technical note evaluates the efficacy of a commercially available infrared three-dimensional (3D) scanner under actual experimental (or clinical) conditions and provides guidelines for its use. Method We registered probe positions using an infrared 3D scanner and validated them against magnetic resonance imaging (MRI) scans on five volunteer participants. Results Our analysis showed that with standard cap fixation, the average Euclidean distance of probe position among subjects could reach up to 43 mm, with an average distance of 15.25 mm [standard deviation (SD) = 8.0]. By contrast, the average distance between the infrared 3D scanner and the MRI-acquired positions was 5.69 mm (SD = 1.73), while the average difference between consecutive infrared 3D scans was 3.43 mm (SD = 1.62). The inter-optode distance, which was fixed at 30 mm, was measured as 29.28 mm (SD = 1.12) on the MRI and 29.43 mm (SD = 1.96) on infrared 3D scans. Our results demonstrate the high accuracy and reproducibility of the proposed spatial registration method, making it suitable for both functional near-infrared spectroscopy and electroencephalogram studies. Conclusions The 3D infrared scanning technique for spatial registration of probes provides economic efficiency, simplicity, practicality, repeatability, and high accuracy, with potential benefits for a range of neuroimaging applications. We provide practical guidance on anonymization, labeling, and post-processing of acquired scans.
Collapse
Affiliation(s)
- András Bálint
- University of Bern, ARTORG Center for Biomedical Engineering Research, Hearing Research Laboratory, Bern, Switzerland
- Inselspital, Bern University Hospital, University of Bern, Department of ENT - Head and Neck Surgery, Bern, Switzerland
| | - Christian Rummel
- Inselspital, Bern University Hospital, University of Bern, University Institute of Diagnostic and Interventional Neuroradiology, Support Center for Advanced Neuroimaging (SCAN), Bern, Switzerland
| | - Marco Caversaccio
- University of Bern, ARTORG Center for Biomedical Engineering Research, Hearing Research Laboratory, Bern, Switzerland
- Inselspital, Bern University Hospital, University of Bern, Department of ENT - Head and Neck Surgery, Bern, Switzerland
| | - Stefan Weder
- Inselspital, Bern University Hospital, University of Bern, Department of ENT - Head and Neck Surgery, Bern, Switzerland
| |
Collapse
|
6
|
Toth J, Kurtin DL, Brosnan M, Arvaneh M. Opportunities and obstacles in non-invasive brain stimulation. Front Hum Neurosci 2024; 18:1385427. [PMID: 38562225 PMCID: PMC10982339 DOI: 10.3389/fnhum.2024.1385427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) is a complex and multifaceted approach to modulating brain activity and holds the potential for broad accessibility. This work discusses the mechanisms of the four distinct approaches to modulating brain activity non-invasively: electrical currents, magnetic fields, light, and ultrasound. We examine the dual stochastic and deterministic nature of brain activity and its implications for NIBS, highlighting the challenges posed by inter-individual variability, nebulous dose-response relationships, potential biases and neuroanatomical heterogeneity. Looking forward, we propose five areas of opportunity for future research: closed-loop stimulation, consistent stimulation of the intended target region, reducing bias, multimodal approaches, and strategies to address low sample sizes.
Collapse
Affiliation(s)
- Jake Toth
- Automatic Control and Systems Engineering, Neuroscience Institute, Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| | | | - Méadhbh Brosnan
- School of Psychology, University College Dublin, Dublin, Ireland
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Mahnaz Arvaneh
- Automatic Control and Systems Engineering, Neuroscience Institute, Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Kaneko N, Wada M, Nakajima S, Takano M, Taniguchi K, Honda S, Mimura M, Noda Y. Neuroplasticity of the left dorsolateral prefrontal cortex in patients with treatment-resistant depression as indexed with paired associative stimulation: a TMS-EEG study. Cereb Cortex 2024; 34:bhad515. [PMID: 38204301 PMCID: PMC10839839 DOI: 10.1093/cercor/bhad515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Major depressive disorder affects over 300 million people globally, with approximately 30% experiencing treatment-resistant depression (TRD). Given that impaired neuroplasticity underlies depression, the present study focused on neuroplasticity in the dorsolateral prefrontal cortex (DLPFC). Here, we aimed to investigate the differences in neuroplasticity between 60 individuals with TRD and 30 age- and sex-matched healthy controls (HCs). To induce neuroplasticity, participants underwent a paired associative stimulation (PAS) paradigm involving peripheral median nerve stimulation and transcranial magnetic stimulation (TMS) targeting the left DLPFC. Neuroplasticity was assessed by using measurements combining TMS with EEG before and after PAS. Both groups exhibited significant increases in the early component of TMS-evoked potentials (TEP) after PAS (P < 0.05, paired t-tests with the bootstrapping method). However, the HC group demonstrated a greater increase in TEPs than the TRD group (P = 0.045, paired t-tests). Additionally, event-related spectral perturbation analysis highlighted that the gamma power significantly increased after PAS in the HC group, whereas it was decreased in the TRD group (P < 0.05, paired t-tests with the bootstrapping method). This gamma power modulation revealed a significant group difference (P = 0.006, paired t-tests), indicating an inverse relationship for gamma power modulation. Our findings underscore the impaired neuroplasticity of the DLPFC in individuals with TRD.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
8
|
Everitt A, Richards H, Song Y, Smith J, Kobylarz E, Lukovits T, Halter R, Murphy E. EEG electrode localization with 3D iPhone scanning using point-cloud electrode selection (PC-ES). J Neural Eng 2023; 20:066033. [PMID: 38055968 DOI: 10.1088/1741-2552/ad12db] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective.Electroencephalography source imaging (ESI) is a valuable tool in clinical evaluation for epilepsy patients but is underutilized in part due to sensitivity to anatomical modeling errors. Accurate localization of scalp electrodes is instrumental to ESI, but existing localization devices are expensive and not portable. As a result, electrode localization challenges further impede access to ESI, particularly in inpatient and intensive care settings.Approach.To address this challenge, we present a portable and affordable electrode digitization method using the 3D scanning feature in modern iPhone models. This technique combines iPhone scanning with semi-automated image processing using point-cloud electrode selection (PC-ES), a custom MATLAB desktop application. We compare iPhone electrode localization to state-of-the-art photogrammetry technology in a human study with over 6000 electrodes labeled using each method. We also characterize the performance of PC-ES with respect to head location and examine the relative impact of different algorithm parameters.Main Results.The median electrode position variation across reviewers was 1.50 mm for PC-ES scanning and 0.53 mm for photogrammetry, and the average median distance between PC-ES and photogrammetry electrodes was 3.4 mm. These metrics demonstrate comparable performance of iPhone/PC-ES scanning to currently available technology and sufficient accuracy for ESI.Significance.Low cost, portable electrode localization using iPhone scanning removes barriers to ESI in inpatient, outpatient, and remote care settings. While PC-ES has current limitations in user bias and processing time, we anticipate these will improve with software automation techniques as well as future developments in iPhone 3D scanning technology.
Collapse
Affiliation(s)
- Alicia Everitt
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Haley Richards
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Yinchen Song
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
| | - Joel Smith
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Erik Kobylarz
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
| | - Timothy Lukovits
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - Ryan Halter
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
| | - Ethan Murphy
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| |
Collapse
|
9
|
Huang HJ, Ferris DP. Non-invasive brain imaging to advance the understanding of human balance. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100505. [PMID: 38250696 PMCID: PMC10795750 DOI: 10.1016/j.cobme.2023.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Affiliation(s)
- Helen J. Huang
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
- Disability, Aging, and Technology Cluster, University of Central Florida, Orlando, FL, USA
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, University of Central Florida, Orlando, FL, USA
| | - Daniel P. Ferris
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Combined transcranial magnetic stimulation and electroencephalography reveals alterations in cortical excitability during pain. eLife 2023; 12:RP88567. [PMID: 37966464 PMCID: PMC10651174 DOI: 10.7554/elife.88567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n=29), multiple sustained thermal stimuli were administered to the forearm, with the first, second, and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures, respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45 ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n=10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian Shahmat Chowdhury
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western OntarioLondonCanada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- The Gray Centre for Mobility and Activity, University of Western OntarioLondonCanada
| |
Collapse
|
11
|
Symeonidou ER, Ferris DP. Visual Occlusions Result in Phase Synchrony Within Multiple Brain Regions Involved in Sensory Processing and Balance Control. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3772-3780. [PMID: 37725737 PMCID: PMC10616968 DOI: 10.1109/tnsre.2023.3317055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
There is a need to develop appropriate balance training interventions to minimize the risk of falls. Recently, we found that intermittent visual occlusions can substantially improve the effectiveness and retention of balance beam walking practice (Symeonidou & Ferris, 2022). We sought to determine how the intermittent visual occlusions affect electrocortical activity during beam walking. We hypothesized that areas involved in sensorimotor processing and balance control would demonstrate spectral power changes and inter-trial coherence modulations after loss and restoration of vision. Ten healthy young adults practiced walking on a treadmill-mounted balance beam while wearing high-density EEG and experiencing reoccurring visual occlusions. Results revealed spectral power fluctuations and inter-trial coherence changes in the visual, occipital, temporal, and sensorimotor cortex as well as the posterior parietal cortex and the anterior cingulate. We observed a prolonged alpha increase in the occipital, temporal, sensorimotor, and posterior parietal cortex after the occlusion onset. In contrast, the anterior cingulate showed a strong alpha and theta increase after the occlusion offset. We observed transient phase synchrony in the alpha, theta, and beta bands within the sensory, posterior parietal, and anterior cingulate cortices immediately after occlusion onset and offset. Intermittent visual occlusions induced electrocortical spectral power and inter-trial coherence changes in a wide range of frequencies within cortical areas relevant for multisensory integration and processing as well as balance control. Our training intervention could be implemented in senior and rehabilitation centers, improving the quality of life of elderly and neurologically impaired individuals.
Collapse
|
12
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Alterations in cortical excitability during pain: A combined TMS-EEG Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537735. [PMID: 37131586 PMCID: PMC10153239 DOI: 10.1101/2023.04.20.537735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n = 29), multiple sustained thermal stimuli were administered to the forearm, with the first, second and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n = 10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- The Gray Centre for Mobility and Activity, University of Western Ontario, London, Canada
| |
Collapse
|
13
|
Nielsen JD, Puonti O, Xue R, Thielscher A, Madsen KH. Evaluating the Influence of Anatomical Accuracy and Electrode Positions on EEG Forward Solutions. Neuroimage 2023:120259. [PMID: 37392808 DOI: 10.1016/j.neuroimage.2023.120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Generating realistic volume conductor models for forward calculations in electroencephalography (EEG) is not trivial and several factors contribute to the accuracy of such models, two of which are its anatomical accuracy and the accuracy with which electrode positions are known. Here, we investigate effects of anatomical accuracy by comparing forward solutions from SimNIBS, a tool which allows state-of-the-art anatomical modeling, with well-established pipelines in MNE-Python and FieldTrip. We also compare different ways of specifying electrode locations when digitized positions are not available such as transformation of measured positions from standard space and transformation of a manufacturer layout. Substantial effects of anatomical accuracy were seen throughout the entire brain both in terms of field topography and magnitude with SimNIBS generally being more accurate than the pipelines in MNE-Python and FieldTrip. Topographic and magnitude effects were particularly pronounced for MNE-Python which uses a three-layer boundary element method (BEM) model. We attribute these mainly to the coarse representation of the anatomy used in this model, in particular differences in skull and cerebrospinal fluid (CSF). Effects of electrode specification method were evident in occipital and posterior areas when using a transformed manufacturer layout whereas transforming measured positions from standard space generally resulted in smaller errors. We suggest modeling the anatomy of the volume conductor as accurately possible and we hope to facilitate this by making it easy to export simulations from SimNIBS to MNE-Python and FieldTrip for further analysis. Likewise, if digitized electrode positions are not available, a set of measured positions on a standard head template may be preferable to those specified by the manufacturer.
Collapse
Affiliation(s)
- Jesper Duemose Nielsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Sino-Danish Centre for Education and Research, Aarhus, Denmark.
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Rong Xue
- University of Chinese Academic of Sciences, Beijing, China; State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China
| | - Axel Thielscher
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Kristoffer Hougaard Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| |
Collapse
|
14
|
Liu C, Downey RJ, Mu Y, Richer N, Hwang J, Shah VA, Sato SD, Clark DJ, Hass CJ, Manini TM, Seidler RD, Ferris DP. Comparison of EEG Source Localization Using Simplified and Anatomically Accurate Head Models in Younger and Older Adults. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2591-2602. [PMID: 37252873 PMCID: PMC10336858 DOI: 10.1109/tnsre.2023.3281356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Accuracy of electroencephalography (EEG) source localization relies on the volume conduction head model. A previous analysis of young adults has shown that simplified head models have larger source localization errors when compared with head models based on magnetic resonance images (MRIs). As obtaining individual MRIs may not always be feasible, researchers often use generic head models based on template MRIs. It is unclear how much error would be introduced using template MRI head models in older adults that likely have differences in brain structure compared to young adults. The primary goal of this study was to determine the error caused by using simplified head models without individual-specific MRIs in both younger and older adults. We collected high-density EEG during uneven terrain walking and motor imagery for 15 younger (22±3 years) and 21 older adults (74±5 years) and obtained [Formula: see text]-weighted MRI for each individual. We performed equivalent dipole fitting after independent component analysis to obtain brain source locations using four forward modeling pipelines with increasing complexity. These pipelines included: 1) a generic head model with template electrode positions or 2) digitized electrode positions, 3) individual-specific head models with digitized electrode positions using simplified tissue segmentation, or 4) anatomically accurate segmentation. We found that when compared to the anatomically accurate individual-specific head models, performing dipole fitting with generic head models led to similar source localization discrepancies (up to 2 cm) for younger and older adults. Co-registering digitized electrode locations to the generic head models reduced source localization discrepancies by ∼ 6 mm. Additionally, we found that source depths generally increased with skull conductivity for the representative young adult but not as much for the older adult. Our results can help inform a more accurate interpretation of brain areas in EEG studies when individual MRIs are unavailable.
Collapse
|
15
|
Thielen B, Xu H, Fujii T, Rangwala SD, Jiang W, Lin M, Kammen A, Liu C, Selvan P, Song D, Mack WJ, Meng E. Making a case for endovascular approaches for neural recording and stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/acb086. [PMID: 36603221 PMCID: PMC9928900 DOI: 10.1088/1741-2552/acb086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
There are many electrode types for recording and stimulating neural tissue, most of which necessitate direct contact with the target tissue. These electrodes range from large, scalp electrodes which are used to non-invasively record averaged, low frequency electrical signals from large areas/volumes of the brain, to penetrating microelectrodes which are implanted directly into neural tissue and interface with one or a few neurons. With the exception of scalp electrodes (which provide very low-resolution recordings), each of these electrodes requires a highly invasive, open brain surgical procedure for implantation, which is accompanied by significant risk to the patient. To mitigate this risk, a minimally invasive endovascular approach can be used. Several types of endovascular electrodes have been developed to be delivered into the blood vessels in the brain via a standard catheterization procedure. In this review, the existing body of research on the development and application of endovascular electrodes is presented. The capabilities of each of these endovascular electrodes is compared to commonly used direct-contact electrodes to demonstrate the relative efficacy of the devices. Potential clinical applications of endovascular recording and stimulation and the advantages of endovascular versus direct-contact approaches are presented.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Huijing Xu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tatsuhiro Fujii
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani D. Rangwala
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Neurorestoration Center, University of Southern California, Los Angeles, CA, USA
| | - Pradeep Selvan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Beumer S, Boon P, Klooster DCW, van Ee R, Carrette E, Paulides MM, Mestrom RMC. Personalized tDCS for Focal Epilepsy—A Narrative Review: A Data-Driven Workflow Based on Imaging and EEG Data. Brain Sci 2022; 12:brainsci12050610. [PMID: 35624997 PMCID: PMC9139054 DOI: 10.3390/brainsci12050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes.
Collapse
Affiliation(s)
- Steven Beumer
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Correspondence:
| | - Paul Boon
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Debby C. W. Klooster
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Raymond van Ee
- Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands;
| | - Evelien Carrette
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Maarten M. Paulides
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Rob M. C. Mestrom
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
| |
Collapse
|
17
|
Suviseshamuthu ES, Shenoy Handiru V, Allexandre D, Hoxha A, Saleh S, Yue GH. EEG-Based Spectral Analysis Showing Brainwave Changes Related to Modulating Progressive Fatigue During a Prolonged Intermittent Motor Task. Front Hum Neurosci 2022; 16:770053. [PMID: 35360287 PMCID: PMC8962200 DOI: 10.3389/fnhum.2022.770053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/10/2022] [Indexed: 12/03/2022] Open
Abstract
Repeatedly performing a submaximal motor task for a prolonged period of time leads to muscle fatigue comprising a central and peripheral component, which demands a gradually increasing effort. However, the brain contribution to the enhancement of effort to cope with progressing fatigue lacks a complete understanding. The intermittent motor tasks (IMTs) closely resemble many activities of daily living (ADL), thus remaining physiologically relevant to study fatigue. The scope of this study is therefore to investigate the EEG-based brain activation patterns in healthy subjects performing IMT until self-perceived exhaustion. Fourteen participants (median age 51.5 years; age range 26−72 years; 6 males) repeated elbow flexion contractions at 40% maximum voluntary contraction by following visual cues displayed on an oscilloscope screen until subjective exhaustion. Each contraction lasted ≈5 s with a 2-s rest between trials. The force, EEG, and surface EMG (from elbow joint muscles) data were simultaneously collected. After preprocessing, we selected a subset of trials at the beginning, middle, and end of the study session representing brain activities germane to mild, moderate, and severe fatigue conditions, respectively, to compare and contrast the changes in the EEG time-frequency (TF) characteristics across the conditions. The outcome of channel- and source-level TF analyses reveals that the theta, alpha, and beta power spectral densities vary in proportion to fatigue levels in cortical motor areas. We observed a statistically significant change in the band-specific spectral power in relation to the graded fatigue from both the steady- and post-contraction EEG data. The findings would enhance our understanding on the etiology and physiology of voluntary motor-action-related fatigue and provide pointers to counteract the perception of muscle weakness and lack of motor endurance associated with ADL. The study outcome would help rationalize why certain patients experience exacerbated fatigue while carrying out mundane tasks, evaluate how clinical conditions such as neurological disorders and cancer treatment alter neural mechanisms underlying fatigue in future studies, and develop therapeutic strategies for restoring the patients' ability to participate in ADL by mitigating the central and muscle fatigue.
Collapse
Affiliation(s)
- Easter S. Suviseshamuthu
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
- *Correspondence: Easter S. Suviseshamuthu
| | - Vikram Shenoy Handiru
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
| | - Didier Allexandre
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
| | - Armand Hoxha
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Soha Saleh
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
| | - Guang H. Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
| |
Collapse
|
18
|
Chettouf S, Triebkorn P, Daffertshofer A, Ritter P. Unimanual sensorimotor learning-A simultaneous EEG-fMRI aging study. Hum Brain Mapp 2022; 43:2348-2364. [PMID: 35133058 PMCID: PMC8996364 DOI: 10.1002/hbm.25791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sensorimotor coordination requires orchestrated network activity in the brain, mediated by inter‐ and intra‐hemispheric interactions that may be affected by aging‐related changes. We adopted a theoretical model, according to which intra‐hemispheric inhibition from premotor to primary motor cortex is mandatory to compensate for inter‐hemispheric excitation through the corpus callosum. To test this as a function of age we acquired electroencephalography (EEG) simultaneously with functional magnetic resonance imaging (fMRI) in two groups of healthy adults (younger N = 13: 20–25 year and older N = 14: 59–70 year) while learning a unimanual motor task. On average, quality of performance of older participants stayed significantly below that of the younger ones. Accompanying decreases in motor‐event‐related EEG β‐activity were lateralized toward contralateral motor regions, albeit more so in younger participants. In this younger group, the mean β‐power during motor task execution was significantly higher in bilateral premotor areas compared to the older adults. In both groups, fMRI blood oxygen level dependent (BOLD) signals were positively correlated with source‐reconstructed β‐amplitudes: positive in primary motor and negative in premotor cortex. This suggests that β‐amplitude modulation is associated with primary motor cortex “activation” (positive BOLD response) and premotor “deactivation” (negative BOLD response). Although the latter results did not discriminate between age groups, they underscore that enhanced modulation in primary motor cortex may be explained by a β‐associated excitatory crosstalk between hemispheres.
Collapse
Affiliation(s)
- Sabrina Chettouf
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Paul Triebkorn
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Andreas Daffertshofer
- Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Petra Ritter
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neuroscience Berlin, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
19
|
Song S, Nordin AD. Mobile Electroencephalography for Studying Neural Control of Human Locomotion. Front Hum Neurosci 2021; 15:749017. [PMID: 34858154 PMCID: PMC8631362 DOI: 10.3389/fnhum.2021.749017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 01/09/2023] Open
Abstract
Walking or running in real-world environments requires dynamic multisensory processing within the brain. Studying supraspinal neural pathways during human locomotion provides opportunities to better understand complex neural circuity that may become compromised due to aging, neurological disorder, or disease. Knowledge gained from studies examining human electrical brain dynamics during gait can also lay foundations for developing locomotor neurotechnologies for rehabilitation or human performance. Technical barriers have largely prohibited neuroimaging during gait, but the portability and precise temporal resolution of non-invasive electroencephalography (EEG) have expanded human neuromotor research into increasingly dynamic tasks. In this narrative mini-review, we provide a (1) brief introduction and overview of modern neuroimaging technologies and then identify considerations for (2) mobile EEG hardware, (3) and data processing, (4) including technical challenges and possible solutions. Finally, we summarize (5) knowledge gained from human locomotor control studies that have used mobile EEG, and (6) discuss future directions for real-world neuroimaging research.
Collapse
Affiliation(s)
- Seongmi Song
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Andrew D Nordin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, College Station, TX, United States
| |
Collapse
|
20
|
Büchel D, Lehmann T, Sandbakk Ø, Baumeister J. EEG-derived brain graphs are reliable measures for exploring exercise-induced changes in brain networks. Sci Rep 2021; 11:20803. [PMID: 34675312 PMCID: PMC8531386 DOI: 10.1038/s41598-021-00371-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The interaction of acute exercise and the central nervous system evokes increasing interest in interdisciplinary research fields of neuroscience. Novel approaches allow to monitor large-scale brain networks from mobile electroencephalography (EEG) applying graph theory, but it is yet uncertain whether brain graphs extracted after exercise are reliable. We therefore aimed to investigate brain graph reliability extracted from resting state EEG data before and after submaximal exercise twice within one week in male participants. To obtain graph measures, we extracted global small-world-index (SWI), clustering coefficient (CC) and characteristic path length (PL) based on weighted phase leg index (wPLI) and spectral coherence (Coh) calculation. For reliability analysis, Intraclass-Correlation-Coefficient (ICC) and Coefficient of Variation (CoV) were computed for graph measures before (REST) and after POST) exercise. Overall results revealed poor to excellent measures at PRE and good to excellent ICCs at POST in the theta, alpha-1 and alpha-2, beta-1 and beta-2 frequency band. Based on bootstrap-analysis, a positive effect of exercise on reliability of wPLI based measures was observed, while exercise induced a negative effect on reliability of Coh-based graph measures. Findings indicate that brain graphs are a reliable tool to analyze brain networks in exercise contexts, which might be related to the neuroregulating effect of exercise inducing functional connections within the connectome. Relative and absolute reliability demonstrated good to excellent reliability after exercise. Chosen graph measures may not only allow analysis of acute, but also longitudinal studies in exercise-scientific contexts.
Collapse
Affiliation(s)
- Daniel Büchel
- Department Sport & Health, Exercise Science & Neuroscience Unit, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany.
| | - Tim Lehmann
- Department Sport & Health, Exercise Science & Neuroscience Unit, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jochen Baumeister
- Department Sport & Health, Exercise Science & Neuroscience Unit, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
21
|
Momtaz S, Moncrieff D, Bidelman GM. Dichotic listening deficits in amblyaudia are characterized by aberrant neural oscillations in auditory cortex. Clin Neurophysiol 2021; 132:2152-2162. [PMID: 34284251 DOI: 10.1016/j.clinph.2021.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Children diagnosed with auditory processing disorder (APD) show deficits in processing complex sounds that are associated with difficulties in higher-order language, learning, cognitive, and communicative functions. Amblyaudia (AMB) is a subcategory of APD characterized by abnormally large ear asymmetries in dichotic listening tasks. METHODS Here, we examined frequency-specific neural oscillations and functional connectivity via high-density electroencephalography (EEG) in children with and without AMB during passive listening of nonspeech stimuli. RESULTS Time-frequency maps of these "brain rhythms" revealed stronger phase-locked beta-gamma (~35 Hz) oscillations in AMB participants within bilateral auditory cortex for sounds presented to the right ear, suggesting a hypersynchronization and imbalance of auditory neural activity. Brain-behavior correlations revealed neural asymmetries in cortical responses predicted the larger than normal right-ear advantage seen in participants with AMB. Additionally, we found weaker functional connectivity in the AMB group from right to left auditory cortex, despite their stronger neural responses overall. CONCLUSION Our results reveal abnormally large auditory sensory encoding and an imbalance in communication between cerebral hemispheres (ipsi- to -contralateral signaling) in AMB. SIGNIFICANCE These neurophysiological changes might lead to the functionally poorer behavioral capacity to integrate information between the two ears in children with AMB.
Collapse
Affiliation(s)
- Sara Momtaz
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA.
| | - Deborah Moncrieff
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|
22
|
Taberna GA, Samogin J, Marino M, Mantini D. Detection of Resting-State Functional Connectivity from High-Density Electroencephalography Data: Impact of Head Modeling Strategies. Brain Sci 2021; 11:brainsci11060741. [PMID: 34204868 PMCID: PMC8226780 DOI: 10.3390/brainsci11060741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Recent technological advances have been permitted to use high-density electroencephalography (hdEEG) for the estimation of functional connectivity and the mapping of resting-state networks (RSNs). The reliable estimate of activity and connectivity from hdEEG data relies on the creation of an accurate head model, defining how neural currents propagate from the cortex to the sensors placed over the scalp. To the best of our knowledge, no study has been conducted yet to systematically test to what extent head modeling accuracy impacts on EEG-RSN reconstruction. To address this question, we used 256-channel hdEEG data collected in a group of young healthy participants at rest. We first estimated functional connectivity in EEG-RSNs by means of band-limited power envelope correlations, using neural activity estimated with an optimized analysis workflow. Then, we defined a series of head models with different levels of complexity, specifically testing the effect of different electrode positioning techniques and head tissue segmentation methods. We observed that robust EEG-RSNs can be obtained using a realistic head model, and that inaccuracies due to head tissue segmentation impact on RSN reconstruction more than those due to electrode positioning. Additionally, we found that EEG-RSN robustness to head model variations had space and frequency specificity. Overall, our results may contribute to defining a benchmark for assessing the reliability of hdEEG functional connectivity measures.
Collapse
Affiliation(s)
- Gaia Amaranta Taberna
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
| | - Jessica Samogin
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
| | - Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
- Correspondence: ; Tel.: +32-16-37-29-09
| |
Collapse
|
23
|
Delaux A, de Saint Aubert JB, Ramanoël S, Bécu M, Gehrke L, Klug M, Chavarriaga R, Sahel JA, Gramann K, Arleo A. Mobile brain/body imaging of landmark-based navigation with high-density EEG. Eur J Neurosci 2021; 54:8256-8282. [PMID: 33738880 PMCID: PMC9291975 DOI: 10.1111/ejn.15190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 01/07/2023]
Abstract
Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion‐constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark‐based navigation in actively behaving young adults, solving a Y‐maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state‐of‐the‐art brain imaging literature of landmark‐based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo‐spatial processing and coding, we observed an alpha‐power desynchronization while participants gathered visual information. We also hypothesized behavior‐dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time–frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high‐density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark‐based navigation.
Collapse
Affiliation(s)
- Alexandre Delaux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Lukas Gehrke
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Marius Klug
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Ricardo Chavarriaga
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Zurich University of Applied Sciences, ZHAW Datalab, Winterthur, Switzerland
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Klaus Gramann
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
24
|
Brauns K, Friedl-Werner A, Maggioni MA, Gunga HC, Stahn AC. Head-Down Tilt Position, but Not the Duration of Bed Rest Affects Resting State Electrocortical Activity. Front Physiol 2021; 12:638669. [PMID: 33716785 PMCID: PMC7951060 DOI: 10.3389/fphys.2021.638669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Adverse cognitive and behavioral conditions and psychiatric disorders are considered a critical and unmitigated risk during future long-duration space missions (LDSM). Monitoring and mitigating crew health and performance risks during these missions will require tools and technologies that allow to reliably assess cognitive performance and mental well-being. Electroencephalography (EEG) has the potential to meet the technical requirements for the non-invasive and objective monitoring of neurobehavioral conditions during LDSM. Weightlessness is associated with fluid and brain shifts, and these effects could potentially challenge the interpretation of resting state EEG recordings. Head-down tilt bed rest (HDBR) provides a unique spaceflight analog to study these effects on Earth. Here, we present data from two long-duration HDBR experiments, which were used to systematically investigate the time course of resting state electrocortical activity during prolonged HDBR. EEG spectral power significantly reduced within the delta, theta, alpha, and beta frequency bands. Likewise, EEG source localization revealed significantly lower activity in a broad range of centroparietal and occipital areas within the alpha and beta frequency domains. These changes were observed shortly after the onset of HDBR, did not change throughout HDBR, and returned to baseline after the cessation of bed rest. EEG resting state functional connectivity was not affected by HDBR. The results provide evidence for a postural effect on resting state brain activity that persists throughout long-duration HDBR, indicating that immobilization and inactivity per se do not affect resting state electrocortical activity during HDBR. Our findings raise an important issue on the validity of EEG to identify the time course of changes in brain function during prolonged HBDR, and highlight the importance to maintain a consistent body posture during all testing sessions, including data collections at baseline and recovery.
Collapse
Affiliation(s)
- Katharina Brauns
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Anika Friedl-Werner
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,INSERM U 1075 COMETE, Université de Normandie, Caen, France
| | - Martina A Maggioni
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Hanns-Christian Gunga
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Alexander C Stahn
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Shirazi SY, Huang HJ. Differential Theta-Band Signatures of the Anterior Cingulate and Motor Cortices During Seated Locomotor Perturbations. IEEE Trans Neural Syst Rehabil Eng 2021; 29:468-477. [PMID: 33539300 PMCID: PMC7989773 DOI: 10.1109/tnsre.2021.3057054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Quantifying motor and cortical responses to perturbations during seated locomotor tasks such as recumbent stepping and cycling will expand and improve the understanding of locomotor adaptation processes beyond just perturbed gait. Using a perturbed recumbent stepping protocol, we hypothesized motor errors and anterior cingulate activity would decrease with time, and perturbation timing would influence electrocortical elicitation. Young adults (n = 17) completed four 10-minute arms and legs stepping tasks, with perturbations applied at every left or right leg extension-onset or mid-extension. A random no-perturbation "catch" stride occurred in every five perturbed strides. We instructed subjects to follow a pacing cue and to step smoothly, and we quantified temporal and spatial motor errors. We used high-density electroencephalography to estimate sources of electrocortical fluctuations shared among >70% of subjects. Temporal and spatial errors did not decrease from early to late for either perturbed or catch strides. Interestingly, spatial errors post-perturbation did not return to pre-perturbation levels, suggesting use-dependent learning occurred. Theta (3-8 Hz) synchronization in the anterior cingulate cortex and left and right supplementary motor areas (SMA) emerged near the perturbation event, and extension-onset perturbations elicited greater theta-band power than mid-extension perturbations. Even though motor errors did not adapt, anterior cingulate theta synchronization decreased from early to late perturbed strides, but only during the right-side tasks. Additionally, SMA mainly demonstrated specialized, not contralateral, lateralization. Overall, seated locomotor perturbations produced differential theta-band responses in the anterior cingulate and SMAs, suggesting that tuning perturbation parameters, e.g., timing, can potentially modify electrocortical responses.
Collapse
|
26
|
Mazurek KA, Patelaki E, Foxe JJ, Freedman EG. Using the MoBI motion capture system to rapidly and accurately localize EEG electrodes in anatomic space. Eur J Neurosci 2020; 54:8396-8405. [PMID: 33103279 PMCID: PMC8573528 DOI: 10.1111/ejn.15019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
During mobile brain/body imaging (MoBI) experiments, electroencephalography and motion capture systems are used in concert to record high temporal resolution neural activity and movement kinematics while participants perform demanding perceptual and cognitive tasks in a naturalistic environment. A typical MoBI setup involves positioning multi‐channel electrode caps based on anatomical fiducials as well as experimenter and participant intuition regarding the scalp midpoint location (i.e., Cz). Researchers often use the “template” electrode locations provided by the manufacturer, however, the “actual” electrode locations can vary based on each participant's head morphology. Accounting for differences in head morphologies could provide more accurate clinical diagnostic information when using MoBI to identify neurological deficits in patients with motor, sensory, or cognitive impairments. Here, we asked whether the existing motion capture system used in a MoBI setup could be easily adapted to improve spatial localization of electrodes across participants without requiring additional or specialized equipment that might impede clinical adoption. Using standard electrode configurations, infrared markers were placed on a subset of electrodes and anatomical fiducials, and the remaining electrode locations were estimated using spherical or ellipsoid models. We identified differences in event‐related potentials between “template” and “actual” electrode locations during a Go/No‐Go task (p < 9.8e–5) and an object‐manipulation task (p < 9.8e–5). Thus, the motion capture system already used in MoBI experiments can be effectively deployed to accurately register and quantify the neural activity. Improving the spatial localization without needing specialized hardware or additional setup time to the workflow has important real‐world implications for translating MoBI to clinical environments.
Collapse
Affiliation(s)
- Kevin A Mazurek
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eleni Patelaki
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward G Freedman
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
27
|
Phase dependent modulation of cortical activity during action observation and motor imagery of walking: An EEG study. Neuroimage 2020; 225:117486. [PMID: 33164857 DOI: 10.1016/j.neuroimage.2020.117486] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 02/01/2023] Open
Abstract
Action observation (AO) and motor imagery (MI) are motor simulations which induce cortical activity related to execution of observed and imagined movements. Neuroimaging studies have mainly investigated where the cortical activities during AO and MI of movements are activated and if they match those activated during execution of the movements. However, it remains unclear how cortical activity is modulated; in particular, whether activity depends on observed or imagined phases of movements. We have previously examined the neural mechanisms underlying AO and MI of walking, focusing on the combined effect of AO with MI (AO+MI) and phase dependent modulation of corticospinal and spinal reflex excitability. Here, as a continuation of our previous studies, we investigated cortical activity depending on gait phases during AO and AO+MI of walking by using electroencephalography (EEG); 64-channel EEG signals were recorded in which participants observed walking with or without imagining it, respectively. EEG source and spectral analyses showed that, in the sensorimotor cortex during AO+MI and AO, the alpha and beta power were decreased, and power spectral modulations depended on walking phases. The phase dependent modulations during AO+MI, but not during AO, were like those which occur during actual walking as reported by previous walking studies. These results suggest that combinatory effects of AO+MI could induce parts of the phase dependent activation of the sensorimotor cortex during walking even without any movements. These findings would extend understanding of the neural mechanisms underlying walking and cognitive motor processes and provide clinically beneficial information towards rehabilitation for patients with neurological gait dysfunctions.
Collapse
|
28
|
Al-Fahad R, Yeasin M, Bidelman GM. Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions. J Neural Eng 2020; 17:016045. [PMID: 31822643 PMCID: PMC7004853 DOI: 10.1088/1741-2552/ab6040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Categorical perception (CP) is an inherent property of speech perception. The response time (RT) of listeners' perceptual speech identification is highly sensitive to individual differences. While the neural correlates of CP have been well studied in terms of the regional contributions of the brain to behavior, functional connectivity patterns that signify individual differences in listeners' speed (RT) for speech categorization is less clear. In this study, we introduce a novel approach to address these questions. APPROACH We applied several computational approaches to the EEG, including graph mining, machine learning (i.e., support vector machine), and stability selection to investigate the unique brain states (functional neural connectivity) that predict the speed of listeners' behavioral decisions. MAIN RESULTS We infer that (i) the listeners' perceptual speed is directly related to dynamic variations in their brain connectomics, (ii) global network assortativity and efficiency distinguished fast, medium, and slow RTs, (iii) the functional network underlying speeded decisions increases in negative assortativity (i.e., became disassortative) for slower RTs, (iv) slower categorical speech decisions cause excessive use of neural resources and more aberrant information flow within the CP circuitry, (v) slower responders tended to utilize functional brain networks excessively (or inappropriately) whereas fast responders (with lower global efficiency) utilized the same neural pathways but with more restricted organization. SIGNIFICANCE Findings show that neural classifiers (SVM) coupled with stability selection correctly classify behavioral RTs from functional connectivity alone with over 92% accuracy (AUC = 0.9). Our results corroborate previous studies by supporting the engagement of similar temporal (STG), parietal, motor, and prefrontal regions in CP using an entirely data-driven approach.
Collapse
Affiliation(s)
- Rakib Al-Fahad
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, 38152 TN, USA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, 38152 TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M. Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|