1
|
Kim Y, Lee JH, Park JC, Kwon J, Kim H, Seo J, Min BK. Neuromodulation of inhibitory control using phase-lagged transcranial alternating current stimulation. J Neuroeng Rehabil 2024; 21:93. [PMID: 38816860 PMCID: PMC11138099 DOI: 10.1186/s12984-024-01385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is a prominent non-invasive brain stimulation method for modulating neural oscillations and enhancing human cognitive function. This study aimed to investigate the effects of individualized theta tACS delivered in-phase and out-of-phase between the dorsal anterior cingulate cortex (dACC) and left dorsolateral prefrontal cortex (lDLPFC) during inhibitory control performance. METHODS The participants engaged in a Stroop task with phase-lagged theta tACS over individually optimized high-density electrode montages targeting the dACC and lDLPFC. We analyzed task performance, event-related potentials, and prestimulus electroencephalographic theta and alpha power. RESULTS We observed significantly reduced reaction times following out-of-phase tACS, accompanied by reduced frontocentral N1 and N2 amplitudes, enhanced parieto-occipital P1 amplitudes, and pronounced frontocentral late sustained potentials. Out-of-phase stimulation also resulted in significantly higher prestimulus frontocentral theta and alpha activity. CONCLUSIONS These findings suggest that out-of-phase theta tACS potently modulates top-down inhibitory control, supporting the feasibility of phase-lagged tACS to enhance inhibitory control performance.
Collapse
Affiliation(s)
- Yukyung Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Je-Hyeop Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
- BK21 Four Institute of Precision Public Health, Korea University, Seoul, 02841, Korea
| | - Je-Choon Park
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Jeongwook Kwon
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Hyoungkyu Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Jeehye Seo
- BK21 Four Institute of Precision Public Health, Korea University, Seoul, 02841, Korea
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
- BK21 Four Institute of Precision Public Health, Korea University, Seoul, 02841, Korea.
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
2
|
Seo J, Lee J, Min BK. Out-of-phase transcranial alternating current stimulation modulates the neurodynamics of inhibitory control. Neuroimage 2024; 292:120612. [PMID: 38648868 DOI: 10.1016/j.neuroimage.2024.120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique that enhances cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether tACS with different phase lags (0° and 180°) between the dorsal anterior cingulate and left dorsolateral prefrontal cortices modulated inhibitory control performance during the Stroop task. We found out-of-phase tACS mediated improvements in task performance, which was neurodynamically reflected as putamen, dorsolateral prefrontal, and primary motor cortical activation as well as prefrontal-based top-down functional connectivity. Our observations uncover the neurophysiological bases of tACS-phase-dependent neuromodulation and provide a feasible non-invasive approach to effectively modulate inhibitory control.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea
| | - Jehyeop Lee
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
3
|
Malekahmad M, Frazer A, Zoghi M, Jaberzadeh S. Transcranial pulsed current stimulation: A scoping review of the current literature on scope, nature, underlying mechanisms, and gaps. Psychophysiology 2024; 61:e14521. [PMID: 38200645 DOI: 10.1111/psyp.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Transcranial pulsed current stimulation (tPCS) is a noninvasive brain stimulation technique that has aroused considerable attention in recent years. This review aims to provide an overview of the existing literature on tPCS, examine the scope and nature of previous research, investigate its underlying mechanisms, and identify gaps in the literature. Searching online databases resulted in 36 published tPCS studies from inception until May 2023. These studies were categorized into three groups: human studies on healthy individuals, human studies on clinical conditions, and animal studies. The findings suggest that tPCS has the potential to modulate brain excitability by entraining neural oscillations and utilizing stochastic resonance. However, the underlying mechanisms of tPCS are not yet fully understood and require further investigation. Furthermore, the included studies indicate that tPCS may have therapeutic potential for neurological diseases. However, before tPCS can be applied in clinical settings, a better understanding of its mechanisms is crucial. Hence, the tPCS studies were categorized into four types of research: basic, strategic, applied, and experimental research, to identify the nature of the literature and gaps. Analysis of these categories revealed that tPCS, with its diverse parameters, effects, and mechanisms, presents a wide range of research opportunities for future investigations.
Collapse
Affiliation(s)
- Mona Malekahmad
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| | - Ashlyn Frazer
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Discipline of Physiotherapy, Federation University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Kim HJ, Phan TT, Lee K, Kim JS, Lee SY, Lee JM, Do J, Lee D, Kim SP, Lee KP, Park J, Lee CJ, Park JM. Long-lasting forms of plasticity through patterned ultrasound-induced brainwave entrainment. SCIENCE ADVANCES 2024; 10:eadk3198. [PMID: 38394205 PMCID: PMC10889366 DOI: 10.1126/sciadv.adk3198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Achieving long-lasting neuronal modulation with low-intensity, low-frequency ultrasound is challenging. Here, we devised theta burst ultrasound stimulation (TBUS) with gamma bursts for brain entrainment and modulation of neuronal plasticity in the mouse motor cortex. We demonstrate that two types of TBUS, intermittent and continuous TBUS, induce bidirectional long-term potentiation or depression-like plasticity, respectively, as evidenced by changes in motor-evoked potentials. These effects depended on molecular pathways associated with long-term plasticity, including N-methyl-d-aspartate receptor and brain-derived neurotrophic factor/tropomyosin receptor kinase B activation, as well as de novo protein synthesis. Notably, bestrophin-1 and transient receptor potential ankyrin 1 play important roles in these enduring effects. Moreover, pretraining TBUS enhances the acquisition of previously unidentified motor skills. Our study unveils a promising protocol for ultrasound neuromodulation, enabling noninvasive and sustained modulation of brain function.
Collapse
Affiliation(s)
- Ho-Jeong Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keunhyung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Sook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Yeong Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jongrok Do
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Widge AS. Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity. Neuropsychopharmacology 2024; 49:138-149. [PMID: 37415081 PMCID: PMC10700701 DOI: 10.1038/s41386-023-01643-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Deep brain stimulation (DBS) is an invasive approach to precise modulation of psychiatrically relevant circuits. Although it has impressive results in open-label psychiatric trials, DBS has also struggled to scale to and pass through multi-center randomized trials. This contrasts with Parkinson disease, where DBS is an established therapy treating thousands of patients annually. The core difference between these clinical applications is the difficulty of proving target engagement, and of leveraging the wide range of possible settings (parameters) that can be programmed in a given patient's DBS. In Parkinson's, patients' symptoms change rapidly and visibly when the stimulator is tuned to the correct parameters. In psychiatry, those same changes take days to weeks, limiting a clinician's ability to explore parameter space and identify patient-specific optimal settings. I review new approaches to psychiatric target engagement, with an emphasis on major depressive disorder (MDD). Specifically, I argue that better engagement may come by focusing on the root causes of psychiatric illness: dysfunction in specific, measurable cognitive functions and in the connectivity and synchrony of distributed brain circuits. I overview recent progress in both those domains, and how it may relate to other technologies discussed in companion articles in this issue.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Sawai S, Murata S, Fujikawa S, Yamamoto R, Nakano H. Effects of θ High Definition-Transcranial Alternating Current Stimulation in the Anterior Cingulate Cortex on the Dominance of Attention Focus in Standing Postural Control. Behav Sci (Basel) 2023; 13:477. [PMID: 37366728 DOI: 10.3390/bs13060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Attention focus affects performance in postural control while standing, and it is divided into internal focus (IF) and external focus (EF). Each individual has a predominant attention focus, and research has revealed that the dominance of attention focus may be an acquired trait. However, the impact of non-invasive brain stimulation on attention-focus dominance remains unexplored in the current literature. Here, we examined the effect of high-definition transcranial alternating current stimulation (HD-tACS) on θ waves in the anterior cingulate cortex (ACC) on standing postural control tasks in an EF condition for IF- and EF-dominant groups. The effect of θ HD-tACS on the ACC differed between IF- and EF-dominant groups, and θ HD-tACS in the IF-dominant group decreased the performance of standing postural control under the EF condition. The forced activation of the ACC with θ HD-tACS may have conversely reduced the activity of brain regions normally activated by the IF-dominant group. Additionally, the activation of ACC prioritized visual information processing and suppressed the superficial sensory processing that is normally potentially prioritized by the IF-dominant group. These results highlight the importance of changing the type of rehabilitation and sports training tasks to account for the individual's dominance of attention focus.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto 607-0981, Japan
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Shoya Fujikawa
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto 607-0981, Japan
| | - Ryosuke Yamamoto
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Rehabilitation, Tesseikai Neurosurgical Hospital, Osaka 575-8511, Japan
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| |
Collapse
|
7
|
Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY, Xu JG. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci 2023; 13:brainsci13030451. [PMID: 36979261 PMCID: PMC10046557 DOI: 10.3390/brainsci13030451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zong-Lei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| |
Collapse
|
8
|
Dong S, Yan J, Xie Z, Yuan Y, Ji H. Modulation effect of mouse hippocampal neural oscillations by closed-loop transcranial ultrasound stimulation. J Neural Eng 2022; 19. [PMID: 36541474 DOI: 10.1088/1741-2552/aca799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Objective. Closed-loop transcranial ultrasound stimulation (TUS) can be applied at a specific time according to the state of neural activity to achieve timely and precise neuromodulation and improve the modulation effect. In a previous study, we found that closed-loop TUS at the peaks and troughs of the theta rhythm in the mouse hippocampus was able to increase the absolute power and decrease the relative power of the theta rhythm of local field potentials (LFPs) independent of the peaks and troughs of the stimulus. However, it remained unclear whether the modulation effect of this closed-loop TUS-induced mouse hippocampal neural oscillation depended on the peaks and troughs of the theta rhythm.Approach. In this study, we used ultrasound with different stimulation modes and durations to stimulate the peaks (peak stimulation) and troughs (trough stimulation) of the hippocampal theta rhythm. The LFPs in the area of ultrasound stimulation were recorded and the amplitudes and power spectra of the theta rhythm before and after ultrasound stimulation were analyzed.Main results. The results showed that (a) the relative change in amplitude of theta rhythm decreases as the number of stimulation trials under peak stimulation increases; (b) the relative change in the absolute power of the theta rhythm decreases as the number of stimulation trials under peak stimulation increases; (c) the relative change in amplitude of the theta rhythm increases nonlinearly with the stimulation duration (SD) under peak stimulation, and; (d) the relative change in absolute power exhibits a nonlinear increase with SD under peak stimulation.Significance. These results suggest that the modulation effect of closed-loop TUS on theta rhythm is dependent on the stimulation mode and duration under peak stimulation. TUS has the potential to precisely modulate theta rhythm-related neural activity.
Collapse
Affiliation(s)
- Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, People's Republic of China
| | - Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Hui Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| |
Collapse
|
9
|
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022; 258:119351. [PMID: 35659993 DOI: 10.1016/j.neuroimage.2022.119351] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
Diagnosis and management of chronic neuropathic pain are challenging, leading to current efforts to characterize 'objective' biomarkers of pain using imaging or neurophysiological techniques, such as electroencephalography (EEG). A systematic literature review was conducted in PubMed-Medline and Web-of-Science until October 2021 to identify EEG biomarkers of chronic neuropathic pain in humans. The risk of bias was assessed by the Newcastle-Ottawa-Scale. Experimental, provoked, or chronic non-neuropathic pain studies were excluded. We identified 14 studies, in which resting-state EEG spectral analysis was compared between patients with pain related to a neurological disease and patients with the same disease but without pain or healthy controls. From these heterogeneous exploratory studies, some conclusions can be drawn, even if they must be weighted by the fact that confounding factors, such as medication and association with anxio-depressive disorders, are generally not taken into account. Overall, EEG signal power was increased in the θ band (4-7Hz) and possibly in the high-β band (20-30Hz), but decreased in the high-α-low-β band (10-20Hz) in the presence of ongoing neuropathic pain, while increased γ band oscillations were not evidenced, unlike in experimental pain. Consequently, the dominant peak frequency was decreased in the θ-α band and increased in the whole-β band in neuropathic pain patients. Disappointingly, pain intensity correlated with various EEG changes across studies, with no consistent trend. This review also discusses the location of regional pain-related EEG changes in the pain connectome, as the perspectives offered by advanced techniques of EEG signal analysis (source location, connectivity, or classification methods based on artificial intelligence). The biomarkers provided by resting-state EEG are of particular interest for optimizing the treatment of chronic neuropathic pain by neuromodulation techniques, such as transcranial alternating current stimulation or neurofeedback procedures.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Bardel
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France.
| |
Collapse
|
10
|
Senkowski D, Sobirey R, Haslacher D, Soekadar SR. Boosting working memory: Uncovering the differential effects of tDCS and tACS. Cereb Cortex Commun 2022; 3:tgac018. [PMID: 35592391 PMCID: PMC9113288 DOI: 10.1093/texcom/tgac018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Working memory (WM) is essential for reasoning, decision making and problem solving. Recently, there has been an increasing effort in improving WM through non-invasive brain stimulation, especially transcranial direct and alternating current stimulation (tDCS/tACS). Studies suggest that tDCS and tACS can modulate WM performance, but large variability in research approaches hinders identification of optimal stimulation protocols and interpretation of study results. Moreover, it is unclear whether tDCS and tACS differentially affect WM. Here, we summarize and compare studies examining the effects of tDCS and tACS on WM performance in healthy adults. Following PRISMA-selection criteria, our systematic review resulted in 43 studies (29 tDCS, 11 tACS, 3 both) with a total of 1826 adult participants. For tDCS, only 4 out of 23 single-session studies reported effects on WM, while 7 out of 9 multi-session experiments showed positive effects on WM training. For tACS, 10 out of 14 studies demonstrated effects on WM, which were frequency dependent and robust for frontoparietal stimulation. Our review revealed no reliable effect of single-session tDCS on WM, but moderate effects of multi-session tDCS and single-session tACS. We discuss implications of these findings and future directions in the emerging research field of non-invasive brain stimulation and WM.
Collapse
Affiliation(s)
- Daniel Senkowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Rabea Sobirey
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - David Haslacher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Surjo R Soekadar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| |
Collapse
|