1
|
Greaves MD, Novelli L, Mansour L S, Zalesky A, Razi A. Structurally informed models of directed brain connectivity. Nat Rev Neurosci 2025; 26:23-41. [PMID: 39663407 DOI: 10.1038/s41583-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Understanding how one brain region exerts influence over another in vivo is profoundly constrained by models used to infer or predict directed connectivity. Although such neural interactions rely on the anatomy of the brain, it remains unclear whether, at the macroscale, structural (or anatomical) connectivity provides useful constraints on models of directed connectivity. Here, we review the current state of research on this question, highlighting a key distinction between inference-based effective connectivity and prediction-based directed functional connectivity. We explore the methods via which structural connectivity has been integrated into directed connectivity models: through prior distributions, fixed parameters in state-space models and inputs to structure learning algorithms. Although the evidence suggests that integrating structural connectivity substantially improves directed connectivity models, assessments of reliability and out-of-sample validity are lacking. We conclude this Review with a strategy for future research that addresses current challenges and identifies opportunities for advancing the integration of structural and directed connectivity to ultimately improve understanding of the brain in health and disease.
Collapse
Affiliation(s)
- Matthew D Greaves
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Leonardo Novelli
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Sina Mansour L
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Adeel Razi
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Chang B, Park JJ, Buch VP. Applying normative atlases in deep brain stimulation: a comprehensive review. Int J Surg 2024; 110:8037-8044. [PMID: 39806746 DOI: 10.1097/js9.0000000000002120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Deep brain stimulation (DBS) has emerged as a crucial therapeutic strategy for various neurological and psychiatric disorders. Precise target localization is essential for optimizing therapeutic outcomes, necessitating advanced neuroimaging techniques. Normative atlases provide standardized references for accurate electrode placement, enhancing treatment customization and efficacy. This comprehensive review explores the application of normative atlases in DBS, emphasizing their role in target identification, patient-specific electrode placement, and predicting stimulation outcomes. Challenges, such as variability across atlases and technical complexities, are addressed alongside future directions and innovations, including advancements in neuroimaging technologies and the integration of machine learning (ML) and artificial intelligence (AI). Normative atlases play a pivotal role in enhancing DBS precision and patient outcomes, promising a future of personalized and effective therapies in neurology and psychiatry.
Collapse
Affiliation(s)
- Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, People's Republic of China
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| | - Jay J Park
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| | - Vivek P Buch
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| |
Collapse
|
3
|
Greaves MD, Novelli L, Razi A. Structurally informed resting-state effective connectivity recapitulates cortical hierarchy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587831. [PMID: 38617335 PMCID: PMC11014588 DOI: 10.1101/2024.04.03.587831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Interregional brain communication is mediated by the brain's physical wiring (i.e., structural connectivity). Yet, it remains unclear whether models describing directed, functional interactions between latent neuronal populations-effective connectivity-benefit from incorporating macroscale structural connectivity. Here, we assess a hierarchical empirical Bayes method: structural connectivity-based priors constrain the inversion of group-level resting-state effective connectivity, using subject-level posteriors as input; subsequently, group-level posteriors serve as empirical priors for re-evaluating subject-level effective connectivity. This approach permits knowledge of the brain's structure to inform inference of (multilevel) effective connectivity. In 17 resting-state brain networks, we find that a positive, monotonic relationship between structural connectivity and the prior probability of group-level effective connectivity generalizes across sessions and samples. Providing further validation, we show that inter-network differences in the coupling between structural and effective connectivity recapitulate a well-known unimodal-transmodal hierarchy. Thus, our results provide support for the use of our method over structurally uninformed alternatives.
Collapse
Affiliation(s)
- Matthew D. Greaves
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3AR, United Kingdom
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, M5G 1M1, Canada
| |
Collapse
|
4
|
Ji J, Zou A, Liu J, Yang C, Zhang X, Song Y. A Survey on Brain Effective Connectivity Network Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:1879-1899. [PMID: 34469315 DOI: 10.1109/tnnls.2021.3106299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human brain effective connectivity characterizes the causal effects of neural activities among different brain regions. Studies of brain effective connectivity networks (ECNs) for different populations contribute significantly to the understanding of the pathological mechanism associated with neuropsychiatric diseases and facilitate finding new brain network imaging markers for the early diagnosis and evaluation for the treatment of cerebral diseases. A deeper understanding of brain ECNs also greatly promotes brain-inspired artificial intelligence (AI) research in the context of brain-like neural networks and machine learning. Thus, how to picture and grasp deeper features of brain ECNs from functional magnetic resonance imaging (fMRI) data is currently an important and active research area of the human brain connectome. In this survey, we first show some typical applications and analyze existing challenging problems in learning brain ECNs from fMRI data. Second, we give a taxonomy of ECN learning methods from the perspective of computational science and describe some representative methods in each category. Third, we summarize commonly used evaluation metrics and conduct a performance comparison of several typical algorithms both on simulated and real datasets. Finally, we present the prospects and references for researchers engaged in learning ECNs.
Collapse
|