1
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
2
|
Faller KME, Chaytow H, Gillingwater TH. Targeting common disease pathomechanisms to treat amyotrophic lateral sclerosis. Nat Rev Neurol 2025:10.1038/s41582-024-01049-4. [PMID: 39743546 DOI: 10.1038/s41582-024-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals. Therapies targeting more general mechanisms that underlie motor neuron pathology in ALS are therefore of considerable interest. ALS pathology is associated with disruption to a complex array of key cellular pathways, including RNA processing, proteostasis, metabolism and inflammation. This Review details attempts to restore cellular homeostasis by targeting these pathways in order to develop effective, broadly-applicable ALS therapeutics.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in an AAV-C9ORF72 (G 4C 2) 66 mouse model. Acta Neuropathol Commun 2024; 12:203. [PMID: 39722074 DOI: 10.1186/s40478-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. The model displays key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis. However, the AAV-(G4C2)66 mouse model in this study has marginal neurodegeneration with negligible neuronal loss, or clinical deficits. Human C9orf72 is typically associated with altered TAR DNA-binding protein (TDP-43) function, yet studies of this rodent model revealed no significant evidence of TDP-43 dysfunction. While our findings indicate and support that this is a highly valuable robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease- associated TDP-43 dysfunction or clinical impairment. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
- Emily G Thompson
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suleyman C Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carrie Curcio
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Benjamin L Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erica R Kent
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas Philips
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Balaji G Vijayakumar
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anna Zacco
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Weibo Zhou
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guhan Nagappan
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Dong J, Tong W, Liu M, Liu M, Liu J, Jin X, Chen J, Jia H, Gao M, Wei M, Duan Y, Zhong X. Endosomal traffic disorders: a driving force behind neurodegenerative diseases. Transl Neurodegener 2024; 13:66. [PMID: 39716330 DOI: 10.1186/s40035-024-00460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Endosomes are crucial sites for intracellular material sorting and transportation. Endosomal transport is a critical process involved in the selective uptake, processing, and intracellular transport of substances. The equilibrium between endocytosis and circulation mediated by the endosome-centered transport pathway plays a significant role in cell homeostasis, signal transduction, and immune response. In recent years, there have been hints linking endosomal transport abnormalities to neurodegenerative diseases, including Alzheimer's disease. Nonetheless, the related mechanisms remain unclear. Here, we provide an overview of endosomal-centered transport pathways and highlight potential physiological processes regulated by these pathways, with a particular focus on the correlation of endosomal trafficking disorders with common pathological features of neurodegenerative diseases. Additionally, we summarize potential therapeutic agents targeting endosomal trafficking for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Weifang Hospital of Traditional Chinese Medicine, Weifang, 261000, China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110069, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jinyue Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110167, China.
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shenyang, 110005, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Jirström E, Matveeva A, Baindoor S, Donovan P, Ma Q, Morrissey EP, Arijs I, Boeckx B, Lambrechts D, Garcia-Munoz A, Dillon ET, Wynne K, Ying Z, Matallanas D, Hogg MC, Prehn JHM. Effects of ALS-associated 5'tiRNA Gly-GCC on the transcriptomic and proteomic profile of primary neurons in vitro. Exp Neurol 2024; 385:115128. [PMID: 39719207 DOI: 10.1016/j.expneurol.2024.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
tRNA-derived stress-induced RNAs (tiRNAs) are a new class of small non-coding RNA that have emerged as important regulators of cellular stress responses. tiRNAs are derived from specific tRNA cleavage by the stress-induced ribonuclease angiogenin (ANG). Loss-of-function mutations in the ANG gene are linked to amyotrophic lateral sclerosis (ALS), and elevated levels of specific tiRNAs were recently identified in ALS patient serum samples. However, the biological role of tiRNA production in neuronal stress responses and neurodegeneration remains largely unknown. Here, we investigated the genome-wide regulation of neuronal stress responses by a specific tiRNA, 5'tiRNAGly-GCC, which we found to be upregulated in primary neurons exposed to ALS-relevant stresses and in the spinal cord of three ALS mouse models. Whole-transcript RNA sequencing and label-free mass spectrometry on primary neurons transfected with a synthetic mimic of 5'tiRNAGly-GCC revealed predominantly downregulated RNA and protein levels, with more pronounced changes in the proteome. Over half of the downregulated mRNAs contained predicted 5'tiRNAGly-GCC binding sites, indicating that this tiRNA may silence target genes via complementary binding. On the proteome level, we observed reduction in proteins involved in translation initiation and ribosome assembly, pointing to inhibitory effects on translation. Together, these findings suggest that 5'tiRNAGly-GCC is an ALS-associated tiRNA that functions to fine-tune gene expression and supress protein synthesis as part of an ANG-induced neuronal stress response.
Collapse
Affiliation(s)
- Elisabeth Jirström
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Sharada Baindoor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Paul Donovan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Qilian Ma
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Elena Perez Morrissey
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Amaya Garcia-Munoz
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marion C Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
7
|
Davalos L, Kushlaf H. Advances in Disease-Modifying Therapeutics for Chronic Neuromuscular Disorders. Semin Respir Crit Care Med 2024. [PMID: 39708835 DOI: 10.1055/a-2463-3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Neuromuscular disorders can cause respiratory impairment by affecting the muscle fibers, neuromuscular junction, or innervation of respiratory muscles, leading to significant morbidity and mortality. Over the past few years, new disease-modifying therapies have been developed and made available for treating different neuromuscular disorders. Some of these therapies have remarkable effectiveness, resulting in the prevention and reduction of respiratory complications. For myasthenia gravis (MG), efgartigimod, ravulizumab, rozanolixizumab, and zilucoplan have been Food and Drug Administration (FDA)-approved for the treatment of acetylcholine receptor (AChR) antibody-positive generalized MG in the past 2 years. Rozanolixiumab is also approved for treating MG caused by muscle-specific tyrosine kinase (MuSK) antibodies. The new MG therapeutics target the complement system or block the neonatal fragment crystallizable (Fc) receptors (FcRn), leading to significant clinical improvement. For spinal muscular atrophy (SMA), nusinersen (intrathecal route) and risdiplam (oral route) modify the splicing of the SMN2 gene, increasing the production of normal survival motor neuron (SMN) protein. Onasemnogene abeparvovec is a gene replacement therapy that encodes a functional SMN protein. All SMA medications, particularly onasemnogene abeparvovec, have led to clinically meaningful improvement. For late-onset Pompe disease (LOPD), avalglucosidase alfa has shown a greater improvement in respiratory function, ambulation, and functional outcomes in comparison to alglucosidase alfa, and cipaglucosidase alfa combined with miglustat has shown improvement in respiratory and motor function in a cohort of enzyme replacement therapy-experienced LOPD patients. Amyotrophic lateral sclerosis (ALS) remains a challenge. The two most recent FDA-approved medications, namely sodium phenylbutyrate and tofersen, may slow down the disease by a few months in a selected population but do not stop the progression of the disease.
Collapse
Affiliation(s)
- Long Davalos
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Hani Kushlaf
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
8
|
Dilliott AA, Costanzo MC, Bandres-Ciga S, Blauwendraat C, Casey B, Hoang Q, Iwaki H, Jang D, Kim JJ, Leonard HL, Levine KS, Makarious M, Nguyen TT, Rouleau GA, Singleton AB, Smadbeck P, Solle J, Vitale D, Nalls MA, Flannick J, Burtt NP, Farhan SM. The Neurodegenerative Disease Knowledge Portal: Propelling Discovery Through the Sharing of Neurodegenerative Disease Genomic Resources. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.27.24307990. [PMID: 38853922 PMCID: PMC11160810 DOI: 10.1101/2024.05.27.24307990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Although large-scale genetic association studies have proven useful for the delineation of neurodegenerative disease processes, we still lack a full understanding of the pathological mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP) was created as an open-science initiative with the aim to aggregate, enable analysis, and display all available genomic datasets of neurodegenerative disease, while protecting the integrity and confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including genotyping and sequencing studies, of individuals across ten different phenotypic groups, including neurological conditions such as Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease. In addition to securely hosting large genomic datasets, the NDKP provides accessible workflows and tools to effectively utilize the datasets and assist in the facilitation of customized genomic analyses. Here, we summarize the genomic datasets currently included within the portal, the bioinformatics processing of the datasets, and the variety of phenotypes captured. We also present example use-cases of the various user interfaces and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of high-quality results at the source, for both genomics experts and those in other disciplines. Overall, the NDKP promotes open-science and collaboration, maximizing the potential for discovery from the large-scale datasets researchers and consortia are expending immense resources to produce and resulting in reproducible conclusions to improve diagnostic and therapeutic care for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Allison A. Dilliott
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Maria C. Costanzo
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Bradford Casey
- Michael J. Fox Foundation for Parkinson’s Research, NY, NY USA
| | - Quy Hoang
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Dongkeun Jang
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Hampton L. Leonard
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Kristin S. Levine
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Mary Makarious
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Trang T. Nguyen
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guy A. Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Andrew B. Singleton
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Patrick Smadbeck
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J Solle
- Michael J. Fox Foundation for Parkinson’s Research, NY, NY USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Mike A. Nalls
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Jason Flannick
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Noël P. Burtt
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sali M.K. Farhan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in a AAV- C9ORF72 (G 4 C 2) 66 mouse model. RESEARCH SQUARE 2024:rs.3.rs-5221595. [PMID: 39711523 PMCID: PMC11661372 DOI: 10.21203/rs.3.rs-5221595/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. The model displays key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis. However, the AAV-(G4C2)66 mouse model in this study has marginal neurodegeneration with negligible neuronal loss, or clinical deficits. Human C9orf72 is typically associated with altered TAR DNA-binding protein (TDP-43) function, yet studies of this rodent model revealed no significant evidence of TDP-43 dysfunction. While our findings indicate and support that this is a highly valuable robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease- associated TDP-43 dysfunction or clinical impairment. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna Zacco
- Glaxo Smith Kline Research and Development
| | - Weibo Zhou
- Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
10
|
Wiersema AF, Rennenberg A, Smith G, Varderidou-Minasian S, Pasterkamp RJ. Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases. Cell Mol Life Sci 2024; 81:479. [PMID: 39627617 PMCID: PMC11615177 DOI: 10.1007/s00018-024-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
Collapse
Affiliation(s)
- Anna F Wiersema
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alyssa Rennenberg
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Grace Smith
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Kallweit L, Hamlett ED, Saternos H, Gilmore A, Granholm AC, Horowitz S. A New Role for RNA G-quadruplexes in Aging and Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560545. [PMID: 37873355 PMCID: PMC10592952 DOI: 10.1101/2023.10.02.560545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
INTRODUCTION As the world population ages, new molecular targets in aging and Alzheimer's Disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. METHODS In this study, we examined human hippocampal postmortem tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD. RESULTS We found that rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. We further found that neurons with accumulation of phospho-tau immunostaining contained rG4s, that rG4 structure can drive tau aggregation, and that rG4 staining density depended on APOE genotype in the human tissue examined. DISCUSSION Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation drives proteostasis collapse. These morphological findings suggest that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.
Collapse
Affiliation(s)
- Lena Kallweit
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E Wesley Ave, Denver, CO 80208, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425 USA
| | - Hannah Saternos
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, P15-5112, Aurora, CO 80045 USA
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, P15-5112, Aurora, CO 80045 USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, P15-5112, Aurora, CO 80045 USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E Wesley Ave, Denver, CO 80208, USA
| |
Collapse
|
12
|
Tournezy J, Léger C, Klonjkowski B, Gonzalez-Dunia D, Szelechowski M, Garenne A, Mathis S, Chevallier S, Le Masson G. The Neuroprotective Effect of the X Protein of Orthobornavirus Bornaense Type 1 in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:12789. [PMID: 39684507 DOI: 10.3390/ijms252312789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
In amyotrophic lateral sclerosis (ALS), early mitochondrial dysfunction may contribute to progressive motor neuron loss. Remarkably, the ectopic expression of the Orthobornavirus bornaense type 1 (BoDV-1) X protein in mitochondria blocks apoptosis and protects neurons from degeneration. Therefore, this study examines the neuroprotective effects of X protein in an ALS mouse model. We first tested in vitro the effect of the X-derived peptide (PX3) on motoneurons primary cultures of SOD1G93A mice. The total intracellular adenosine triphosphate (ATP) content was measured after incubation of the peptide. We next tested in vivo the intramuscular injection of X protein using a canine viral vector (CAV2-X) and PX3 intranasal administrations in SOD1G93A mice. Disease onset and progression were assessed through rotarod performance, functional motor unit analysis via electrophysiology, and motor neuron survival by immunohistochemistry. The results showed that in vitro PX3 restored the ATP level in SOD1G93A motor neurons. In vivo, treated mice demonstrated better motor performance, preserved motor units, and higher motor neuron survival. Although life expectancy was not extended in this severe mouse model of motor neuron degeneration, the present findings clearly demonstrate the neuroprotective potential of X protein in a model of ALS. We are convinced that further studies may improve the therapeutic impact of X protein with optimized administration methods.
Collapse
Affiliation(s)
- Jeflie Tournezy
- Neurocentre Magendie INSERM U1215, Université de Bordeaux, 33000 Bordeaux, France
| | - Claire Léger
- Neurocentre Magendie INSERM U1215, Université de Bordeaux, 33000 Bordeaux, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, 94700 Maisons-Alfort, France
| | - Daniel Gonzalez-Dunia
- Infinity (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM, CNRS, Université de Toulouse, UPS, 31024 Toulouse, France
| | - Marion Szelechowski
- Infinity (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM, CNRS, Université de Toulouse, UPS, 31024 Toulouse, France
| | - André Garenne
- IMS Laboratory, UMR5218, CNRS, Bordeaux University, 33400 Talence, France
| | - Stéphane Mathis
- Nerve-Muscle Unit, ALS Center, Department of Neurology, University Hospital (CHU) of Bordeaux (Pellegrin Hospital), 33000 Bordeaux, France
| | - Stéphanie Chevallier
- Neurocentre Magendie INSERM U1215, Université de Bordeaux, 33000 Bordeaux, France
| | - Gwendal Le Masson
- Neurocentre Magendie INSERM U1215, Université de Bordeaux, 33000 Bordeaux, France
- Nerve-Muscle Unit, ALS Center, Department of Neurology, University Hospital (CHU) of Bordeaux (Pellegrin Hospital), 33000 Bordeaux, France
| |
Collapse
|
13
|
Lettman MM, Mendina CA, Burkard E, Alvin JR, Zhu Y, Coon JJ, Audhya A. Cell type-specific gene therapy confers protection against motor neuron disease caused by a TFG variant. Proc Natl Acad Sci U S A 2024; 121:e2410996121. [PMID: 39527745 PMCID: PMC11588061 DOI: 10.1073/pnas.2410996121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Inherited forms of motor neuron disease (MND), including hereditary spastic paraplegias (HSP), are associated with the death or dysfunction of nerve cells that control skeletal muscle activity. However, in some cases, the impacts of genetic variants underlying MND act in a non-cell autonomous manner, instead affecting the function of other cell types necessary for neuronal maintenance. Pathological mutations in TFG, which have been implicated in HSP, lead to axonopathy within the corticospinal tract, but it remains unclear whether this problem arises due to perturbations within neurons or supporting neuroglia. To address this question, we leveraged a rat model harboring the recessive TFG p.R106C mutation (mRATBN7.2, g.11:43897639C>T, c.316C>T), which recapitulates multiple phenotypes associated with HSP in humans, including progressive motor deficits, leg spasticity, and indications of an inflammatory response within the motor cortex. In particular, we took advantage of cell type-specific gene therapies to demonstrate that the reintroduction of wild-type TFG into synapsin 1-positive neurons provides robust protection against MND, whereas its expression in GFAP-positive glial cells provides no significant improvement in quantitative measures of gait, despite a dramatic reduction in the presence of reactive astrocytes throughout the brain. These data strongly suggest that therapeutic approaches targeting neurons should be pursued in cases of TFG-HSP, with our animal model offering a unique platform for preclinical assessment.
Collapse
Affiliation(s)
- Molly M. Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Caitlin A. Mendina
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emma Burkard
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - James R. Alvin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Chemistry, University of Wisconsin, Madison, WI53706
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, WI53706
- Morgridge Institute for Research, Madison, WI53715
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
14
|
Shweta, Sharma K, Shakarad M, Agrawal N, Maurya SK. Drosophila glial system: an approach towards understanding molecular complexity of neurodegenerative diseases. Mol Biol Rep 2024; 51:1146. [PMID: 39532789 DOI: 10.1007/s11033-024-10075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Glia is pivotal in regulating neuronal stem cell proliferation, functioning, and nervous system homeostasis, significantly influencing neuronal health and disorders. Dysfunction in glial activity is a key factor in the development and progression of brain pathology. However, a deeper understanding of the intricate nature of glial cells and their diverse role in neurological disorders is still required. To this end, we conducted data mining to retrieve literature from PubMed and Google Scholar using the keywords: glia, Drosophila, neurodegeneration, and mammals. The retrieved literature was manually screened and used to comprehensively understand and present the different glial types in Drosophila, i.e., perineurial, subperineurial, cortex, astrocyte-like and ensheathing glia, their relevance with mammalian counterparts, mainly microglia and astrocytes, and their potential to reveal complex neuron-glial molecular networks in managing neurodegenerative processes.
Collapse
Affiliation(s)
- Shweta
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Khushboo Sharma
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallikarjun Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Namita Agrawal
- Fly Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
15
|
Nandi S, Ghosh S, Garg S, Ghosh S. Unveiling the Human Brain on a Chip: An Odyssey to Reconstitute Neuronal Ensembles and Explore Plausible Applications in Neuroscience. ACS Chem Neurosci 2024; 15:3828-3847. [PMID: 39436813 DOI: 10.1021/acschemneuro.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional in vitro macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.
Collapse
Affiliation(s)
- Subhadra Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
16
|
Tan X, Su X, Wang Y, Liang W, Wang D, Huo D, Wang H, Qi Y, Zhang W, Han L, Zhang D, Wang M, Xu J, Feng H. BRD7 regulates cellular senescence and apoptosis in ALS by modulating p21 expression and p53 mitochondrial translocation respectively. Neuroscience 2024; 563:51-62. [PMID: 39510439 DOI: 10.1016/j.neuroscience.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Cellular senescence is involved in the progression of neurodegenerative diseases. Motor neurons exhibit senescence-like alterations in ALS. BRD7, identified as a regulatory factor associated with cellular senescence, its function in ALS remains unclear. This study aims to investigate the potential role and mechanisms of BRD7 in ALS. We analyzed RNA levels using qRT-PCR, protein levels through immunofluorescence and western blot, and apoptosis via TUNEL staining. Cell transfection was conducted for in vitro experiments. The level of β-galactosidase was measured by β-galactosidase activity detection kit. ALS motor neurons exhibited senescence-like alterations, characterized by increased activity of p53, p21, and β-galactosidase, as well as reduced lamin B1 staining. Additionally, the expression of BRD7 was upregulated and induced cellular senescence and apoptosis. Downregulation of BRD7 alleviates the cellular senescence by inhibiting p21 rather than p53. Knockdown of BRD7 inhibited p53 mitochondrial translocation, leading to reduced apoptosis. Our results suggest that BRD7 plays an important role in the survival of ALS motor neurons. BRD7 knockdown can reduce cellular senescence and apoptosis by inhibiting p21 and p53 mitochondrial translocation.
Collapse
Affiliation(s)
- Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jing Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
17
|
Sharma R, Mehan S, Khan Z, Das Gupta G, Narula AS. Therapeutic potential of oleanolic acid in modulation of PI3K/Akt/mTOR/STAT-3/GSK-3β signaling pathways and neuroprotection against methylmercury-induced neurodegeneration. Neurochem Int 2024; 180:105876. [PMID: 39368746 DOI: 10.1016/j.neuint.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that gradually deteriorates motor neurons, leading to demyelination, muscle weakness, and eventually respiratory failure. The disease involves several pathological processes, such as increased glutamate levels, mitochondrial dysfunction, and persistent neuroinflammation, often exacerbated by environmental toxins like mercury. This study explores the therapeutic potential of Olea europaea active phytoconstituents oleanolic acid (OLA) against ALS by targeting the overactivated PI3K/Akt/mTOR/STAT-3/GSK-3β signalling pathways. Methods involved in-silico studies, in vitro and in vivo experiments in which varying doses of methylmercury 5 mg/kg, p.o. and OLA (100 and 200 mg/kg, i.p.) were administered to rats for 42 days. Behavioural assessments, gross morphological, histopathological, and neurochemical parameters were measured in cerebrospinal fluid (CSF), blood plasma, and brain homogenates (cerebral cortex, hippocampus, striatum, midbrain, cerebellum) along with complete blood count (CBC) analysis. Results revealed OLA's significant neuroprotective properties. OLA effectively modulated targeted pathways, reducing pro-inflammatory cytokines, restoring normal levels of myelin basic protein (MBP) and neurofilament light chain (NEFL), and reducing histopathological changes. Gross pathological studies indicated less tissue damage, while CBC analysis showed improved hematology parameters. Additionally, the combination of OLA and edaravone (10 mg/kg, i.p.) demonstrated enhanced efficacy, improving motor functions and extending survival in ALS model rats. In conclusion, OLA exhibits significant therapeutic potential for ALS, acting as a potent modulator of key pathological signaling pathways. The findings suggest the feasibility of integrating OLA into existing treatment regimens, potentially improving clinical outcomes for ALS patients. However, further research must validate these findings in human clinical trials.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
18
|
Soubannier V, Chaineau M, Gursu L, Lépine S, Kalaydjian D, Sirois J, Haghi G, Rouleau G, Durcan TM, Stifani S. Early nuclear phenotypes and reactive transformation in human iPSC-derived astrocytes from ALS patients with SOD1 mutations. Glia 2024; 72:2079-2094. [PMID: 39092466 DOI: 10.1002/glia.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Lale Gursu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Sarah Lépine
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - David Kalaydjian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Ghazal Haghi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Barnard J, Hunt R, Yucel M, Mazaud D, Smith BN, Fanto M. Human TDP43 is required for ALS‑related annexin A11 toxicity in Drosophila. Biomed Rep 2024; 21:165. [PMID: 39301564 PMCID: PMC11411402 DOI: 10.3892/br.2024.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 09/22/2024] Open
Abstract
Genomics allows identification of genes and mutations associated with amyotrophic lateral sclerosis (ALS). Mutations in annexin A11 (ANXA11) are responsible for ~1% of all familial ALS and fronto-temporal dementia cases. The present study used the fruit fly, Drosophila melanogaster, to assess the mechanism of toxicity of ANXA11 mutants in residues that are conserved in the fly ANXB11 protein, the closest homolog to human ANXA11. In immune fluorescence, lifespan and negative geotaxis assays ANXA11 mutants, while displaying some degree of alteration in localization and function, did not exert any relevant organism toxicity in Drosophila. However, they showed a specific interaction with human TAR DNA-binding protein (TDP43). The present study illustrated that the ANXA11 mutants interact with human TDP43, but not the fly TAR DNA-binding protein-43 homolog (TBPH) or other ALS-associated genes such as super oxide dismutase 1, to shorten lifespan and increase negative geotaxis defects. This sheds light both on the mechanisms underlying ALS, further elucidating the intricate molecular network implicated in ALS and placing ANXA11 as a key player in its pathology, and on the complexity of using Drosophila as a model organism for researching genes in ALS.
Collapse
Affiliation(s)
- Jodi Barnard
- Department of Basic and Clinical Neuroscience, Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Rachel Hunt
- Department of Basic and Clinical Neuroscience, Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Mert Yucel
- Department of Basic and Clinical Neuroscience, Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - David Mazaud
- Department of Basic and Clinical Neuroscience, Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| |
Collapse
|
20
|
Paganoni S, Harkey B, Giacomelli E, Cudkowicz M. Lessons from the HEALEY adaptive platform trial in amyotrophic lateral sclerosis. NATURE AGING 2024; 4:1512-1515. [PMID: 39487328 DOI: 10.1038/s43587-024-00740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Affiliation(s)
- Sabrina Paganoni
- Sean M. Healey and AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brittney Harkey
- Sean M. Healey and AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Giacomelli
- Sean M. Healey and AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Merit Cudkowicz
- Sean M. Healey and AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Takeda T, Her YR, Kim JK, Jha NN, Monani UR. A variant of the Hspa8 synaptic chaperone modifies disease in a SOD1 G86R mouse model of amyotrophic lateral sclerosis. Exp Neurol 2024; 383:115024. [PMID: 39454934 DOI: 10.1016/j.expneurol.2024.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relatively common and invariably fatal, paralyzing motor neuron disease for which there are few treatment options. ALS is frequently associated with ubiquitin-positive motor neuronal aggregates, a pathology suggestive of perturbed proteostasis. Indeed, cellular chaperones, which are involved in protein trafficking and degradation often underlie familial ALS. Spinal muscular atrophy (SMA) is a second, common paralytic condition resulting from motor neuron loss and muscle atrophy. While SMA is now effectively treated, mechanisms underlying motor neuron degeneration in the disease remain far from clear. To address mechanistic questions about SMA, we recently identified a genetic modifier of the disease. The factor, a G470R variant in the constitutively expressed cellular chaperone, Hspa8, arrested motor neuron loss, prevented the abnormal accumulation of neurofilament aggregates at nerve terminals and suppressed disease. Hspa8 is best known for its role in autophagy. Amongst its many clients is the ALS-associated superoxide dismutase 1 (SOD1) protein. Given its suppression of the SMA phenotype, we tested potential disease-mitigating effects of Hspa8G470R in a mutant SOD1 mouse model of ALS. Unexpectedly, disease in mutant SOD1 mice expressing the G470R variant was aggravated. Motor performance of the mice deteriorated, muscle atrophy worsened, and lifespan shrunk even further. Paradoxically, SOD1 protein in spinal cord tissue of the mice was dramatically reduced. Our results suggest that Hspa8 modulates the ALS phenotype. However, rather than mitigating disease, the G470R variant exacerbates it.
Collapse
Affiliation(s)
- Taishi Takeda
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Colleen Giblin Research Laboratories, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Yoon-Ra Her
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Colleen Giblin Research Laboratories, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Jeong-Ki Kim
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Colleen Giblin Research Laboratories, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Narendra N Jha
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Colleen Giblin Research Laboratories, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Umrao R Monani
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Colleen Giblin Research Laboratories, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States of America.
| |
Collapse
|
22
|
Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Zhu S, Zhang Z, Wang Y. Exosome Cargo in Neurodegenerative Diseases: Leveraging Their Intercellular Communication Capabilities for Biomarker Discovery and Therapeutic Delivery. Brain Sci 2024; 14:1049. [PMID: 39595812 PMCID: PMC11591915 DOI: 10.3390/brainsci14111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The inexorable progression of neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis, is closely related to irreversible brain decline. Accurately characterizing pathophysiological features and identifying reliable biomarkers for early diagnosis and optimized treatment are critical. Hindered by the blood-brain barrier (BBB), obtaining sensitive monitoring indicators for disease progression and achieving efficient drug delivery remain significant challenges. Exosomes, endogenous nanoscale vesicles that carry key bioactive substances, reflect the intracellular environment and play an important role in cell signaling. They have shown promise in traversing the BBB, serving dual roles as potential biomarkers for NDs and vehicles for targeted drug delivery. However, the specific mechanisms by which exosome influence NDs are not fully understood, necessitating further investigation into their attributes and functionalities in the context of NDs. This review explores how exosomes mediate multifaceted interactions, particularly in exacerbating pathogenic processes such as oxidative stress, neuronal dysfunction, and apoptosis integral to NDs. It provides a comprehensive analysis of the profound impact of exosomes under stress and disease states, assessing their prospective utility as biomarkers and drug delivery vectors, offering new perspectives for tackling these challenging diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.)
| |
Collapse
|
23
|
Perni M, Mannini B. Targeting Protein Aggregation in ALS. Biomolecules 2024; 14:1324. [PMID: 39456257 PMCID: PMC11506292 DOI: 10.3390/biom14101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Proteinopathies involve the abnormal accumulation of specific proteins. Maintaining the balance of the proteome is a finely regulated process managed by a complex network of cellular machinery responsible for protein synthesis, folding, and degradation. However, stress and ageing can disrupt this balance, leading to widespread protein aggregation. Currently, several therapies targeting protein aggregation are in clinical trials for ALS. These approaches mainly focus on two strategies: addressing proteins that are prone to aggregation due to mutations and targeting the cellular mechanisms that maintain protein homeostasis to prevent aggregation. This review will cover these emerging drugs. Advances in ALS research not only offer hope for better outcomes for ALS patients but also provide valuable insights and methodologies that can benefit the broader field of neurodegenerative disease drug discovery.
Collapse
Affiliation(s)
- Michele Perni
- Baz-Therapeutics Inc., 810 Rittenhouse Square, Suite 412, Philadelphia, PA 19103, USA
- Clinical Research Building, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Benedetta Mannini
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
24
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
25
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Jin W, Boss J, Bakulski KM, Goutman SA, Feldman EL, Fritsche LG, Mukherjee B. Improving prediction models of amyotrophic lateral sclerosis (ALS) using polygenic, pre-existing conditions, and survey-based risk scores in the UK Biobank. J Neurol 2024; 271:6923-6934. [PMID: 39249108 DOI: 10.1007/s00415-024-12644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function, and a cure for this devastating disease remains elusive. This study aimed to identify pre-disposing genetic, phenotypic, and exposure-related factors for amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential. METHODS Utilizing data from the UK (United Kingdom) Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: "GWAS Hits PRS" and "PRS-CS," reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score ("PXS") captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates. RESULTS Both PRSs modestly predicted ALS diagnosis but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The "PXS" did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved the prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a fourfold higher ALS risk (95% CI [2.04, 7.73]) versus those in the 40%-60% range. DISCUSSION By leveraging UK Biobank data, our study uncovers pre-disposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.
Collapse
Affiliation(s)
- Weijia Jin
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Su B, He Z, Liu J, Li M, Huang X. Mangiferin activates the nuclear factor erythroid 2-related factor pathway to protect SOD1-G93A induced NSC-34 motor neurons from oxidative stress and apoptosis. J Biochem Mol Toxicol 2024; 38:e23849. [PMID: 39264833 DOI: 10.1002/jbt.23849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/28/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
One of the main factors in the pathophysiology of amyotrophic lateral sclerosis is oxidative stress. Mangiferin (MF), a natural plant polyphenol, has anti-inflammatory and antioxidant effects. The aim of our study was to investigate the protective effects and mechanisms of MF in the hSOD1-G93A ALS cell model. Our result revealed that MF treatment reduced the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), decreased oxidative damage, and reduced apoptosis. Additionally, it was observed that MF significantly increased the synthesis of the antioxidant genes hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase 1, which are downstream of the Nrf2 signaling pathway, and increased the expression and activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 knockdown greatly promoted apoptosis, which was reversed by MF treatment. To summarize, MF promoted the Nrf2 pathway and scavenged MDA and ROS to protect the ALS cell model.
Collapse
Affiliation(s)
- Boyang Su
- Medical School of Chinese PLA, Beijing, China
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhengqing He
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
29
|
Kaul M, Mukherjee D, Weiner HL, Cox LM. Gut microbiota immune cross-talk in amyotrophic lateral sclerosis. Neurotherapeutics 2024; 21:e00469. [PMID: 39510899 PMCID: PMC11585889 DOI: 10.1016/j.neurot.2024.e00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons. While there has been significant progress in defining the genetic contributions to ALS, greater than 90 % of cases are sporadic, which suggests an environmental component. The gut microbiota is altered in ALS and is an ecological factor that contributes to disease by modulating immunologic, metabolic, and neuronal signaling. Depleting the microbiome worsens disease in the SOD1 ALS animal model, while it ameliorates disease in the C9orf72 model of ALS, indicating critical subtype-specific interactions. Furthermore, administering beneficial microbiota or microbial metabolites can slow disease progression in animal models. This review discusses the current state of microbiome research in ALS, including interactions with different ALS subtypes, evidence in animal models and human studies, key immunologic and metabolomic mediators, and a path toward microbiome-based therapies for ALS.
Collapse
Affiliation(s)
- Megha Kaul
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Debanjan Mukherjee
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
31
|
Ghiasvand K, Amirfazli M, Moghimi P, Safari F, Takhshid MA. The role of neuron-like cell lines and primary neuron cell models in unraveling the complexity of neurodegenerative diseases: a comprehensive review. Mol Biol Rep 2024; 51:1024. [PMID: 39340590 DOI: 10.1007/s11033-024-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Kianoush Ghiasvand
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Amirfazli
- School of biological sciences, Illinois State University, Normal, United States of America
| | - Parvaneh Moghimi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
32
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
33
|
Wu Y, Ma B, Liu C, Li D, Sui G. Pathological Involvement of Protein Phase Separation and Aggregation in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:10187. [PMID: 39337671 PMCID: PMC11432175 DOI: 10.3390/ijms251810187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases are the leading cause of human disability and immensely reduce patients' life span and quality. The diseases are characterized by the functional loss of neuronal cells and share several common pathogenic mechanisms involving the malfunction, structural distortion, or aggregation of multiple key regulatory proteins. Cellular phase separation is the formation of biomolecular condensates that regulate numerous biological processes, including neuronal development and synaptic signaling transduction. Aberrant phase separation may cause protein aggregation that is a general phenomenon in the neuronal cells of patients suffering neurodegenerative diseases. In this review, we summarize the pathological causes of common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. We discuss the regulation of key amyloidogenic proteins with an emphasis of their aberrant phase separation and aggregation. We also introduce the approaches as potential therapeutic strategies to ameliorate neurodegenerative diseases through intervening protein aggregation. Overall, this review consolidates the research findings of phase separation and aggregation caused by misfolded proteins in a context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinuo Wu
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| | - Biao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Chang Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| |
Collapse
|
34
|
Rizea RE, Corlatescu AD, Costin HP, Dumitru A, Ciurea AV. Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:9966. [PMID: 39337454 PMCID: PMC11432652 DOI: 10.3390/ijms25189966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This review offers an in-depth examination of amyotrophic lateral sclerosis (ALS), addressing its epidemiology, pathophysiology, clinical presentation, diagnostic techniques, and current as well as emerging treatments. The purpose is to condense key findings and illustrate the complexity of ALS, which is shaped by both genetic and environmental influences. We reviewed the literature to discuss recent advancements in understanding molecular mechanisms such as protein misfolding, mitochondrial dysfunction, oxidative stress, and axonal transport defects, which are critical for identifying potential therapeutic targets. Significant progress has been made in refining diagnostic criteria and identifying biomarkers, leading to earlier and more precise diagnoses. Although current drug treatments provide some benefits, there is a clear need for more effective therapies. Emerging treatments, such as gene therapy and stem cell therapy, show potential in modifying disease progression and improving the quality of life for ALS patients. The review emphasizes the importance of continued research to address challenges such as disease variability and the limited effectiveness of existing treatments. Future research should concentrate on further exploring the molecular foundations of ALS and developing new therapeutic approaches. The implications for clinical practice include ensuring the accessibility of new treatments and that healthcare systems are equipped to support ongoing research and patient care.
Collapse
Affiliation(s)
- Radu Eugen Rizea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Neurosurgery, "Bagdasar-Arseni" Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Adrian Dumitru
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Morphopathology, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
35
|
Tourtourikov I, Todorov T, Angelov T, Chamova T, Tournev I, Mitev V, Todorova A. Genetic Modifiers of ALS: The Impact of Chromogranin B P413L in a Bulgarian ALS Cohort. Genes (Basel) 2024; 15:1197. [PMID: 39336788 PMCID: PMC11431727 DOI: 10.3390/genes15091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the role of the CHGB P413L variant (rs742710) in sporadic amyotrophic lateral sclerosis (sALS) within the Bulgarian population. We analyzed 150 patients with sALS (85 male and 65 female) for the presence of this variant, its potential impact on disease susceptibility, and age of onset. Genotyping was performed using PCR amplification and direct Sanger sequencing. Statistical analyses included comparisons with control data from GnomAD v2.1.1, one-way ANOVA, and Kaplan-Meier survival analysis. Results revealed a higher frequency of the minor T allele in patients with sALS compared to all control groups and a statistically significant increase in carrier genotypes compared to non-Finnish Europeans (χ2 = 15.4572, p = 0.000440). However, the impact on age of onset was less clear, with no statistically significant differences observed across genotypes or between carriers and non-carriers of the T allele. Kaplan-Meier analysis suggested a potential 2.5-year-earlier onset in T allele carriers, but the small sample size of carriers limits the reliability of this finding. Our study provides evidence for an association between the CHGB P413L variant and sALS susceptibility in the Bulgarian population, while its effect on age of onset remains uncertain, highlighting the need for further research in larger, diverse cohorts.
Collapse
Affiliation(s)
- Ivan Tourtourikov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Teodor Angelov
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Teodora Chamova
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Clinic of Nervous Diseases, Medical University of Sofia, UMBAL Aleksandrovska, 1431 Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| |
Collapse
|
36
|
Al Dera H, AlQahtani B. Molecular mechanisms and antisense oligonucleotide therapies of familial amyotrophic lateral sclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102271. [PMID: 39176177 PMCID: PMC11338942 DOI: 10.1016/j.omtn.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, presents considerable challenges in both diagnosis and treatment. It is categorized into sporadic and familial amyotrophic lateral sclerosis (fALS); the latter accounts for approximately 10% of cases and is primarily inherited in an autosomal dominant manner. This review summarizes the molecular genetics of fALS, highlighting key mutations that contribute to its pathogenesis, such as mutations in SOD1, FUS, and C9orf72. Central to this discourse is exploring antisense oligonucleotides (ASOs) that target these genetic aberrations, providing a promising therapeutic strategy. This review provides a detailed overview of the molecular mechanisms underlying fALS and the potential therapeutic value of ASOs, offering new insights into treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Bdour AlQahtani
- College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Lundt S, Ding S. Potential Therapeutic Interventions Targeting NAD + Metabolism for ALS. Cells 2024; 13:1509. [PMID: 39273079 PMCID: PMC11394323 DOI: 10.3390/cells13171509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons. While there have been many potential factors implicated for ALS development, such as oxidative stress and mitochondrial dysfunction, no exact mechanism has been determined at this time. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in mammalian cells and is crucial for a broad range of cellular functions from DNA repair to energy homeostasis. NAD+ can be synthesized from three different intracellular pathways, but it is the NAD+ salvage pathway that generates the largest proportion of NAD+. Impaired NAD+ homeostasis has been connected to aging and neurodegenerative disease-related dysfunctions. In ALS mice, NAD+ homeostasis is potentially disrupted prior to the appearance of physical symptoms and is significantly reduced in the nervous system at the end stage. Treatments targeting NAD+ metabolism, either by administering NAD+ precursor metabolites or small molecules that alter NAD+-dependent enzyme activity, have shown strong beneficial effects in ALS disease models. Here, we review the therapeutic interventions targeting NAD+ metabolism for ALS and their effects on the most prominent pathological aspects of ALS in animal and cell models.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center (DCRC), Columbia, MO 65203, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center (DCRC), Columbia, MO 65203, USA
- Department of Chemical and Biomedical Engineering (ChBME), University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
38
|
Gianferrari G, Cuoghi Costantini R, Crippa V, Carra S, Bonetto V, Pansarasa O, Cereda C, Zucchi E, Martinelli I, Simonini C, Vicini R, Fini N, Trojsi F, Passaniti C, Ticozzi N, Doretti A, Diamanti L, Fiamingo G, Conte A, Dalla Bella E, D'Errico E, Scarian E, Pasetto L, Antoniani F, Galli V, Casarotto E, D'Amico R, Poletti A, Mandrioli J. Colchicine treatment in amyotrophic lateral sclerosis: safety, biological and clinical effects in a randomized clinical trial. Brain Commun 2024; 6:fcae304. [PMID: 39291166 PMCID: PMC11406549 DOI: 10.1093/braincomms/fcae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
In preclinical studies, the anti-inflammatory drug colchicine, which has never been tested in amyotrophic lateral sclerosis, enhanced the expression of autophagy factors and inhibited accumulation of transactive response DNA-binding protein 43 kDa, a known histopathological marker of amyotrophic lateral sclerosis. This multicentre, randomized, double-blind trial enrolled patients with probable or definite amyotrophic lateral sclerosis who experienced symptom onset within the past 18 months. Patients were randomly assigned in a 1:1:1 ratio to receive colchicine at a dose of 0.005 mg/kg/day, 0.01 mg/kg/day or placebo for a treatment period of 30 weeks. The number of positive responders, defined as patients with a decrease lesser than 4 points in the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised total score during the 30-week treatment period, was the primary outcome. Disease progression, survival, safety and quality of life at the end of treatment were the secondary clinical outcomes. Secondary biological outcomes included changes from baseline to treatment end of stress granule and autophagy responses, transactive response DNA-binding protein 43 kDa, neurofilament accumulation and extracellular vesicle secretion, between the colchicine and placebo groups. Fifty-four patients were randomized to receive colchicine (n = 18 for each colchicine arm) or placebo (n = 18). The number of positive responders did not differ between the placebo and colchicine groups: 2 out of 18 patients (11.1%) in the placebo group, 5 out of 18 patients (27.8%) in the colchicine 0.005 mg/kg/day group (odds ratio = 3.1, 97.5% confidence interval 0.4-37.2, P = 0.22) and 1 out of 18 patients (5.6%) in the colchicine 0.01 mg/kg/day group (odds ratio = 0.5, 97.5% confidence interval 0.01-10.2, P = 0.55). During treatment, a slower Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised decline was detected in patients receiving colchicine 0.005 mg/kg/day (mean difference = 0.53, 97.5% confidence interval 0.07-0.99, P = 0.011). Eight patients experienced adverse events in placebo arm (44.4%), three in colchicine 0.005 mg/kg/day (16.7%) and seven in colchicine 0.01 mg/kg/day arm (35.9%). The differences in adverse events were not statistically significant. In conclusion, colchicine treatment was safe for amyotrophic lateral sclerosis patients. Further studies are required to better understand mechanisms of action and clinical effects of colchicine in this condition.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
| | - Riccardo Cuoghi Costantini
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena 41121, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20122, Italy
- Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan 20122, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Valentina Bonetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare diseases, 'V. Buzzi' Children's Hospital, Milan 20154, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
- Neurosciences PhD Program, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
| | - Roberto Vicini
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena 41121, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, ALS Center, Università degli Studi della Campania L. Vanvitelli, Naples 80138, Italy
| | - Carla Passaniti
- Department of Advanced Medical and Surgical Sciences, ALS Center, Università degli Studi della Campania L. Vanvitelli, Naples 80138, Italy
| | - Nicola Ticozzi
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan 20122, Italy
| | - Alberto Doretti
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Luca Diamanti
- Neuroncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Giuseppe Fiamingo
- Neuroncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Amelia Conte
- Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Adult NEMO Clinical Center, Unit of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Eustachio D'Errico
- Department of Basic Medical Sciences, ALS Center, Neurosciences and Sense Organs, University of Bari, Bari 70124, Italy
| | - Eveljn Scarian
- Cellular Model and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Laura Pasetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Francesco Antoniani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Veronica Galli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20122, Italy
- Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan 20122, Italy
| | - Roberto D'Amico
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena 41121, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena 41124, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20122, Italy
- Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan 20122, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
| |
Collapse
|
39
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Ceron-Codorniu M, Torres P, Fernàndez-Bernal A, Rico-Rios S, Serrano JC, Miralles MP, Beltran M, Garcera A, Soler RM, Pamplona R, Portero-Otín M. TDP-43 dysfunction leads to bioenergetic failure and lipid metabolic rewiring in human cells. Redox Biol 2024; 75:103301. [PMID: 39116527 PMCID: PMC11362800 DOI: 10.1016/j.redox.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024] Open
Abstract
The dysfunction of TAR DNA-binding protein 43 (TDP-43) is implicated in various neurodegenerative diseases, though the specific contributions of its toxic gain-of-function versus loss-of-function effects remain unclear. This study investigates the impact of TARDBP loss on cellular metabolism and viability using human-induced pluripotent stem cell-derived motor neurons and HeLa cells. TARDBP silencing led to reduced metabolic activity and cell growth, accompanied by neurite degeneration and decreased oxygen consumption rates in both cell types. Notably, TARDBP depletion induced a metabolic shift, impairing ATP production, increasing metabolic inflexibility, and elevating free radical production, indicating a critical role for TDP-43 in maintaining cellular bioenergetics. Furthermore, TARDBP loss triggered non-apoptotic cell death, increased ACSL4 expression, and reprogrammed lipid metabolism towards lipid droplet accumulation, while paradoxically enhancing resilience to ferroptosis inducers. Overall, our findings highlight those essential cellular traits such as ATP production, metabolic activity, oxygen consumption, and cell survival are highly dependent on TARDBP function.
Collapse
Affiliation(s)
- Miriam Ceron-Codorniu
- Metabolic Pathophysiology Research Group, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Pascual Torres
- Metabolic Pathophysiology Research Group, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Metabolic Pathophysiology Research Group, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Santiago Rico-Rios
- Metabolic Pathophysiology Research Group, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - José Ce Serrano
- Metabolic Pathophysiology Research Group, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Maria P Miralles
- Neuronal Signaling Unit, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Maria Beltran
- Neuronal Signaling Unit, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Ana Garcera
- Neuronal Signaling Unit, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Rosa M Soler
- Neuronal Signaling Unit, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain
| | - Manuel Portero-Otín
- Metabolic Pathophysiology Research Group, Universitat de Lleida-IRBLleida, 25198, Lleida, Spain.
| |
Collapse
|
41
|
Alirzayeva H, Loureiro R, Koyuncu S, Hommen F, Nabawi Y, Zhang WH, Dao TTP, Wehrmann M, Lee HJ, Vilchez D. ALS-FUS mutations cause abnormal PARylation and histone H1.2 interaction, leading to pathological changes. Cell Rep 2024; 43:114626. [PMID: 39167487 DOI: 10.1016/j.celrep.2024.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The majority of severe early-onset and juvenile cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the FUS gene, resulting in rapid disease progression. Mutant FUS accumulates within stress granules (SGs), thereby affecting the dynamics of these ribonucleoprotein complexes. Here, we define the interactome of the severe mutant FUSP525L variant in human induced pluripotent stem cell (iPSC)-derived motor neurons. We find increased interaction of FUSP525L with the PARP1 enzyme, promoting poly-ADP-ribosylation (PARylation) and binding of FUS to histone H1.2. Inhibiting PARylation or reducing H1.2 levels alleviates mutant FUS aggregation, SG alterations, and apoptosis in human motor neurons. Conversely, elevated H1.2 levels exacerbate FUS-ALS phenotypes, driven by the internally disordered terminal domains of H1.2. In C. elegans models, knockdown of H1.2 and PARP1 orthologs also decreases FUSP525L aggregation and neurodegeneration, whereas H1.2 overexpression worsens ALS-related changes. Our findings indicate a link between PARylation, H1.2, and FUS with potential therapeutic implications.
Collapse
Affiliation(s)
- Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Rute Loureiro
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Franziska Hommen
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yara Nabawi
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - William Hongyu Zhang
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Thien T P Dao
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Markus Wehrmann
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
42
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in a AAV-C9ORF72 (G 4C 2) 66 mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.607409. [PMID: 39253499 PMCID: PMC11383318 DOI: 10.1101/2024.08.27.607409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. Despite displaying key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis, the AAV-(G4C2)66 mouse model in this study exhibits negligible neuronal loss, no motor deficits, and functionally unimpaired TAR DNA-binding protein-43 (TDP-43). While our findings indicate and support that this is a robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease associated neurodegeneration, TDP-43 dysfunction, gliosis, and motor performance. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
- Emily G. Thompson
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - S. Can Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carrie Curcio
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Benjamin L. Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erica R. Kent
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas Philips
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Balaji G. Vijayakumar
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anna Zacco
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Weibo Zhou
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guhan Nagappan
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
43
|
Layalle S, Aimond F, Brugioti V, Guissart C, Raoul C, Soustelle L. The ALS-associated KIF5A P986L variant is not pathogenic for Drosophila motoneurons. Sci Rep 2024; 14:19540. [PMID: 39174694 PMCID: PMC11341546 DOI: 10.1038/s41598-024-70543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by the death of motoneurons. Several mutations in the KIF5A gene have been identified in patients with ALS. Some mutations affect the splicing sites of exon 27 leading to its deletion (Δ27 mutation). KIF5A Δ27 is aggregation-prone and pathogenic for motoneurons due to a toxic gain of function. Another mutation found to be enriched in ALS patients is a proline/leucine substitution at position 986 (P986L mutation). Bioinformatic analyses strongly suggest that this variant is benign. Our study aims to conduct functional studies in Drosophila to classify the KIF5A P986L variant. When expressed in motoneurons, KIF5A P986L does not modify the morphology of larval NMJ or the synaptic transmission. In addition, KIF5A P986L is uniformly distributed in axons and does not disturb mitochondria distribution. Locomotion at larval and adult stages is not affected by KIF5A P986L. Finally, both KIF5A WT and P986L expression in adult motoneurons extend median lifespan compared to control flies. Altogether, our data show that the KIF5A P986L variant is not pathogenic for motoneurons and may represent a hypomorphic allele, although it is not causative for ALS.
Collapse
Affiliation(s)
- Sophie Layalle
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France.
| | - Franck Aimond
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
| | - Véronique Brugioti
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
| | - Claire Guissart
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
- Service de Biochimie et Biologie Moléculaire, CHU Nîmes, Université Montpellier, Nîmes, France
| | - Cédric Raoul
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
- ALS Reference Center, CHU Montpellier, Université Montpellier, Montpellier, France
| | - Laurent Soustelle
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France.
| |
Collapse
|
44
|
Kumbier K, Roth M, Li Z, Lazzari-Dean J, Waters C, Hammerlindl S, Rinaldi C, Huang P, Korobeynikov VA, Phatnani H, Shneider N, Jacobson MP, Wu LF, Altschuler SJ. Identifying FUS amyotrophic lateral sclerosis disease signatures in patient dermal fibroblasts. Dev Cell 2024; 59:2134-2142.e6. [PMID: 38878774 DOI: 10.1016/j.devcel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/06/2023] [Accepted: 05/10/2024] [Indexed: 08/22/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, highly heterogeneous neurodegenerative disease, underscoring the importance of obtaining information to personalize clinical decisions quickly after diagnosis. Here, we investigated whether ALS-relevant signatures can be detected directly from biopsied patient fibroblasts. We profiled familial ALS (fALS) fibroblasts, representing a range of mutations in the fused in sarcoma (FUS) gene and ages of onset. To differentiate FUS fALS and healthy control fibroblasts, machine-learning classifiers were trained separately on high-content imaging and transcriptional profiles. "Molecular ALS phenotype" scores, derived from these classifiers, captured a spectrum from disease to health. Interestingly, these scores negatively correlated with age of onset, identified several pre-symptomatic individuals and sporadic ALS (sALS) patients with FUS-like fibroblasts, and quantified "movement" of FUS fALS and "FUS-like" sALS toward health upon FUS ASO treatment. Taken together, these findings provide evidence that non-neuronal patient fibroblasts can be used for rapid, personalized assessment in ALS.
Collapse
Affiliation(s)
- Karl Kumbier
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maike Roth
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zizheng Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Julia Lazzari-Dean
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher Waters
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sabrina Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Capria Rinaldi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ping Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vladislav A Korobeynikov
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Project ALS Therapeutics Core, New York, NY 10032, USA
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Neil Shneider
- Project ALS Therapeutics Core, New York, NY 10032, USA; Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
45
|
Rosén C, Mitre B, Nellgård B, Axelsson M, Constantinescu R, Andersen PM, Dalla K, Blennow K, Nilsson G, Zetterberg H, Rosén H. High levels of neurofilament light and YKL-40 in cerebrospinal fluid are related to poor outcome in ALS. J Neurol Sci 2024; 463:123112. [PMID: 38972199 DOI: 10.1016/j.jns.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurological disease without effective treatment. No pathognomonic test can diagnose ALS in sporadic cases. Routine investigation in suspected cases includes neurological examination, imaging of the brain and spine and electromyography supported by blood and cerebrospinal fluid (CSF) analyses. The ALS diagnosis is made by clinical judgement and results from examinations. We aimed to study if the CSF biomarkers neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), YKL-40, soluble amyloid precursor protein (sAPP) α and β, and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) were associated with ALS diagnosis and could predict disease progression. Eighty-one patients with suspected ALS were included after referral to the neurological clinic at Sahlgrenska University Hospital. Fifty-nine patients were diagnosed having ALS, while 22 patients were given alternative diagnoses and labeled ALS mimics. Finally, 25 age-matched neurologically intact individuals were used as controls. ALS patients had significantly higher CSF levels of NFL than controls and mimics. Levels of YKL-40 and GFAP were significantly higher in ALS patients compared with controls. No difference was found between study groups when comparing levels of sAPPα, sAPPβ and sTREM2. Further, elevated levels of NFL and YKL-40 were associated with an increased hazard of death and the annual decline in ALSFRS-R. We also found that patients with elevated levels of both NFL and YKL-40 had a particularly poor prognosis. The results demonstrate the usefulness of CSF biomarkers in the diagnosis and prognostication of ALS.
Collapse
Affiliation(s)
- Christoffer Rosén
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Clinical Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Bernardo Mitre
- Department of Neurology, Institute of Clinical Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Nellgård
- Department of Anesthesiology and intensive care, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Neurology, Institute of Clinical Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Radu Constantinescu
- Department of Neurology, Institute of Clinical Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Keti Dalla
- Department of Anesthesiology and intensive care, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Clinical Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Gustav Nilsson
- Department of Surgery, Kungalv Hospital, Kungalv, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Clinical Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hans Rosén
- Department of Neurology, Institute of Clinical Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
46
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
47
|
Zhang X, Sun Y, Zhang X, Shen D, Shu S, Yang X, Liu M, Cui L, Liu Q, Zhang X. Genotype-phenotype association and functional analysis of hnRNPA1 mutations in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:600-607. [PMID: 38717009 DOI: 10.1080/21678421.2024.2346502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Pathogenic variants in hnRNPA1 have been reported in amyotrophic lateral sclerosis (ALS) patients. However, studies on hnRNPA1 mutant spectrum and pathogenicity of variants were rare. METHODS We performed whole exome sequencing of ALS-associated genes and subsequent verification of rare variants in hnRNPA1 in our ALS patients. The hnRNPA1 mutations reported in literature were reviewed and combined with our results to determine the genotype-phenotype relationship. Functional analysis of the novel variant p.G195A was performed in vitro by transfection of mutant hnRNPA1 into 293T cell. RESULTS Among 207 ALS patients recruited, 3 rare hnRNPA1 variants were identified (mutant frequency 1.45%), including two recurrent mutations (p.P340S and p.G283R), and a novel rare variant p.G195A. In combination with previous reports, there are 27 ALS patients with 15 hnRNPA1 mutations identified. Disease onset age was 47.90 ± 1.52 years with predominant limb onset. The p.P340S mutation caused flail arm syndrome (FAS) in two independent families with extended life expectancy. The newly identified p.G195A mutation, lying at the start of the PrLD ("prion-like" domain)/LCD (low-complexity domain), causes local structural changes in 3D protein prediction. Upon sodium arsenite exposure, mutant hnRNPA1 retained in the nucleus but deficit of cytoplasmic G3BP1-positive stress granule clearance was observed. This is different from the p.P340S mutation which caused both cytoplasmic translocation and stress granule formation. No cytoplasmic TDP-43 translocation was observed. CONCLUSION Mutations in hnRNPA1 are overall minor in ALS patients. The p.P340S mutation is associated with manifestation of FAS. Mutations in LCD of hnRNPA1 cause stress granule misprocessing.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
- Mckusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, PUMC & CAMS, Beijing, China
| | - Ye Sun
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Xinzhe Zhang
- Mckusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, PUMC & CAMS, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Shi Shu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Science (CAMS), Beijing, China and
| | - Xue Zhang
- Mckusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, PUMC & CAMS, Beijing, China
| |
Collapse
|
48
|
Wolff A, Demleitner AF, Feneberg E, Lingor P. [Smell the smoke before one sees the fire-The oligosymptomatic prodromal phase of neurodegenerative diseases]. DER NERVENARZT 2024; 95:689-696. [PMID: 38630299 DOI: 10.1007/s00115-024-01654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND With the increasing development of disease-modifying causative treatment, the importance of early diagnosis and detection of asymptomatic or oligosymptomatic early stages of neurodegenerative diseases is increasing. OBJECTIVE Presentation of early stages of neurodegenerative diseases, diagnostic procedures for the early detection and possible treatment consequences. MATERIAL AND METHODS Selective literature search, discussion of basic research and expert recommendations. RESULTS Many neurodegenerative diseases have a prodromal phase preceding the manifest disease that can be diagnosed with current criteria. In this prodromal phase, those affected are often oligosymptomatic but in some cases can already be identified using biomarkers. These developments are already taken into account in diagnostic criteria for some of these prodromal phases. The prodromal phase, in turn, is preceded by an asymptomatic phase which, however, already shows molecular changes and can be identified by biomarkers in some diseases. The early identification and stratification of patients is particularly important when planning studies for disease-modifying treatment, and biomarkers are already being used in clinical trials for this purpose. DISCUSSION Biomarker-based identification of individuals in the prodromal phase of neurodegenerative diseases is already possible for some entities. People who show the first signs of a neurodegenerative disease can be referred to centers for clinical trials and observational studies.
Collapse
Affiliation(s)
| | | | | | - Paul Lingor
- Klinik und Poliklinik für Neurologie, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Deutschland.
- Munich Cluster for Systems Neurology (SyNergy), München, Deutschland.
| |
Collapse
|
49
|
He L, Zhou Q, Xiu C, Shao Y, Shen D, Meng H, Le W, Chen S. Circulating proteomic biomarkers for diagnosing sporadic amyotrophic lateral sclerosis: a cross-sectional study. Neural Regen Res 2024; 19:1842-1848. [PMID: 38103252 PMCID: PMC10960292 DOI: 10.4103/1673-5374.389357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 08/29/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00039/figure1/v/2023-12-16T180322Z/r/image-tiff Biomarkers are required for the early detection, prognosis prediction, and monitoring of amyotrophic lateral sclerosis, a progressive disease. Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarkers. In this study, we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral sclerosis compared with five healthy controls. Substantial upregulation of serum proteins related to multiple functional clusters was observed in patients with sporadic amyotrophic lateral sclerosis. Potential biomarkers were selected based on functionality and expression specificity. To validate the proteomics profiles, blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay. Eight substantially upregulated serum proteins in patients with sporadic amyotrophic lateral sclerosis were selected, of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls (area under the curve [AUC] = 0.713, P < 0.0001). To further enhance diagnostic accuracy, a multi-protein combined discriminant algorithm was developed incorporating five proteins (hemoglobin beta, cathelicidin-related antimicrobial peptide, talin-1, zyxin, and translationally-controlled tumor protein). The algorithm achieved an AUC of 0.811 and a P-value of < 0.0001, resulting in 79% sensitivity and 71% specificity for the diagnosis of sporadic amyotrophic lateral sclerosis. Subsequently, the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls, as well as patients with different disease severities, was examined. A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls (AUC = 0.766, P < 0.0001). Moreover, the expression of three proteins (FK506 binding protein 1A, cathelicidin-related antimicrobial peptide, and hemoglobin beta-1) was found to increase with disease progression. The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in combination with current clinical-based parameters.
Collapse
Affiliation(s)
- Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyang Xiu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yaping Shao
- Center for Translational Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dingding Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huanyu Meng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, Sichuan Province, China
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Xinrui Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
50
|
Sacharczuk M, Mickael ME, Kubick N, Kamińska A, Horbańczuk JO, Atanasov AG, Religa P, Ławiński M. The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS. Curr Issues Mol Biol 2024; 46:7846-7861. [PMID: 39194682 DOI: 10.3390/cimb46080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Agnieszka Kamińska
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Piotr Religa
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|