1
|
Schaen‐Heacock NE, Rowe LM, Ciucci MR, Russell JA. Effects of chemoradiation and tongue exercise on swallow biomechanics and bolus kinematics. Head Neck 2025; 47:355-370. [PMID: 39150237 PMCID: PMC11635752 DOI: 10.1002/hed.27899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Common treatments for head and neck cancer (radiation and chemotherapy) can lead to dysphagia; tongue exercise is a common intervention. This study aimed to assess swallow biomechanics and bolus kinematics using a well-established rat model of radiation or chemoradiation treatment to the tongue base, with or without tongue exercise intervention. METHODS Pre- and post-treatment videofluoroscopy was conducted on 32 male Sprague-Dawley rats treated with radiation/chemoradiation and exercise/no exercise. Rats in the exercise groups completed a progressive resistance tongue training paradigm. Swallow biomechanics, bolus kinematics, jaw opening, and post-swallow respiration were assessed. RESULTS Both treatments impacted outcome measures; the addition of exercise intervention showed benefit for some measures, particularly in rats treated with radiation, vs. chemoradiation. CONCLUSIONS Radiation and chemoradiation can significantly affect aspects of deglutition; combined treatment may result in worse outcomes. Tongue exercise intervention can mitigate deficits; more intensive intervention may be warranted in proportion to combined treatment.
Collapse
Affiliation(s)
- Nicole E. Schaen‐Heacock
- Department of Communication Sciences and DisordersUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Otolaryngology, Department of SurgeryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Linda M. Rowe
- Department of Communication Sciences and DisordersUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Otolaryngology, Department of SurgeryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michelle R. Ciucci
- Department of Communication Sciences and DisordersUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Otolaryngology, Department of SurgeryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Neuroscience Training ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John A. Russell
- Division of Otolaryngology, Department of SurgeryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
2
|
Hansen T, Staal SM, Rauhe Harreby ND, Andersen U, Holm MT, von Bülow C, Wæhrens EE. Task-Based Eating and Drinking Interventions in Animal Models: A Narrative Review of Functional Improvements and Neuromuscular Adaptations in Age-Related Dysphagia. Geriatrics (Basel) 2024; 9:138. [PMID: 39449375 PMCID: PMC11503346 DOI: 10.3390/geriatrics9060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Age-related dysphagia involves sarcopenia and nervous system changes affecting ingestion. The ACT-ING program, a novel task-based occupational therapy intervention, has been developed to improve strength, endurance, and ingestive skills using real-world eating and drinking tasks for older adults with age-related dysphagia. This narrative review evaluates the outcomes and neuromuscular adaptations of task-based eating and drinking interventions in aging animal models to inform potential refinements of the ACT-ING program and interpret results from an ongoing proof-of-concept study. METHODS Publications were obtained from PubMed, SCOPUS, CINAHL, and EMBASE, and selected following the PRISMA guideline. Thirteen randomized trials investigated a task-based fluid-licking intervention in rats, combining strength, endurance, and skill training. RESULTS Results suggested benefits in improving muscle strength, endurance, and swallowing skills in terms of quantity and speed. Although neuromuscular adaptations were less conclusive, the intervention appeared to induce cortical plasticity and increase fatigue-resistant muscle fibers in the involved muscles. CONCLUSIONS While these findings are promising, methodological concerns and potential biases were identified. Therefore, further research is necessary to refine the ACT-ING program, including both clinical studies in humans and preclinical studies in aging animal models that clearly define interventions targeting all aspects of ingestion-related skills within a motor learning and strength training framework.
Collapse
Affiliation(s)
- Tina Hansen
- Physical Medicine & Rehabilitation Research—Copenhagen (PMR-C), Department of Occupational Therapy and Physiotherapy, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark;
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
| | - Sabina Mette Staal
- Physical Medicine & Rehabilitation Research—Copenhagen (PMR-C), Department of Occupational Therapy and Physiotherapy, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark;
| | - Nete Deela Rauhe Harreby
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Selma Lagerloefsvej 249, 9260 Aalborg, Denmark;
| | - Ulla Andersen
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
- Occupational Science, User Perspectives and Community-Based Research, Institute of Public Health, University of Southern Denmark, Campusvej 55, 5030 Odense C, Denmark
| | - Masumi Takeuchi Holm
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
| | - Cecillie von Bülow
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
| | - Eva Ejlersen Wæhrens
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
- Occupational Science, User Perspectives and Community-Based Research, Institute of Public Health, University of Southern Denmark, Campusvej 55, 5030 Odense C, Denmark
| |
Collapse
|
3
|
Izumi M, Sonoki K, Akifusa S. Tongue brushing enhances the myoelectric activity of the suprahyoid muscles in older adults: a six-week randomized controlled trial. Sci Rep 2024; 14:19746. [PMID: 39187550 PMCID: PMC11347627 DOI: 10.1038/s41598-024-70306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Tongue brushing improves respiratory function in older adults. Considering connection between the respiratory-related and suprahyoid muscles, this study aimed to investigate whether tongue-brushing interventions can improve myoelectric activity during respiration. A six-week randomized controlled trial was conducted in Kitakyushu, Japan, with 50 participants aged ≥ 65 years. The participants were allocated to the intervention (tongue brushing with routine oral hygiene) or control (routine oral hygiene alone) groups. Surface electromyography (sEMG) was used to assess the myoelectric activity of the suprahyoid muscles during inhalation, exhalation, and forced vital capacity (FVC). A survey was conducted at baseline and the end of the follow-up period. Thirty-six participants were recruited for the analysis. The root mean squares (RMS) of sEMG during exhalation increased significantly at the end of the follow-up period compared with that at baseline in the intervention group [48.7 (18.0-177.5) vs. 64.9 (21.6-163.0), p = 0.001], but not in the control group. The generalized linear model revealed that the ratio of change in FVC was correlated with the change in the RMS of sEMG of the suprahyoid muscles during exhalation after adjusting for potential confounders. Tongue brushing enhances the myoelectric activity of the suprahyoid muscle.
Collapse
Affiliation(s)
- Maya Izumi
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Kitakyushu, Japan
| | - Kazuo Sonoki
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Kitakyushu, Japan
| | - Sumio Akifusa
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Kitakyushu, Japan.
| |
Collapse
|
4
|
Cullins MJ, Connor NP. Differential impact of unilateral stroke on the bihemispheric motor cortex representation of the jaw and tongue muscles in young and aged rats. Front Neurol 2024; 15:1332916. [PMID: 38572491 PMCID: PMC10987714 DOI: 10.3389/fneur.2024.1332916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Dysphagia commonly occurs after stroke, yet the mechanisms of post-stroke corticobulbar plasticity are not well understood. While cortical activity associated with swallowing actions is bihemispheric, prior research has suggested that plasticity of the intact cortex may drive recovery of swallowing after unilateral stroke. Age may be an important factor as it is an independent predictor of dysphagia after stroke and neuroplasticity may be reduced with age. Based on previous clinical studies, we hypothesized that cranial muscle activating volumes may be expanded in the intact hemisphere and would contribute to swallowing function. We also hypothesized that older age would be associated with limited map expansion and reduced function. As such, our goal was to determine the impact of stroke and age on corticobulbar plasticity by examining the jaw and tongue muscle activating volumes within the bilateral sensorimotor cortices. Methods Using the middle cerebral artery occlusion rat stroke model, intracortical microstimulation (ICMS) was used to map regions of sensorimotor cortex that activate tongue and jaw muscles in both hemispheres. Young adult (7 months) and aged (30 months) male F344 × BN rats underwent a stroke or sham-control surgery, followed by ICMS mapping 8 weeks later. Videofluoroscopy was used to assess oral-motor functions. Results Increased activating volume of the sensorimotor cortex within the intact hemisphere was found only for jaw muscles, whereas significant stroke-related differences in tongue activating cortical volume were limited to the infarcted hemisphere. These stroke-related differences were correlated with infarct size, such that larger infarcts were associated with increased jaw representation in the intact hemisphere and decreased tongue representation in the infarcted hemisphere. We found that both age and stroke were independently associated with swallowing differences, weight loss, and increased corticomotor thresholds. Laterality of tongue and jaw representations in the sham-control group revealed variability between individuals and between muscles within individuals. Conclusion Our findings suggest the role of the intact and infarcted hemispheres in the recovery of oral motor function may differ between the tongue and jaw muscles, which may have important implications for rehabilitation, especially hemisphere-specific neuromodulatory approaches. This study addressed the natural course of recovery after stroke; future work should expand to focus on rehabilitation.
Collapse
Affiliation(s)
- Miranda J. Cullins
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P. Connor
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Li WY, Jin H, Zou Y, Huang H, Wei Z, Kang J, Xue Y, Wang W. The Different Effect of Tongue Motor Task Training (TTT) and Strength Training (ST) on the Modulation of Genioglossus Corticomotor Excitability and upper airway stability in Rats. Sleep 2022; 45:6648555. [PMID: 35867628 DOI: 10.1093/sleep/zsac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES the mechanical efficiency of upper airway (UA) muscles are pivotal in maintaining UA stability. We aimed to investigate if different tongue training approaches could differently induce signs of neuroplastic in the corticomotor pathways and upper airway stability changes. METHODS 36 Sprague-Dawley rats were trained daily for eight weeks to lick an isotonic force-sensing disc at targeting forces using 30-50% of maximal achieved lick force (MALF) for tongue task training (TTT) or targeting force set above 50%, 60% and 70% of MALF progressively for tongue strength training (TST). Corticomotor excitability was dynamically assessed by GG response to transcortical magnetic stimulation (TMS) at different sessions. GG EMG activity, GG ultrastructure and myosin heavy chain (MHC), UA dynamics were assessed after eight weeks. RESULTS After 4 weeks, GG TMS latencies decreased in both tongue training groups when compared with the control group (p<0.05) and this excitability was more stable in TTT group. After 8 weeks, both GG TMS response and EMG activity revealed increased excitability in TTT and TST groups. The apoptotic pathological morphology changes of GG ultrastructure were observed in TST group, but not TTT. Percentage of GG MHC type I fibers in TST group was higher than the control and TTT groups (p<0.05). The UA Pcrit decreased significantly in TTT group (p<0.05) and tend to decrease in TST group (p=0.09). CONCLUSION TTT could improve the UA stability and induce the neuroplastic changes more efficiently without training-induced muscle injury, while TST revealed a fatigue-resistance change in GG.
Collapse
Affiliation(s)
- Wen-Yang Li
- Respiratory and critical care department, the First Hospital of China Medical University, Shenyang, China
| | - Hongyu Jin
- Respiratory and critical care department, the First Hospital of China Medical University, Shenyang, China
| | - Ying Zou
- Respiratory and critical care department, the First Hospital of China Medical University, Shenyang, China
| | - Hong Huang
- Respiratory and critical care department, the First Hospital of China Medical University, Shenyang, China
| | - Zhijing Wei
- Respiratory and critical care department, the First Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Respiratory and critical care department, the First Hospital of China Medical University, Shenyang, China
| | - Yixue Xue
- Neurobiology department, College of Life Science, China Medical University, Shenyang, China
| | - Wei Wang
- Respiratory and critical care department, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Murphy ER, Thompson R, Osman KL, Haxton C, Brothers M, Lee L, Warncke K, Smith CL, Keilholz AN, Hamad A, Golzy M, Bunyak F, Ma L, Nichols NL, Lever TE. A Strength Endurance Exercise Paradigm Mitigates Deficits in Hypoglossal-Tongue Axis Function, Strength, and Structure in a Rodent Model of Hypoglossal Motor Neuron Degeneration. Front Neurosci 2022; 16:869592. [PMID: 35844238 PMCID: PMC9279620 DOI: 10.3389/fnins.2022.869592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
The tongue plays a crucial role in the swallowing process, and impairment can lead to dysphagia, particularly in motor neuron diseases (MNDs) resulting in hypoglossal-tongue axis degeneration (e.g., amyotrophic lateral sclerosis and progressive bulbar palsy). This study utilized our previously established inducible rodent model of dysphagia due to targeted degeneration of the hypoglossal-tongue axis. This model was created by injecting cholera toxin B conjugated to saporin (CTB-SAP) into the genioglossus muscle of the tongue base for retrograde transport to the hypoglossal (XII) nucleus via the hypoglossal nerve, which provides the sole motor control of the tongue. Our goal was to investigate the effect of high-repetition/low-resistance tongue exercise on tongue function, strength, and structure in four groups of male rats: (1) control + sham exercise (n = 13); (2) control + exercise (n = 10); (3) CTB-SAP + sham exercise (n = 13); and (4) CTB-SAP + exercise (n = 12). For each group, a custom spout with adjustable lick force requirement for fluid access was placed in the home cage overnight on days 4 and 6 post-tongue injection. For the two sham exercise groups, the lick force requirement was negligible. For the two exercise groups, the lick force requirement was set to ∼40% greater than the maximum voluntary lick force for individual rats. Following exercise exposure, we evaluated the effect on hypoglossal-tongue axis function (via videofluoroscopy), strength (via force-lickometer), and structure [via Magnetic Resonance Imaging (MRI) of the brainstem and tongue in a subset of rats]. Results showed that sham-exercised CTB-SAP rats had significant deficits in lick rate, swallow timing, and lick force. In exercised CTB-SAP rats, lick rate and lick force were preserved; however, swallow timing deficits persisted. MRI revealed corresponding degenerative changes in the hypoglossal-tongue axis that were mitigated by tongue exercise. These collective findings suggest that high-repetition/low-resistance tongue exercise in our model is a safe and effective treatment to prevent/diminish signs of hypoglossal-tongue axis degeneration. The next step is to leverage our rat model to optimize exercise dosing parameters and investigate corresponding treatment mechanisms of action for future translation to MND clinical trials.
Collapse
Affiliation(s)
- Erika R. Murphy
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
| | - Rebecca Thompson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Kate L. Osman
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Chandler Haxton
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Margaret Brothers
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
| | - Li Lee
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Kristen Warncke
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Catherine L. Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Amy N. Keilholz
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Ali Hamad
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Mojgan Golzy
- Biostatistics Unit, Department of Family and Community Medicine, University of Missouri, Columbia, MO, United States
| | - Filiz Bunyak
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Lixin Ma
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Nicole L. Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- *Correspondence: Nicole L. Nichols,
| | - Teresa E. Lever
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Teresa E. Lever,
| |
Collapse
|
7
|
Krekeler BN, Hou J, Nair VA, Vivek P, Rusche N, Rogus-Pulia N, Robbins J. Alterations in white matter microstructural properties after lingual strength exercise in patients with dysphagia. Neuroreport 2022; 33:392-398. [PMID: 35594433 PMCID: PMC9141426 DOI: 10.1097/wnr.0000000000001796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Central nervous system effects of lingual strengthening exercise to treat dysphagia remain largely unknown. This pilot study measured changes in microstructural white matter to capture alterations in neural signal processing following lingual strengthening exercise. METHODS Diffusion-weighted images were acquired from seven participants with dysphagia of varying etiologies, before and after lingual strengthening exercise (20 reps, 3×/day, 3 days/week, 8 weeks), using a 10-min diffusion sequence (9 b0, 56 directions with b1000) on GE750 3T scanner. Tract-Based Spatial Statistics evaluated voxel-based group differences for fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity and local diffusion homogeneity (LDH). Paired t-tests evaluated treatment differences on each metric (P < 0.05). RESULTS After lingual strengthening exercise, lingual pressure generation increased (avg increase = 46.1 hPa; nonsignificant P = 0.52) with these changes in imaging metrics: (1) decrease in fractional anisotropy, forceps minor; (2) increase in mean diffusivity, right inferior fronto-occipital fasciculus (IFOF); (3) decrease in mean diffusivity, left uncinate fasciculus; (4) decrease in axial diffusivity, both left IFOF and left uncinate fasciculus; (5) increase in LDH, right anterior thalamic radiation and (6) decrease in LDH, temporal portion of right superior longitudinal fasciculus. There was a positive correlation between diffusion tensor imaging metrics and change in lingual pressure generation in left IFOF and the temporal portion of right superior longitudinal fasciculus. CONCLUSIONS These findings suggest that lingual strengthening exercise can induce changes in white matter structural and functional properties in a small group of patients with dysphagia of heterogeneous etiologies. These procedures should be repeated with a larger group of patients to improve interpretation of overall lingual strengthening exercise effects on cortical structure and function.
Collapse
Affiliation(s)
- Brittany N Krekeler
- Department of Otolaryngology – Head and Neck Surgery, University of Cincinnati
- Department of Surgery – Otolaryngology, University of Wisconsin-Madison
- Department of Medicine, University of Wisconsin-Madison
| | - Jiancheng Hou
- Center for Cross-Straits Cultural Development, Fujian Normal University
- Department of Radiology, University of Wisconsin-Madison
| | - Veena A. Nair
- Department of Radiology, University of Wisconsin-Madison
| | | | - Nicole Rusche
- Department of Medicine, University of Wisconsin-Madison
| | - Nicole Rogus-Pulia
- Department of Surgery – Otolaryngology, University of Wisconsin-Madison
- Department of Medical Physics, University of Wisconsin-Madison
- Department of Medicine, University of Wisconsin-Madison
- Geriatric Research Education and Clinical Center, William S Middleton Memorial Veteran’s Hospital
| | | |
Collapse
|
8
|
Assays of Tongue Force, Timing, and Dynamics in Rat and Mouse Models. Brain Res Bull 2022; 185:49-55. [PMID: 35469932 PMCID: PMC10187612 DOI: 10.1016/j.brainresbull.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022]
Abstract
Communication and swallowing are highly complex sensorimotor events that are tightly linked to respiration and vital to health and well-being. The tongue is a complex organ, often described as a muscular hydrostat, that is crucial for maintaining airway patency, preparing and safely transporting food/liquid, and rapidly changing position and shape for speech. As with any complex behavior, tongue function can be compromised with aging, diseases/conditions, trauma, or as a pharmacologic side effect. As such, modeling lingual function and dysfunction for basic and translational research is paramount; understanding how the nervous system controls tongue function for complex behavior is foundational to this work. Non-invasive access to tongue tissues and kinematics during awake behavior has been historically challenging, creating a critical need to measure tongue function in model systems. Germane to this field of study are the instruments and assays of licking/lapping and drinking, including tongue force and timing measures, many of which were designed or modified by Dr. Stephen C. Fowler. The focus of this paper is to review some of the important contributions of measuring tongue behaviors in awake rats and mice and how these have been modified by other researchers to advance translational science.
Collapse
|
9
|
Huang H, Li W, Jin H, Zhang L, Wei Z, Wang W. Tongue Strength Training Increases Daytime Upper Airway Stability in Rats. Nat Sci Sleep 2021; 13:1653-1661. [PMID: 34588832 PMCID: PMC8473720 DOI: 10.2147/nss.s328214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Tongue strength training (TST) has been shown to decrease the apnea-hypopnea index in some patients with obstructive sleep apnea (OSA). However, whether TST modulates the central regulation of genioglossus and influences the stability of the upper airway remains unknown. The purpose of this study was to dynamically assess the effect of TST on the upper airway. METHODS Sixteen adult male Sprague-Dawley rats were studied to explore the mechanism of TST improving the upper airway function. The rats were randomly assigned to the normal control (NC) and TST groups. The TST group underwent 8-week progressive resistance tongue exercise training. Transcranial magnetic stimulation (TMS) responses and EMG activities were consistently recorded for 2 h on days 0, 14, 28, and 56 of the experiments in both groups. Theoretical critical pressure (Pcrit) value was measured on days 0, 14, 28, and 56. RESULTS The TST group showed shorter TMS latency and higher genioglossus EMG activity, which lasted from 5 min to 80 min after training on day 56 of training, than the NC group. The TST group showed significantly lower theoretical Pcrit values on days 28 and 56 of training than the NC group (-4.07±0.92 vs -3.12±0.77 cmH2O, P< 0.05, -4.66±0.74 vs -3.07±0.38 cmH2O, P< 0.01). CONCLUSION This study revealed that an 8-week TST could gradually and transiently increase corticomotor excitability of genioglossus, elevate the genioglossus EMG activity, and ultimately enhance the stability of the upper airway during daytime. Moreover, improved neuromuscular excitability occurred prior to the enhanced upper airway stability. These findings provide a theoretical foundation for TST as a promising treatment for OSA patients.
Collapse
Affiliation(s)
- Hong Huang
- Institute of Respiratory and Critical Care, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wenyang Li
- Institute of Respiratory and Critical Care, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hongyu Jin
- Institute of Respiratory and Critical Care, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lei Zhang
- Institute of Respiratory and Critical Care, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhijing Wei
- Institute of Respiratory and Critical Care, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Wang
- Institute of Respiratory and Critical Care, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|