1
|
Gardetto A, Müller-Putz GR, Eberlin KR, Bassetto F, Atkins DJ, Turri M, Peternell G, Neuper O, Ernst J. Restoration of Genuine Sensation and Proprioception of Individual Fingers Following Transradial Amputation with Targeted Sensory Reinnervation as a Mechanoneural Interface. J Clin Med 2025; 14:417. [PMID: 39860422 PMCID: PMC11765609 DOI: 10.3390/jcm14020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability. Various invasive and non-invasive sensory substitution strategies for providing feedback from prostheses have been unsuccessful when translated to clinical practice, since they fail to match the feeling to genuine sensation of the somatosensory cortex. Methods: Herein, we describe a novel surgical technique for upper-limb-targeted sensory reinnervation (ulTSR) and report how single digital nerves selectively reinnervate the forearm skin and restore the spatial sensory capacity of single digits of the amputated hand in a case series of seven patients. We explore the interplay of the redirected residual digital nerves and the interpretation of sensory perception after reinnervation of the forearm skin in the somatosensory cortex by evaluating sensory nerve action potentials (SNAPs), somatosensory evoked potentials (SEPs), and amputation-associated pain qualities. Results: Digital nerves were rerouted and reliably reinnervated the forearm skin after hand amputation, leading to somatotopy and limb maps of the thumb and four individual fingers. SNAPs were obtained from the donor digital nerves after stimulating the recipient sensory nerves of the forearm. Matching SEPs were obtained after electrocutaneous stimulation of the reinnervated skin areas of the forearm where the thumb, index, and little fingers are perceived. Pain incidence was significantly reduced or even fully resolved. Conclusions: We propose that ulTSR can lead to higher acceptance of prosthetic hands and substantially reduce the incidence of phantom limb and neuroma pain. In addition, the spatial restoration of lost-hand sensing and the somatotopic reinnervation of the forearm skin may serve as a machine interface, allowing for genuine sensation and embodiment of the prosthetic hand without the need for complex neural coding adjustments.
Collapse
Affiliation(s)
- Alexander Gardetto
- Division of Plastic, Aesthetic and Reconstructive Surgery with Hand Surgery, Brixsana Private Clinic, Julius Durst 28, 39042 Bressanone, Italy
- Clinic of Plastic, Reconstructive and Aesthetic Surgery, Padova University Hospital, Via Nicolo Giustiniani 2, 35128 Padova, Italy;
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Graz University of Technology and BiotechMed Graz, Stremayrgasse 16/4, 8010 Graz, Austria;
| | - Kyle R. Eberlin
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA;
| | - Franco Bassetto
- Clinic of Plastic, Reconstructive and Aesthetic Surgery, Padova University Hospital, Via Nicolo Giustiniani 2, 35128 Padova, Italy;
| | - Diane J. Atkins
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, 7200 Cambridge St Ste 10C, Houston, TX 77030, USA;
| | - Mara Turri
- Stroke Unit, Department of Neurology, Bolzano General Hospital, Lorenz-Böhler-Str. 5, 39100 Bolzano, Italy;
| | - Gerfried Peternell
- Rehabilitation Clinic Tobelbad, Austrian Workers’ Compensation Board (AUVA), Doktor-Georg-Neubauer-Str. 6, 8144 Tobelbad, Austria;
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200 Vienna, Austria;
| | - Ortrun Neuper
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200 Vienna, Austria;
| | - Jennifer Ernst
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| |
Collapse
|
2
|
Thomson CJ, Tully TN, Stone ES, Morrell CB, Scheme EJ, Warren DJ, Hutchinson DT, Clark GA, George JA. Enhancing neuroprosthesis calibration: the advantage of integrating prior training over exclusive use of new data. J Neural Eng 2024; 21:066020. [PMID: 39569866 PMCID: PMC11605518 DOI: 10.1088/1741-2552/ad94a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Objective.Neuroprostheses typically operate under supervised learning, in which a machine-learning algorithm is trained to correlate neural or myoelectric activity with an individual's motor intent. Due to the stochastic nature of neuromyoelectric signals, algorithm performance decays over time. This decay is accelerated when attempting to regress proportional control of multiple joints in parallel, compared with the more typical classification-based pattern recognition control. To overcome this degradation, neuroprostheses and commercial myoelectric prostheses are often recalibrated and retrained frequently so that only the most recent, up-to-date data influences the algorithm performance. Here, we introduce and validate an alternative training paradigm in which training data from past calibrations is aggregated and reused in future calibrations for regression control.Approach.Using a cohort of four transradial amputees implanted with intramuscular electromyographic recording leads, we demonstrate that aggregating prior datasets improves prosthetic regression-based control in offline analyses and an online human-in-the-loop task. In offline analyses, we compared the performance of a convolutional neural network (CNN) and a modified Kalman filter (MKF) to simultaneously regress the kinematics of an eight-degree-of-freedom prosthesis. Both algorithms were trained under the traditional paradigm using a single dataset, as well as under the new paradigm using aggregated datasets from the past five or ten trainings.Main results.Dataset aggregation reduced the root-mean-squared error (RMSE) of algorithm estimates for both the CNN and MKF, although the CNN saw a greater reduction in error. Further offline analyses revealed that dataset aggregation improved CNN robustness when reusing the same algorithm on subsequent test days, as indicated by a smaller increase in RMSE per day. Finally, data from an online virtual-target-touching task with one amputee showed significantly better real-time prosthetic control when using aggregated training data from just two prior datasets.Significance.Altogether, these results demonstrate that training data from past calibrations should not be discarded but, rather, should be reused in an aggregated training dataset such that the increased amount and diversity of data improve algorithm performance. More broadly, this work supports a paradigm shift for the field of neuroprostheses away from daily data recalibration for linear classification models and towards daily data aggregation for non-linear regression models.
Collapse
Affiliation(s)
- Caleb J Thomson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Troy N Tully
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Eric S Stone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Christian B Morrell
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Erik J Scheme
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - David J Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Douglas T Hutchinson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Gregory A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Jacob A George
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84112, United States of America
| |
Collapse
|
3
|
Graczyk E, Hutchison B, Valle G, Bjanes D, Gates D, Raspopovic S, Gaunt R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J Neurosci 2024; 44:e1237242024. [PMID: 39358021 PMCID: PMC11450537 DOI: 10.1523/jneurosci.1237-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Somatosensory neuroprostheses restore, replace, or enhance tactile and proprioceptive feedback for people with sensory impairments due to neurological disorders or injury. Somatosensory neuroprostheses typically couple sensor inputs from a wearable device, prosthesis, robotic device, or virtual reality system with electrical stimulation applied to the somatosensory nervous system via noninvasive or implanted interfaces. While prior research has mainly focused on technology development and proof-of-concept studies, recent acceleration of clinical studies in this area demonstrates the translational potential of somatosensory neuroprosthetic systems. In this review, we provide an overview of neurostimulation approaches currently undergoing human testing and summarize recent clinical findings on the perceptual, functional, and psychological impact of somatosensory neuroprostheses. We also cover current work toward the development of advanced stimulation paradigms to produce more natural and informative sensory feedback. Finally, we provide our perspective on the remaining challenges that need to be addressed prior to translation of somatosensory neuroprostheses.
Collapse
Affiliation(s)
- Emily Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Brianna Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg 41296, Sweden
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - David Bjanes
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125
| | - Deanna Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zurich, Zurich 8092, Switzerland
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
4
|
Zhang J, Chou CH, Hao M, Liang W, Zhang Z, Xie A, Patton JL, Pei W, Lan N. Somatotopically Evoked Tactile Sensation via Transcutaneous Electrical Nerve Stimulation Improves Prosthetic Sensorimotor Performance. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2815-2825. [PMID: 39074018 DOI: 10.1109/tnsre.2024.3435570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Sensory feedback provides critical interactive information for the effective use of hand prostheses. Non-invasive neural interfaces allow convenient access to the sensory system, but they communicate a limited amount of sensory information. This study examined a novel approach that leverages a direct and natural sensory afferent pathway, and enables an evoked tactile sensation (ETS) of multiple digits in the projected finger map (PFM) of participants with forearm amputation non-invasively. A bidirectional prosthetic interface was constructed by integrating the non-invasive ETS-based feedback system into a commercial prosthetic hand. The pressure information of five fingers was encoded linearly by the pulse width modulation range of the buzz sensation. We showed that simultaneous perception of multiple digits allowed participants with forearm amputation to identify object length and compliance by using information about contact patterns and force intensity. The ETS enhanced the grasp-and-transport performance of participants with and without prior experience of prosthetic use. The functional test of transport-and-identification further revealed improved execution in classifying object size and compliance using ETS-based feedback. Results demonstrated that the ETS is capable of communicating somatotopically compatible information to participants efficiently, and improves sensory discrimination and closed-loop prosthetic control. This non-invasive sensory interface may establish a viable way to restore sensory ability for prosthetic users who experience the phenomenon of PFM.
Collapse
|
5
|
Sagastegui Alva PG, Boesendorfer A, Aszmann OC, Ibáñez J, Farina D. Excitation of natural spinal reflex loops in the sensory-motor control of hand prostheses. Sci Robot 2024; 9:eadl0085. [PMID: 38809994 DOI: 10.1126/scirobotics.adl0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Sensory feedback for prosthesis control is typically based on encoding sensory information in specific types of sensory stimuli that the users interpret to adjust the control of the prosthesis. However, in physiological conditions, the afferent feedback received from peripheral nerves is not only processed consciously but also modulates spinal reflex loops that contribute to the neural information driving muscles. Spinal pathways are relevant for sensory-motor integration, but they are commonly not leveraged for prosthesis control. We propose an approach to improve sensory-motor integration for prosthesis control based on modulating the excitability of spinal circuits through the vibration of tendons in a closed loop with muscle activity. We measured muscle signals in healthy participants and amputees during different motor tasks, and we closed the loop by applying vibration on tendons connected to the muscles, which modulated the excitability of motor neurons. The control signals to the prosthesis were thus the combination of voluntary control and additional spinal reflex inputs induced by tendon vibration. Results showed that closed-loop tendon vibration was able to modulate the neural drive to the muscles. When closed-loop tendon vibration was used, participants could achieve similar or better control performance in interfaces using muscle activation than without stimulation. Stimulation could even improve prosthetic grasping in amputees. Overall, our results indicate that closed-loop tendon vibration can integrate spinal reflex pathways in the myocontrol system and open the possibility of incorporating natural feedback loops in prosthesis control.
Collapse
Affiliation(s)
| | - Anna Boesendorfer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jaime Ibáñez
- Department of Bioengineering, Imperial College London, London, UK
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
6
|
Mamidanna P, Gholinezhad S, Farina D, Dideriksen JL, Dosen S. Measuring and monitoring skill learning in closed-loop myoelectric hand prostheses using speed-accuracy tradeoffs. J Neural Eng 2024; 21:026008. [PMID: 38417146 DOI: 10.1088/1741-2552/ad2e1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.Closed-loop myoelectric prostheses, which combine supplementary sensory feedback and electromyography (EMG) based control, hold the potential to narrow the divide between natural and bionic hands. The use of these devices, however, requires dedicated training. Therefore, it is crucial to develop methods that quantify how users acquire skilled control over their prostheses to effectively monitor skill progression and inform the development of interfaces that optimize this process.Approach.Building on theories of skill learning in human motor control, we measured speed-accuracy tradeoff functions (SAFs) to comprehensively characterize learning-induced changes in skill-as opposed to merely tracking changes in task success across training-facilitated by a closed-loop interface that combined proportional control and EMG feedback. Sixteen healthy participants and one individual with a transradial limb loss participated in a three-day experiment where they were instructed to perform the box-and-blocks task using a timed force-matching paradigm at four specified speeds to reach two target force levels, such that the SAF could be determined.Main results.We found that the participants' accuracy increased in a similar way across all speeds we tested. Consequently, the shape of the SAF remained similar across days, at both force levels. Further, we observed that EMG feedback enabled participants to improve their motor execution in terms of reduced trial-by-trial variability, a hallmark of skilled behavior. We then fit a power law model of the SAF, and demonstrated how the model parameters could be used to identify and monitor changes in skill.Significance.We comprehensively characterized how an EMG feedback interface enabled skill acquisition, both at the level of task performance and movement execution. More generally, we believe that the proposed methods are effective for measuring and monitoring user skill progression in closed-loop prosthesis control.
Collapse
Affiliation(s)
- Pranav Mamidanna
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Shima Gholinezhad
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Orthopedic Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Fisher LE, Gaunt RA, Huang H. Sensory Restoration for Improved Motor Control of Prostheses. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100498. [PMID: 37860289 PMCID: PMC10583965 DOI: 10.1016/j.cobme.2023.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Somatosensory neuroprostheses are devices with the potential to restore the senses of touch and movement from prosthetic limbs for people with limb amputation or paralysis. By electrically stimulating the peripheral or central nervous system, these devices evoke sensations that appear to emanate from the missing or insensate limb, and when paired with sensors on the prosthesis, they can improve the functionality and embodiment of the prosthesis. There have been major advances in the design of these systems over the past decade, although several important steps remain before they can achieve widespread clinical adoption outside the lab setting. Here, we provide a brief overview of somatosensory neuroprostheses and explores these hurdles and potential next steps towards clinical translation.
Collapse
Affiliation(s)
- Lee E. Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert A. Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - He Huang
- UNC/NC State Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Gasparic F, Jorgovanovic N, Hofer C, Russold MF, Koppe M, Stanisic D, Dosen S. A Novel Sensory Feedback Approach to Facilitate Both Predictive and Corrective Control of Grasping Force in Myoelectric Prostheses. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4492-4503. [PMID: 37930904 DOI: 10.1109/tnsre.2023.3330502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Reliable force control is especially important when using myoelectric upper-limb prostheses as the force defines whether an object will be firmly grasped, damaged, or dropped. It is known from human motor control that the grasping of non-disabled subjects is based on a combination of anticipation and feedback correction. Inspired by this insight, the present study proposes a novel approach to provide artificial sensory feedback to the user of a myoelectric prosthesis using vibrotactile stimulation to facilitate both predictive and corrective processes characteristic of grasping in non-disabled people. Specifically, the level of EMG was conveyed to the subjects while closing the prosthesis (predictive strategy), whereas the actual grasping force was transmitted when the prosthesis closed (corrective strategy). To investigate if this combined EMG and force feedback is indeed an effective method to explicitly close the control loop, 16 non-disabled and 3 transradial amputee subjects performed a set of functional tasks, inspired by the "Box and Block" test, with six target force levels, in three conditions: no feedback, only EMG feedback, and combined feedback. The highest overall performance in non-disabled subjects was obtained with combined feedback (79.6±9.9%), whereas the lowest was achieved with no feedback (53±11.5%). The combined feedback, however, increased the task completion time compared to the other two conditions. A similar trend was obtained also in three amputee subjects. The results, therefore, indicate that the feedback inspired by human motor control is indeed an effective approach to improve prosthesis grasping in realistic conditions when other sources of feedback (vision and audition) are not blocked.
Collapse
|
9
|
Eftekari SC, Sears L, Moura SP, Garelick S, Donnelly DT, Shaffrey EC, Dingle AM. A framework for understanding prosthetic embodiment for the plastic surgeon. J Plast Reconstr Aesthet Surg 2023; 84:469-486. [PMID: 37418846 DOI: 10.1016/j.bjps.2023.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
Plastic surgeons play a critical role in the management of amputations and are uniquely positioned to improve the lives and functional abilities of patients with limb loss. The embodiment of a prosthesis describes how effectively it replaces a missing limb and is an important aspect of patient care. Despite its importance, the current prosthetics literature lacks a formal definition of embodiment, and descriptions are often vague or incomplete. In this narrative review, we assess the current literature on prosthetic embodiment to explore the main mechanisms of embodiment and how each allows a prosthesis to interface with the human body. In doing so, we provide a comprehensive, holistic framework for understanding this concept.
Collapse
Affiliation(s)
- Sahand C Eftekari
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lucas Sears
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Steven P Moura
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sydney Garelick
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - D'Andrea T Donnelly
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ellen C Shaffrey
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aaron M Dingle
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
10
|
Ebers MR, Rosenberg MC, Kutz JN, Steele KM. A machine learning approach to quantify individual gait responses to ankle exoskeletons. J Biomech 2023; 157:111695. [PMID: 37406604 DOI: 10.1016/j.jbiomech.2023.111695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Predicting an individual's response to an exoskeleton and understanding what data are needed to characterize responses remains challenging. Specifically, we lack a theoretical framework capable of quantifying heterogeneous responses to exoskeleton interventions. We leverage a neural network-based discrepancy modeling framework to quantify complex changes in gait in response to passive ankle exoskeletons in nondisabled adults. Discrepancy modeling aims to resolve dynamical inconsistencies between model predictions and real-world measurements. Neural networks identified models of (i) Nominal gait, (ii) Exoskeleton (Exo) gait, and (iii) the Discrepancy (i.e., response) between them. If an Augmented (Nominal+Discrepancy) model captured exoskeleton responses, its predictions should account for comparable amounts of variance in Exo gait data as the Exo model. Discrepancy modeling successfully quantified individuals' exoskeleton responses without requiring knowledge about physiological structure or motor control: a model of Nominal gait augmented with a Discrepancy model of response accounted for significantly more variance in Exo gait (median R2 for kinematics (0.928-0.963) and electromyography (0.665-0.788), (p<0.042)) than the Nominal model (median R2 for kinematics (0.863-0.939) and electromyography (0.516-0.664)). However, additional measurement modalities and/or improved resolution are needed to characterize Exo gait, as the discrepancy may not comprehensively capture response due to unexplained variance in Exo gait (median R2 for kinematics (0.954-0.977) and electromyography (0.724-0.815)). These techniques can be used to accelerate the discovery of individual-specific mechanisms driving exoskeleton responses, thus enabling personalized rehabilitation.
Collapse
Affiliation(s)
- Megan R Ebers
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Michael C Rosenberg
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, 98195, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Abstract
The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine-interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA;
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joriene C de Nooij
- Department of Neurology and the Columbia University Motor Neuron Center, Columbia University Medical Center, New York, NY, USA;
| |
Collapse
|
12
|
Ebers MR, Rosenberg MC, Kutz JN, Steele KM. A machine learning approach to quantify individual gait responses to ankle exoskeletons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524757. [PMID: 36711530 PMCID: PMC9882260 DOI: 10.1101/2023.01.20.524757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We currently lack a theoretical framework capable of characterizing heterogeneous responses to exoskeleton interventions. Predicting an individual's response to an exoskeleton and understanding what data are needed to characterize responses has been a persistent challenge. In this study, we leverage a neural network-based discrepancy modeling framework to quantify complex changes in gait in response to passive ankle exoskeletons in nondisabled adults. Discrepancy modeling aims to resolve dynamical inconsistencies between model predictions and real-world measurements. Neural networks identified models of (i) Nominal gait, (ii) Exoskeleton ( Exo ) gait, and (iii) the Discrepancy ( i.e. , response) between them. If an Augmented (Nominal+Discrepancy) model captured exoskeleton responses, its predictions should account for comparable amounts of variance in Exo gait data as the Exo model. Discrepancy modeling successfully quantified individuals' exoskeleton responses without requiring knowledge about physiological structure or motor control: a model of Nominal gait augmented with a Discrepancy model of response accounted for significantly more variance in Exo gait (median R 2 for kinematics (0.928 - 0.963) and electromyography (0.665 - 0.788), ( p < 0.042)) than the Nominal model (median R 2 for kinematics (0.863 - 0.939) and electromyography (0.516 - 0.664)). However, additional measurement modalities and/or improved resolution are needed to characterize Exo gait, as the discrepancy may not comprehensively capture response due to unexplained variance in Exo gait (median R 2 for kinematics (0.954 - 0.977) and electromyography (0.724 - 0.815)). These techniques can be used to accelerate the discovery of individual-specific mechanisms driving exoskeleton responses, thus enabling personalized rehabilitation.
Collapse
Affiliation(s)
- Megan R Ebers
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Michael C Rosenberg
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, 98195, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
13
|
Zhao ZP, Nie C, Jiang CT, Cao SH, Tian KX, Yu S, Gu JW. Modulating Brain Activity with Invasive Brain-Computer Interface: A Narrative Review. Brain Sci 2023; 13:brainsci13010134. [PMID: 36672115 PMCID: PMC9856340 DOI: 10.3390/brainsci13010134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Brain-computer interface (BCI) can be used as a real-time bidirectional information gateway between the brain and machines. In particular, rapid progress in invasive BCI, propelled by recent developments in electrode materials, miniature and power-efficient electronics, and neural signal decoding technologies has attracted wide attention. In this review, we first introduce the concepts of neuronal signal decoding and encoding that are fundamental for information exchanges in BCI. Then, we review the history and recent advances in invasive BCI, particularly through studies using neural signals for controlling external devices on one hand, and modulating brain activity on the other hand. Specifically, regarding modulating brain activity, we focus on two types of techniques, applying electrical stimulation to cortical and deep brain tissues, respectively. Finally, we discuss the related ethical issues concerning the clinical application of this emerging technology.
Collapse
Affiliation(s)
- Zhi-Ping Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chuang Nie
- Strategic Support Force Medical Center, Beijing 100101, China
| | - Cheng-Teng Jiang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Hao Cao
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai-Xi Tian
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Yu
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (S.Y.); (J.-W.G.); Tel.: +86-010-8254-4786 (S.Y.); +86-010-6635-6729 (J.-W.G.)
| | - Jian-Wen Gu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Strategic Support Force Medical Center, Beijing 100101, China
- Correspondence: (S.Y.); (J.-W.G.); Tel.: +86-010-8254-4786 (S.Y.); +86-010-6635-6729 (J.-W.G.)
| |
Collapse
|
14
|
Hybart RL, Ferris DP. Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review. IEEE Trans Neural Syst Rehabil Eng 2022; PP:10.1109/TNSRE.2022.3229563. [PMID: 37015690 PMCID: PMC10267288 DOI: 10.1109/tnsre.2022.3229563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research on embodiment of objects external to the human body has revealed important information about how the human nervous system interacts with robotic lower limb exoskeletons. Typical robotic exoskeleton control approaches view the controllers as an external agent intending to move in coordination with the human. However, principles of embodiment suggest that the exoskeleton controller should ideally coordinate with the human such that the nervous system can adequately model the input-output dynamics of the exoskeleton controller. Measuring embodiment of exoskeletons should be a necessary step in the exoskeleton development and prototyping process. Researchers need to establish high fidelity quantitative measures of embodiment, rather than relying on current qualitative survey measures. Mobile brain imaging techniques, such as high-density electroencephalography, is likely to provide a deeper understanding of embodiment during human-machine interactions and advance exoskeleton research and development. In this review we show why future exoskeleton research should include quantitative measures of embodiment as a metric of success.
Collapse
|
15
|
Gonzalez M, Bismuth A, Lee C, Chestek CA, Gates DH. Artificial referred sensation in upper and lower limb prosthesis users: a systematic review. J Neural Eng 2022; 19:10.1088/1741-2552/ac8c38. [PMID: 36001115 PMCID: PMC9514130 DOI: 10.1088/1741-2552/ac8c38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022]
Abstract
Objective.Electrical stimulation can induce sensation in the phantom limb of individuals with amputation. It is difficult to generalize existing findings as there are many approaches to delivering stimulation and to assessing the characteristics and benefits of sensation. Therefore, the goal of this systematic review was to explore the stimulation parameters that effectively elicited referred sensation, the qualities of elicited sensation, and how the utility of referred sensation was assessed.Approach.We searched PubMed, Web of Science, and Engineering Village through January of 2022 to identify relevant papers. We included papers which electrically induced referred sensation in individuals with limb loss and excluded papers that did not contain stimulation parameters or outcome measures pertaining to stimulation. We extracted information on participant demographics, stimulation approaches, and participant outcomes.Main results.After applying exclusion criteria, 49 papers were included covering nine stimulation methods. Amplitude was the most commonly adjusted parameter (n= 25), followed by frequency (n= 22), and pulse width (n= 15). Of the 63 reports of sensation quality, most reported feelings of pressure (n= 52), paresthesia (n= 48), or vibration (n= 40) while less than half (n= 29) reported a sense of position or movement. Most papers evaluated the functional benefits of sensation (n= 33) using force matching or object identification tasks, while fewer papers quantified subjective measures (n= 16) such as pain or embodiment. Only 15 studies (36%) observed percept intensity, quality, or location over multiple sessions.Significance.Most studies that measured functional performance demonstrated some benefit to providing participants with sensory feedback. However, few studies could experimentally manipulate sensation location or quality. Direct comparisons between studies were limited by variability in methodologies and outcome measures. As such, we offer recommendations to aid in more standardized reporting for future research.
Collapse
Affiliation(s)
- Michael Gonzalez
- Department of Robotics, University of Michigan, Ann Arbor, MI, United States of America
| | - Alex Bismuth
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Christina Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Deanna H Gates
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
16
|
Nataletti S, Leo F, Dideriksen J, Brayda L, Dosen S. Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals. Exp Brain Res 2022; 240:2285-2298. [PMID: 35879359 PMCID: PMC9458587 DOI: 10.1007/s00221-022-06409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback).
Collapse
Affiliation(s)
- Sara Nataletti
- Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia (IIT), Genoa, Italy. .,Department of Informatics, Bioengineering Robotics, and System Engineering, University of Genoa, Genoa, Italy.
| | - Fabrizio Leo
- Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Jakob Dideriksen
- Department of Health Science and Technology, Aalborg University, Ålborg, Denmark
| | - Luca Brayda
- Acoesis S.R.L., Genoa, Italy.,Robotics, Brain and Cognitive Science Unit, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Ålborg, Denmark.
| |
Collapse
|
17
|
Wu H, Dyson M, Nazarpour K. Internet of Things for beyond-the-laboratory prosthetics research. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210005. [PMID: 35762812 PMCID: PMC9335889 DOI: 10.1098/rsta.2021.0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 06/15/2023]
Abstract
Research on upper-limb prostheses is typically laboratory-based. Evidence indicates that research has not yet led to prostheses that meet user needs. Inefficient communication loops between users, clinicians and manufacturers limit the amount of quantitative and qualitative data that researchers can use in refining their innovations. This paper offers a first demonstration of an alternative paradigm by which remote, beyond-the-laboratory prosthesis research according to user needs is feasible. Specifically, the proposed Internet of Things setting allows remote data collection, real-time visualization and prosthesis reprogramming through Wi-Fi and a commercial cloud portal. Via a dashboard, the user can adjust the configuration of the device and append contextual information to the prosthetic data. We evaluated this demonstrator in real-time experiments with three able-bodied participants. Results promise the potential of contextual data collection and system update through the internet, which may provide real-life data for algorithm training and reduce the complexity of send-home trials. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
Collapse
Affiliation(s)
- Hancong Wu
- Edinburgh Neuroprosthetics Laboratory, School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Matthew Dyson
- Intelligent Sensing Laboratory, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kianoush Nazarpour
- Edinburgh Neuroprosthetics Laboratory, School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
18
|
Chai G, Wang H, Li G, Sheng X, Zhu X. Electrotactile feedback improves grip force control and enables object stiffness recognition while using a myoelectric hand. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1310-1320. [PMID: 35533165 DOI: 10.1109/tnsre.2022.3173329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current myoelectric hands are limited in their ability to provide effective sensory feedback to the users, which highly affects their functionality and utility. Although the sensory information of a myoelectric hand can be acquired with equipped sensors, transforming the sensory signals into effective tactile sensations on users for functional tasks is a largely unsolved challenge. The purpose of this study aims to demonstrate that electrotactile feedback of the grip force improves the sensorimotor control of a myoelectric hand and enables object stiffness recognition. The grip force of a sensorized myoelectric hand was delivered to its users via electrotactile stimulation based on four kinds of typical encoding strategies, including graded (G), linear amplitude (LA), linear frequency (LF), and biomimetic (B) modulation. Object stiffness was encoded with the change of electrotactile sensations triggered by final grip force, as the prosthesis grasped the objects. Ten able-bodied subjects and two transradial amputees were recruited to participate in a dual-task virtual eggs test (VET) and an object stiffness discrimination test (OSDT) to quantify the prosthesis users' ability to handle fragile objects and recognize object stiffnesses, respectively. The quantified results showed that with electrotactile feedback enabled, the four kinds of encoding strategies allowed subjects to better able to handle fragile objects with similar performance, and the subjects were able to differentiate four levels of object stiffness at favorable accuracies (>86%) and high manual efficiency. Strategy LA presented the best stiffness discrimination performance, while strategy B was able to reduce the discrimination time but the discrimination accuracy was not better than the other three strategies. Electrotactile feedback also enhanced prosthesis embodiment and improved the users' confidence in prosthetic control. Outcomes indicate electrotactile feedback can be effectively exploited by the prosthesis users for grip force control and object stiffness recognition, proving the feasibility of functional sensory restoration of myoelectric prostheses equipped with electrotactile feedback.
Collapse
|
19
|
Osborn LE, Moran C, Dodd LD, Sutton E, Norena Acosta N, Wormley J, Pyles CO, Gordge KD, Nordstrom M, Butkus J, Forsberg JA, Pasquina P, Fifer MS, Armiger RS. Monitoring at-home prosthesis control improvements through real-time data logging. J Neural Eng 2022; 19. [PMID: 35523131 DOI: 10.1088/1741-2552/ac6d7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Validating the ability for advanced prostheses to improve function beyond the laboratory remains a critical step in enabling long-term benefits for prosthetic limb users. APPROACH A nine week take-home case study was completed with a single participant with upper limb amputation and osseointegration (OI) to better understand how an advanced prosthesis is used during daily activities. The participant was already an expert prosthesis user and used the Modular Prosthetic Limb (MPL) at home during the study. The MPL was controlled using wireless electromyography (EMG) pattern recognition-based movement decoding. Clinical assessments were performed before and after the take-home portion of the study. Data was recorded using an onboard data log in order to measure daily prosthesis usage, sensor data, and EMG data. MAIN RESULT The participant's continuous prosthesis usage steadily increased (p = 0.04, max = 5.5 hr) over time and over 30% of the total time was spent actively controlling the prosthesis. The duration of prosthesis usage after each pattern recognition training session also increased over time (p = 0.04), resulting in up to 5.4 hr of usage before retraining the movement decoding algorithm. Pattern recognition control accuracy improved (1.2% per week, p < 0.001) with a maximum number of 10 classes trained at once and the transitions between different degrees of freedom increased as the study progressed, indicating smooth and efficient control of the advanced prosthesis. Variability of decoding accuracy also decreased with prosthesis usage (p < 0.001) and 30% of the time was spent performing a prosthesis movement. During clinical evaluations, Box and Blocks and the Assessment of the Capacity for Myoelectric Control (ACMC) scores increased by 43% and 6.2%, respectively, demonstrating prosthesis functionality and the NASA Task Load Index (NASA-TLX) scores decreased, on average, by 25% across assessments, indicating reduced cognitive workload while using the MPL, over the nine week study. SIGNIFICANCE In this case study, we demonstrate that an onboard system to monitor prosthesis usage enables better understanding of how prostheses are incorporated into daily life. That knowledge can support the long-term goal of completely restoring independence and quality of life to individuals living with upper limb amputation.
Collapse
Affiliation(s)
- Luke E Osborn
- Research & Exploratory Development, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| | - Courtney Moran
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| | - Lauren D Dodd
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, Maryland, 20817, UNITED STATES
| | - Erin Sutton
- Research & Exploratory Development, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| | - Nicolas Norena Acosta
- Research & Exploratory Development, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| | - Jared Wormley
- Research & Exploratory Development, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| | - Connor O Pyles
- Research & Exploratory Development, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| | - Kelles D Gordge
- Research & Exploratory Development, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| | - Michelle Nordstrom
- Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, 20889, UNITED STATES
| | - Josef Butkus
- Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, 20889, UNITED STATES
| | - Jonathan A Forsberg
- Department of Orthopaedic Surgery, Johns Hopkins Medicine, 1800 Orleans St, Baltimore, Maryland, 21287, UNITED STATES
| | - Paul Pasquina
- Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, Maryland, 20814, UNITED STATES
| | - Matthew S Fifer
- Research & Exploratory Development, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| | - Robert S Armiger
- Research & Exploratory Development, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, Maryland, 20723, UNITED STATES
| |
Collapse
|
20
|
Jones H, Webb L, Dyson M, Nazarpour K. Towards User-Centred Prosthetics Research Beyond the Laboratory. Front Neurosci 2022; 16:863833. [PMID: 35495033 PMCID: PMC9048479 DOI: 10.3389/fnins.2022.863833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to explore a range of perspectives on how academic research and clinical assessment of upper-limb prosthetics could happen in environments outside of laboratories and clinics, such as within peoples' homes. Two co-creation workshops were held, which included people who use upper limb prosthetic devices (hereafter called users), clinicians, academics, a policy stakeholder, and a representative from the upper-limb prosthetics industry (hereafter called professionals). The discussions during the workshops indicate that research and clinical assessment conducted remotely from a laboratory or clinic could inform future solutions that address user needs. Users were open to the idea of sharing sensor and contextual data from within their homes to external laboratories during research studies. However, this was dependent upon several considerations, such as choice and control over data collection. Regarding clinical assessment, users had reservations of how data may be used to inform future prosthetic prescriptions whilst, clinicians were concerned with resource implications and capacity to process user data. The paper presents findings of the discussions shared by participants during both workshops. The paper concludes with a conjecture that collecting sensor and contextual data from users within their home environment will contribute towards literature within the field, and potentially inform future care policies for upper limb prosthetics. The involvement of users during such studies will be critical and can be enabled via a co-creation approach. In the short term, this may be achieved through academic research studies, which may in the long term inform a framework for clinical in-home trials and clinical remote assessment.
Collapse
Affiliation(s)
- Hannah Jones
- Edinburgh Neuroprosthetics Laboratory, The University of Edinburgh, Edinburgh, United Kingdom
- Intelligent Sensing Laboratory, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lynda Webb
- Edinburgh Neuroprosthetics Laboratory, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew Dyson
- Intelligent Sensing Laboratory, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kianoush Nazarpour
- Edinburgh Neuroprosthetics Laboratory, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Karczewski AM, Zeng W, Stratchko LM, Bachus KN, Poore SO, Dingle AM. Clinical Basis for Creating an Osseointegrated Neural Interface. Front Neurosci 2022; 16:828593. [PMID: 35495044 PMCID: PMC9039253 DOI: 10.3389/fnins.2022.828593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
As technology continues to improve within the neuroprosthetic landscape, there has been a paradigm shift in the approach to amputation and surgical implementation of haptic neural prosthesis for limb restoration. The Osseointegrated Neural Interface (ONI) is a proposed solution involving the transposition of terminal nerves into the medullary canal of long bones. This design combines concepts of neuroma formation and prevention with osseointegration to provide a stable environment for conduction of neural signals for sophisticated prosthetic control. While this concept has previously been explored in animal models, it has yet to be explored in humans. This anatomic study used three upper limb and three lower limb cadavers to assess the clinical feasibility of creating an ONI in humans. Anatomical measurement of the major peripheral nerves- circumference, length, and depth- were performed as they are critical for electrode design and rerouting of the nerves into the long bones. CT imaging was used for morphologic bone evaluation and virtual implantation of two osseointegrated implants were performed to assess the amount of residual medullary space available for housing the neural interfacing hardware. Use of a small stem osseointegrated implant was found to reduce bone removal and provide more intramedullary space than a traditional implant; however, the higher the amputation site, the less medullary space was available regardless of implant type. Thus the stability of the endoprosthesis must be maximized while still maintaining enough residual space for the interface components. The results from this study provide an anatomic basis required for establishing a clinically applicable ONI in humans. They may serve as a guide for surgical implementation of an osseointegrated endoprosthesis with intramedullary electrodes for prosthetic control.
Collapse
Affiliation(s)
- Alison M. Karczewski
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weifeng Zeng
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lindsay M. Stratchko
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kent N. Bachus
- George E. Wahlen Department of Veterans Affairs Medical Center and the Department of Orthopaedics, University of Utah Orthopaedic Center, Salt Lake City, UT, United States
| | - Samuel O. Poore
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Aaron M. Dingle
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
22
|
Lassagne H, Goueytes D, Shulz DE, Estebanez L, Ego-Stengel V. Continuity within the somatosensory cortical map facilitates learning. Cell Rep 2022; 39:110617. [PMID: 35385729 DOI: 10.1016/j.celrep.2022.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/03/2022] Open
Abstract
The topographic organization is a prominent feature of sensory cortices, but its functional role remains controversial. Particularly, it is not well determined how integration of activity within a cortical area depends on its topography during sensory-guided behavior. Here, we train mice expressing channelrhodopsin in excitatory neurons to track a photostimulation bar that rotated smoothly over the topographic whisker representation of the primary somatosensory cortex. Mice learn to discriminate angular positions of the light bar to obtain a reward. They fail not only when the spatiotemporal continuity of the photostimulation is disrupted in this area but also when cortical areas displaying map discontinuities, such as the trunk and legs, or areas without topographic map, such as the posterior parietal cortex, are photostimulated. In contrast, when cortical topographic continuity enables to predict future sensory activation, mice demonstrate anticipation of reward availability. These findings could be helpful for optimizing feedback while designing cortical neuroprostheses.
Collapse
Affiliation(s)
- Henri Lassagne
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Dorian Goueytes
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Daniel E Shulz
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Luc Estebanez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Valerie Ego-Stengel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| |
Collapse
|
23
|
Zhang J, Hao M, Yang F, Liang W, Sun A, Chou CH, Lan N. Evaluation of multiple perceptual qualities of transcutaneous electrical nerve stimulation for evoked tactile sensation in forearm amputees. J Neural Eng 2022; 19. [PMID: 35320789 DOI: 10.1088/1741-2552/ac6062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Evoked tactile sensation (ETS) elicited by transcutaneous electrical nerve stimulation (TENS) is promising to convey digit-specific sensory information to amputees naturally and non-invasively. Fitting ETS-based sensory feedback to amputees entails customizing coding of multiple sensory information for each stimulation site. This study was to elucidate the consistency of percepts and qualities by TENS at multiple stimulation sites in amputees retaining ETS. APPROACH Five transradial amputees with ETS and fourteen able-bodied subjects participated in this study. Surface electrodes with small size (10 mm in diameter) were adopted to fit the restricted projected finger map on the forearm stump of amputees. Effects of stimulus frequency on sensory types were assessed, and the map of perceptual threshold for each sensation was characterized. Sensitivity for vibration and buzz sensations was measured using distinguishable difference in stimulus pulse width. Rapid assessments for modulation ranges of pulse width at fixed amplitude and frequency were developed for coding sensory information. Buzz sensation was demonstrated for location discrimination relating to prosthetic fingers. MAIN RESULTS Vibration and buzz sensations were consistently evoked at 20 Hz and 50 Hz as dominant sensation types in all amputees and able-bodied subjects. Perceptual thresholds of different sensations followed a similar strength-duration curve relating stimulus amplitude to pulse width. The averaged distinguishable difference in pulse width was 12.84 ± 7.23 μs for vibration and 15.21 ± 6.47 μs for buzz in able-bodied subjects, and 14.91 ± 10.54 μs for vibration and 11.30 ± 3.42 μs for buzz in amputees. Buzz coding strategy enabled five amputees to discriminate contact of individual fingers with an overall accuracy of 77.85%. SIGNIFICANCE The consistency in perceptual qualities of dominant sensations can be exploited for coding multi-modality sensory feedback. A fast protocol of sensory coding is possible for fitting ETS-based, non-invasive sensory feedback to amputees.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Room 404 South Building Med-X, No.1954 Rd. Huashan, Shanghai, Shanghai, 200030, CHINA
| | - Manzhao Hao
- Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Room 401 South Building Med-X, No.1954 Rd. Huashan, Shanghai, Shanghai, 200030, CHINA
| | - Fei Yang
- Shanghai Jiao Tong University, Room 404 South Building Med-X, No. 1954 Rd. Huashan, Xuhui, Shanghai, Shanghai, 200030, CHINA
| | - Wenyuan Liang
- National Research Center for Rehabilitation Technical Aids, No.1 Rong Hua Zhong Road, Beijing Economic and Technological Development Area, Beijing, Beijing, 100176, CHINA
| | - Aiping Sun
- National Research Center for Rehabilitation Technical Aids, No.1 Rong Hua Zhong Road, Beijing Economic and Technological Development Area, Beijing, Beijing, 100176, CHINA
| | - Chi-Hong Chou
- Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Room 401 South Building Med-X, No.1954 Rd. Huashan, Shanghai, Shanghai, 200030, CHINA
| | - Ning Lan
- Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Room 405 South Building Med-X, No.1954 Rd. Huashan, Shanghai, Shanghai, 200030, CHINA
| |
Collapse
|
24
|
Jabban L, Dupan S, Zhang D, Ainsworth B, Nazarpour K, Metcalfe BW. Sensory Feedback for Upper-Limb Prostheses: Opportunities and Barriers. IEEE Trans Neural Syst Rehabil Eng 2022; 30:738-747. [PMID: 35290188 DOI: 10.1109/tnsre.2022.3159186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The addition of sensory feedback to upper-limb prostheses has been shown to improve control, increase embodiment, and reduce phantom limb pain. However, most commercial prostheses do not incorporate sensory feedback due to several factors. This paper focuses on the major challenges of a lack of deep understanding of user needs, the unavailability of tailored, realistic outcome measures and the segregation between research on control and sensory feedback. The use of methods such as the Person-Based Approach and co-creation can improve the design and testing process. Stronger collaboration between researchers can integrate different prostheses research areas to accelerate the translation process.
Collapse
|
25
|
Pasluosta C, Kiele P, Čvančara P, Micera S, Aszmann OC, Stieglitz T. Bidirectional bionic limbs: a perspective bridging technology and physiology. J Neural Eng 2022; 19. [PMID: 35132954 DOI: 10.1088/1741-2552/ac4bff] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Precise control of bionic limbs relies on robust decoding of motor commands from nerves or muscles signals and sensory feedback from artificial limbs to the nervous system by interfacing the afferent nerve pathways. Implantable devices for bidirectional communication with bionic limbs have been developed in parallel with research on physiological alterations caused by an amputation. In this perspective article, we question whether increasing our effort on bridging these technologies with a deeper understanding of amputation pathophysiology and human motor control may help to overcome pressing stalls in the next generation of bionic limbs.
Collapse
Affiliation(s)
- C Pasluosta
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - P Kiele
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - P Čvančara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - S Micera
- School of Engineering, École Polytechnique Fédérale de Lausanne, Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.,The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - O C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Medical University of Vienna; Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - T Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Rekant J, Fisher LE, Boninger M, Gaunt RA, Collinger JL. Amputee, clinician, and regulator perspectives on current and prospective upper extremity prosthetic technologies. Assist Technol 2022:1-13. [PMID: 34982647 DOI: 10.1080/10400435.2021.2020935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Existing prosthetic technologies for people with upper limb amputation are being adopted at moderate rates. Once fitted for these devices, many upper limb amputees report not using them regularly or at all. The primary aim of this study was to solicit feedback about prosthetic technology and important device design criteria from amputees, clinicians, and device regulators. We compare these perspectives to identify common or divergent priorities. Twenty-one adults with upper limb loss, 35 clinicians, and 3 regulators completed a survey on existing prosthetic technologies and a conceptual sensorimotor prosthesis driven by implanted myoelectric electrodes with sensory feedback via spinal root stimulation. The survey included questions from the Trinity Amputation and Prosthesis Experience Scale, the Disabilities of the Arm, Shoulder, and Hand, and novel questions about technology acceptance and neuroprosthetic design. User and clinician ratings of satisfaction with existing devices were similar. Amputees were most accepting of the proposed sensorimotor prosthesis (75.5% vs clinicians(68.8%), regulators(67.8%)). Stakeholders valued user-centered outcomes like individualized task goals, improved quality of life, device reliability, and user safety; regulators emphasized these last two. The results of this study provide insight into amputee, clinician, and regulator priorities to inform future upper-limb prosthetic design and clinical trial protocol development.
Collapse
Affiliation(s)
- Julie Rekant
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Michael Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, PA, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Abbass Y, Saleh M, Dosen S, Valle M. Embedded Electrotactile Feedback System for Hand Prostheses Using Matrix Electrode and Electronic Skin. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:912-925. [PMID: 34432633 DOI: 10.1109/tbcas.2021.3107723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the technology moves towards more human-like bionic limbs, it is necessary to develop a feedback system that provides active touch feedback to a user of a prosthetic hand. Most of the contemporary sensory substitution methods comprise simple position and force sensors combined with few discrete stimulation units, and hence they are characterized with a limited amount of information that can be transmitted by the feedback. The present study describes a novel system for tactile feedback integrating advanced multipoint sensing (electronic skin) and stimulation (matrix electrodes). The system comprises a flexible sensing array (16 sensors) integrated on the index finger of a Michelangelo prosthetic hand mockup, embedded interface electronics and multichannel stimulator connected to a flexible matrix electrode (24 pads). The developed system conveys contact information (binary detections) to the user. To demonstrate the feasibility, the system was tested in six able-bodied subjects who were asked to recognize static patterns (contact position) with two different spatial resolutions and dynamic movement patterns (i.e., sliding along and/or across the finger) presented on the electronic skin. The experiments demonstrated that the system successfully translated the mechanical interaction into electrotactile profiles, which the subjects could recognize with good performance. The success rates (mean ± standard deviation) for the static patterns were 91 ± 4% and 58 ± 10% for low and high spatial resolution, respectively, while the success rate for sliding touch was 94 ± 4%. These results demonstrate that the developed system is an important step towards a new generation of tactile feedback interfaces that can provide high-bandwidth connection between the user and his/her bionic limb. Such systems would allow mimicking spatially distributed natural feedback, thereby facilitating the control and embodiment of the artificial device into the user body scheme.
Collapse
|
28
|
Mamidanna P, Dideriksen JL, Dosen S. The impact of objective functions on control policies in closed-loop control of grasping force with a myoelectric prosthesis. J Neural Eng 2021; 18. [PMID: 34479219 DOI: 10.1088/1741-2552/ac23c1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Objective.Supplemental sensory feedback for myoelectric prostheses can provide both psychosocial and functional benefits during prosthesis control. However, the impact of feedback depends on multiple factors and there is insufficient understanding about the fundamental role of such feedback in prosthesis use. The framework of human motor control enables us to systematically investigate the user-prosthesis control loop. In this study, we explore how different task objectives such as speed and accuracy shape the control policy developed by participants in a prosthesis force-matching task.Approach.Participants were randomly assigned to two groups that both used identical electromyography control interface and prosthesis force feedback, through vibrotactile stimulation, to perform a prosthesis force-matching task. However, the groups received different task objectives specifying speed and accuracy demands. We then investigated the control policies developed by the participants. To this end, we not only evaluated how successful or fast participants were but also analyzed the behavioral strategies adopted by the participants to obtain such performance gains.Main results.First, we observed that participants successfully integrated supplemental prosthesis force feedback to develop both feedforward and feedback control policies, as demanded by the task objectives. We then observed that participants who first developed a (slow) feedback policy were quickly able to adapt their policy to more stringent speed demands, by switching to a combined feedforward-feedback control strategy. However, the participants who first developed a (fast) feedforward policy were not able to change their control policy and adjust to greater accuracy demands.Significance.Overall, the results signify how the framework of human motor control can be applied to study the role of feedback in user-prosthesis interaction. The results also reveal the utility of training prosthesis users to integrate supplemental feedback into their state estimation by designing training protocols that encourage the development of combined feedforward and feedback policy.
Collapse
Affiliation(s)
- Pranav Mamidanna
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
29
|
Marasco PD, Hebert JS, Sensinger JW, Beckler DT, Thumser ZC, Shehata AW, Williams HE, Wilson KR. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors. Sci Robot 2021; 6:eabf3368. [PMID: 34516746 DOI: 10.1126/scirobotics.abf3368] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard 151 W/APT, Cleveland, OH 44106, USA
| | - Jacqueline S Hebert
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Glenrose Rehabilitation Hospital, Alberta Health Services, 10230-111 Avenue, Edmonton, Alberta T5G 0B7, Canada
| | - Jonathon W Sensinger
- Institute of Biomedical Engineering, University of New Brunswick, 25 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Dylan T Beckler
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA
| | - Zachary C Thumser
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA.,Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Research 151, Cleveland, OH 44106, USA
| | - Ahmed W Shehata
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heather E Williams
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Kathleen R Wilson
- Institute of Biomedical Engineering, University of New Brunswick, 25 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
30
|
Testing silicone digit extensions as a way to suppress natural sensation to evaluate supplementary tactile feedback. PLoS One 2021; 16:e0256753. [PMID: 34469470 PMCID: PMC8410127 DOI: 10.1371/journal.pone.0256753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
Dexterous use of the hands depends critically on sensory feedback, so it is generally agreed that functional supplementary feedback would greatly improve the use of hand prostheses. Much research still focuses on improving non-invasive feedback that could potentially become available to all prosthesis users. However, few studies on supplementary tactile feedback for hand prostheses demonstrated a functional benefit. We suggest that confounding factors impede accurate assessment of feedback, e.g., testing non-amputee participants that inevitably focus intently on learning EMG control, the EMG’s susceptibility to noise and delays, and the limited dexterity of hand prostheses. In an attempt to assess the effect of feedback free from these constraints, we used silicone digit extensions to suppress natural tactile feedback from the fingertips and thus used the tactile feedback-deprived human hand as an approximation of an ideal feed-forward tool. Our non-amputee participants wore the extensions and performed a simple pick-and-lift task with known weight, followed by a more difficult pick-and-lift task with changing weight. They then repeated these tasks with one of three kinds of audio feedback. The tests were repeated over three days. We also conducted a similar experiment on a person with severe sensory neuropathy to test the feedback without the extensions. Furthermore, we used a questionnaire based on the NASA Task Load Index to gauge the subjective experience. Unexpectedly, we did not find any meaningful differences between the feedback groups, neither in the objective nor the subjective measurements. It is possible that the digit extensions did not fully suppress sensation, but since the participant with impaired sensation also did not improve with the supplementary feedback, we conclude that the feedback failed to provide relevant grasping information in our experiments. The study highlights the complex interaction between task, feedback variable, feedback delivery, and control, which seemingly rendered even rich, high-bandwidth acoustic feedback redundant, despite substantial sensory impairment.
Collapse
|
31
|
Gates DH, Engdahl SM, Davis A. Recommendations for the Successful Implementation of Upper Limb Prosthetic Technology. Hand Clin 2021; 37:457-466. [PMID: 34253318 DOI: 10.1016/j.hcl.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the numerous prosthetic hand designs that are commercially available, people with upper limb loss still frequently report dissatisfaction and abandonment. Over the past decade there have been numerous advances in prosthetic design, control, sensation, and device attachment. Each offers the potential to enhance function and satisfaction, but most come at high costs and involve surgical risks. Here, we discuss potential barriers and solutions to promote the widespread use of novel prosthetic technology. With appropriate reimbursement, multidisciplinary care teams, device-specific rehabilitation, and patient and clinician education, such technology has the potential to revolutionize the field and improve patient outcomes.
Collapse
Affiliation(s)
- Deanna H Gates
- School of Kinesiology, University of Michigan, 830 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Susannah M Engdahl
- Department of Bioengineering, George Mason University, 4400 University Drive, MS 1J7, Fairfax, VA 22030, USA
| | - Alicia Davis
- University of Michigan Orthotics and Prosthetics Center, 2850 South Industrial Highway, Suite 400, Ann Arbor, MI 48104, USA
| |
Collapse
|
32
|
Karczewski AM, Dingle AM, Poore SO. The Need to Work Arm in Arm: Calling for Collaboration in Delivering Neuroprosthetic Limb Replacements. Front Neurorobot 2021; 15:711028. [PMID: 34366820 PMCID: PMC8334559 DOI: 10.3389/fnbot.2021.711028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few decades there has been a push to enhance the use of advanced prosthetics within the fields of biomedical engineering, neuroscience, and surgery. Through the development of peripheral neural interfaces and invasive electrodes, an individual's own nervous system can be used to control a prosthesis. With novel improvements in neural recording and signal decoding, this intimate communication has paved the way for bidirectional and intuitive control of prostheses. While various collaborations between engineers and surgeons have led to considerable success with motor control and pain management, it has been significantly more challenging to restore sensation. Many of the existing peripheral neural interfaces have demonstrated success in one of these modalities; however, none are currently able to fully restore limb function. Though this is in part due to the complexity of the human somatosensory system and stability of bioelectronics, the fragmentary and as-yet uncoordinated nature of the neuroprosthetic industry further complicates this advancement. In this review, we provide a comprehensive overview of the current field of neuroprosthetics and explore potential strategies to address its unique challenges. These include exploration of electrodes, surgical techniques, control methods, and prosthetic technology. Additionally, we propose a new approach to optimizing prosthetic limb function and facilitating clinical application by capitalizing on available resources. It is incumbent upon academia and industry to encourage collaboration and utilization of different peripheral neural interfaces in combination with each other to create versatile limbs that not only improve function but quality of life. Despite the rapidly evolving technology, if the field continues to work in divided "silos," we will delay achieving the critical, valuable outcome: creating a prosthetic limb that is right for the patient and positively affects their life.
Collapse
Affiliation(s)
| | - Aaron M. Dingle
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin–Madison, Madison, WI, United States
| | | |
Collapse
|
33
|
Jones H, Dupan S, Dyson M, Krasoulis A, Kenney LPJ, Donovan-Hall M, Memarzadeh K, Day S, Coutinho M, Nazarpour K. Co-creation and User Perspectives for Upper Limb Prosthetics. Front Neurorobot 2021; 15:689717. [PMID: 34305564 PMCID: PMC8299561 DOI: 10.3389/fnbot.2021.689717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
People who either use an upper limb prosthesis and/or have used services provided by a prosthetic rehabilitation centre, experience limitations of currently available prosthetic devices. Collaboration between academia and a broad range of stakeholders, can lead to the development of solutions that address peoples' needs. By doing so, the rate of prosthetic device abandonment can decrease. Co-creation is an approach that can enable collaboration of this nature to occur throughout the research process. We present findings of a co-creation project that gained user perspectives from a user survey, and a subsequent workshop involving: people who use an upper limb prosthesis and/or have experienced care services (users), academics, industry experts, charity executives, and clinicians. The survey invited users to prioritise six themes, which academia, clinicians, and industry should focus on over the next decade. The prioritisation of the themes concluded in the following order, with the first as the most important: function, psychology, aesthetics, clinical service, collaboration, and media. Within five multi-stakeholder groups, the workshop participants discussed challenges and collaborative opportunities for each theme. Workshop groups prioritised the themes based on their discussions, to highlight opportunities for further development. Two groups chose function, one group chose clinical service, one group chose collaboration, and another group chose media. The identified opportunities are presented within the context of the prioritised themes, including the importance of transparent information flow between all stakeholders; user involvement throughout research studies; and routes to informing healthcare policy through collaboration. As the field of upper limb prosthetics moves toward in-home research, we present co-creation as an approach that can facilitate user involvement throughout the duration of such studies.
Collapse
Affiliation(s)
- Hannah Jones
- Edinburgh Neuroprosthetics Laboratory, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Intelligent Sensing Laboratory, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sigrid Dupan
- Edinburgh Neuroprosthetics Laboratory, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew Dyson
- Intelligent Sensing Laboratory, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Agamemnon Krasoulis
- Intelligent Sensing Laboratory, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laurence P J Kenney
- School of Health and Society, University of Salford, Manchester, United Kingdom
| | | | | | - Sarah Day
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Maxford Coutinho
- Department of Plastic Surgery, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Kianoush Nazarpour
- Edinburgh Neuroprosthetics Laboratory, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Raspopovic S, Valle G, Petrini FM. Sensory feedback for limb prostheses in amputees. NATURE MATERIALS 2021; 20:925-939. [PMID: 33859381 DOI: 10.1038/s41563-021-00966-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Commercial prosthetic devices currently do not provide natural sensory information on the interaction with objects or movements. The subsequent disadvantages include unphysiological walking with a prosthetic leg and difficulty in controlling the force exerted with a prosthetic hand, thus creating health issues. Restoring natural sensory feedback from the prosthesis to amputees is an unmet clinical need. An optimal device should be able to elicit natural sensations of touch or proprioception, by delivering the complex signals to the nervous system that would be produced by skin, muscles and joints receptors. This Review covers the various neurotechnological approaches that have been proposed for the development of the optimal sensory feedback restoration device for arm and leg amputees.
Collapse
Affiliation(s)
- Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland.
| | - Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Francesco Maria Petrini
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
35
|
Garenfeld MA, Jorgovanovic N, Ilic V, Strbac M, Isakovic M, Dideriksen JL, Dosen S. A compact system for simultaneous stimulation and recording for closed-loop myoelectric control. J Neuroeng Rehabil 2021; 18:87. [PMID: 34034762 PMCID: PMC8146235 DOI: 10.1186/s12984-021-00877-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
Background Despite important advancements in control and mechatronics of myoelectric prostheses, the communication between the user and his/her bionic limb is still unidirectional, as these systems do not provide somatosensory feedback. Electrotactile stimulation is an attractive technology to close the control loop since it allows flexible modulation of multiple parameters and compact interface design via multi-pad electrodes. However, the stimulation interferes with the recording of myoelectric signals and this can be detrimental to control. Methods We present a novel compact solution for simultaneous recording and stimulation through dynamic blanking of stimulation artefacts. To test the system, a feedback coding scheme communicating wrist rotation and hand aperture was developed specifically to stress the myoelectric control while still providing meaningful information to the subjects. Ten subjects participated in an experiment, where the quality of closed-loop myoelectric control was assessed by controlling a cursor in a two degrees of freedom target-reaching task. The benchmark performance with visual feedback was compared to that achieved by combining visual feedback and electrotactile stimulation as well as by using electrotactile feedback only. Results There was no significant difference in performance between visual and combined feedback condition with regards to successfully reached targets, time to reach a target, path efficiency and the number of overshoots. Therefore, the quality of myoelectric control was preserved in spite of the stimulation. As expected, the tactile condition was significantly poorer in completion rate (100/4% and 78/25% for combined and tactile condition, respectively) and time to reach a target (9/2 s and 13/4 s for combined and tactile condition, respectively). However, the performance in the tactile condition was still good, with no significant difference in path efficiency (38/8%) and the number of overshoots (0.5/0.4 overshoots), indicating that the stimulation was meaningful for the subjects and useful for closed-loop control. Conclusions Overall, the results demonstrated that the developed system can provide robust closed-loop control using electrotactile stimulation. The system supports different encoding schemes and allows placing the recording and stimulation electrodes next to each other. This is an important step towards an integrated solution where the developed unit will be embedded into a prosthetic socket.
Collapse
Affiliation(s)
- Martin A Garenfeld
- Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7D, 9220, Aalborg Ø, Denmark.
| | - Nikola Jorgovanovic
- Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000, Novi Sad, Serbia
| | - Vojin Ilic
- Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000, Novi Sad, Serbia
| | - Matija Strbac
- Tecnalia Serbia Ltd., Deligradska 9/39, 11000, Belgrade, Serbia
| | - Milica Isakovic
- Tecnalia Serbia Ltd., Deligradska 9/39, 11000, Belgrade, Serbia
| | - Jakob L Dideriksen
- Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7D, 9220, Aalborg Ø, Denmark
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7D, 9220, Aalborg Ø, Denmark.
| |
Collapse
|
36
|
Schofield JS, Battraw MA, Parker ASR, Pilarski PM, Sensinger JW, Marasco PD. Embodied Cooperation to Promote Forgiving Interactions With Autonomous Machines. Front Neurorobot 2021; 15:661603. [PMID: 33897401 PMCID: PMC8062797 DOI: 10.3389/fnbot.2021.661603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
During every waking moment, we must engage with our environments, the people around us, the tools we use, and even our own bodies to perform actions and achieve our intentions. There is a spectrum of control that we have over our surroundings that spans the extremes from full to negligible. When the outcomes of our actions do not align with our goals, we have a tremendous capacity to displace blame and frustration on external factors while forgiving ourselves. This is especially true when we cooperate with machines; they are rarely afforded the level of forgiveness we provide our bodies and often bear much of our blame. Yet, our brain readily engages with autonomous processes in controlling our bodies to coordinate complex patterns of muscle contractions, make postural adjustments, adapt to external perturbations, among many others. This acceptance of biological autonomy may provide avenues to promote more forgiving human-machine partnerships. In this perspectives paper, we argue that striving for machine embodiment is a pathway to achieving effective and forgiving human-machine relationships. We discuss the mechanisms that help us identify ourselves and our bodies as separate from our environments and we describe their roles in achieving embodied cooperation. Using a representative selection of examples in neurally interfaced prosthetic limbs and intelligent mechatronics, we describe techniques to engage these same mechanisms when designing autonomous systems and their potential bidirectional interfaces.
Collapse
Affiliation(s)
- Jonathon S Schofield
- Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, United States
| | - Marcus A Battraw
- Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, United States
| | - Adam S R Parker
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Patrick M Pilarski
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathon W Sensinger
- Department of Electrical and Computer Engineering, Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | - Paul D Marasco
- Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
37
|
Huang H, Chen L, Chopp M, Young W, Robert Bach J, He X, Sarnowaska A, Xue M, Chunhua Zhao R, Shetty A, Siniscalco D, Guo X, Khoshnevisan A, Hawamdeh Z. The 2020 Yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2021; 9:1-12. [PMID: 37387779 PMCID: PMC10289216 DOI: 10.26599/jnr.2021.9040002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 09/23/2023] Open
Abstract
COVID-19 has been an emerging and rapidly evolving risk to people of the world in 2020. Facing this dangerous situation, many colleagues in Neurorestoratology did their best to avoid infection if themselves and their patients, and continued their work in the research areas described in the 2020 Yearbook of Neurorestoratology. Neurorestorative achievements and progress during 2020 includes recent findings on the pathogenesis of neurological diseases, neurorestorative mechanisms and clinical therapeutic achievements. Therapeutic progress during this year included advances in cell therapies, neurostimulation/neuromodulation, brain-computer interface (BCI), and pharmaceutical neurorestorative therapies, which improved neurological functions and quality of life for patients. Four clinical guidelines or standards of Neurorestoratology were published in 2020. Milestone examples include: 1) a multicenter randomized, double-blind, placebo-controlled study of olfactory ensheathing cell treatment of chronic stroke showed functional improvements; 2) patients after transhumeral amputation experienced increased sensory acuity and had improved effectiveness in work and other activities of daily life using a prosthesis; 3) a patient with amyotrophic lateral sclerosis used a steady-state visual evoked potential (SSVEP)-based BCI to achieve accurate and speedy computer input; 4) a patient with complete chronic spinal cord injury recovered both motor function and touch sensation with a BCI and restored ability to detect objects by touch and several sensorimotor functions. We hope these achievements motivate and encourage other scientists and physicians to increase neurorestorative research and its therapeutic applications.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, 100143, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine Beijing, Beijing, 100007, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Wise Young
- Department of Cell Biochemistry and Neuroscience, Rutgers University, New Jersey, USA
| | - John Robert Bach
- Center for Ventilator Management Alternatives, University Hospital, Newark, New Jersey, USA
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Anna Sarnowaska
- Translational Platform for Regenerative Medicine & Cell Therapy Team of The Central Nervous System Diseases, Polish Academy of Sciences, Warsaw, Poland
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury, Zhengzhou, 450001, Henan, China
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Ashok Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, USA
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli" via S. Maria di Costantinopoli, 16 80138, Naples, Italy
| | - Xiaoling Guo
- Neurological Center, The 981 Hospital of PLA, Chengde, 067000, Hebei, China
| | | | - Ziad Hawamdeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Page DM, George JA, Wendelken SM, Davis TS, Kluger DT, Hutchinson DT, Clark GA. Discriminability of multiple cutaneous and proprioceptive hand percepts evoked by intraneural stimulation with Utah slanted electrode arrays in human amputees. J Neuroeng Rehabil 2021; 18:12. [PMID: 33478534 PMCID: PMC7819250 DOI: 10.1186/s12984-021-00808-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrical stimulation of residual afferent nerve fibers can evoke sensations from a missing limb after amputation, and bionic arms endowed with artificial sensory feedback have been shown to confer functional and psychological benefits. Here we explore the extent to which artificial sensations can be discriminated based on location, quality, and intensity. METHODS We implanted Utah Slanted Electrode Arrays (USEAs) in the arm nerves of three transradial amputees and delivered electrical stimulation via different electrodes and frequencies to produce sensations on the missing hand with various locations, qualities, and intensities. Participants performed blind discrimination trials to discriminate among these artificial sensations. RESULTS Participants successfully discriminated cutaneous and proprioceptive sensations ranging in location, quality and intensity. Performance was significantly greater than chance for all discrimination tasks, including discrimination among up to ten different cutaneous location-intensity combinations (15/30 successes, p < 0.0001) and seven different proprioceptive location-intensity combinations (21/40 successes, p < 0.0001). Variations in the site of stimulation within the nerve, via electrode selection, enabled discrimination among up to five locations and qualities (35/35 successes, p < 0.0001). Variations in the stimulation frequency enabled discrimination among four different intensities at the same location (13/20 successes, p < 0.0005). One participant also discriminated among individual stimulation of two different USEA electrodes, simultaneous stimulation on both electrodes, and interleaved stimulation on both electrodes (20/24 successes, p < 0.0001). CONCLUSION Electrode location, stimulation frequency, and stimulation pattern can be modulated to evoke functionally discriminable sensations with a range of locations, qualities, and intensities. This rich source of artificial sensory feedback may enhance functional performance and embodiment of bionic arms endowed with a sense of touch.
Collapse
Affiliation(s)
| | - Jacob A George
- Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Suzanne M Wendelken
- Department of Anesthesiology, Maine Medical Center, Portland, ME, 04102, USA
| | - Tyler S Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Gregory A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
39
|
Chronic Use of a Sensitized Bionic Hand Does Not Remap the Sense of Touch. Cell Rep 2020; 33:108539. [PMID: 33357421 PMCID: PMC9793568 DOI: 10.1016/j.celrep.2020.108539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Electrical stimulation of tactile nerve fibers that innervated an amputated hand results in vivid sensations experienced at a specific location on the phantom hand, a phenomenon that can be leveraged to convey tactile feedback through bionic hands. Ideally, electrically evoked sensations would be experienced on the appropriate part of the hand: touch with the bionic index fingertip, for example, would elicit a sensation experienced on the index fingertip. However, the perceived locations of sensations are determined by the idiosyncratic position of the stimulating electrode in the nerve and thus are difficult to predict or control. This problem could be circumvented if perceived sensations shifted over time to become consistent with the position of the sensor that triggers them. We show that, after long-term use of a neuromusculoskeletal prosthesis that featured a mismatch between the sensor location and the resulting tactile experience, the perceived location of the touch did not change.
Collapse
|
40
|
George JA, Page DM, Davis TS, Duncan CC, Hutchinson DT, Rieth LW, Clark GA. Long-term performance of Utah slanted electrode arrays and intramuscular electromyographic leads implanted chronically in human arm nerves and muscles. J Neural Eng 2020; 17:056042. [PMID: 33045689 DOI: 10.1088/1741-2552/abc025] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE We explore the long-term performance and stability of seven percutaneous Utah Slanted Electrode Arrays (USEAs) and intramuscular recording leads (iEMGs) implanted chronically in the residual arm nerves and muscles of three human participants as a means to permanently restore sensorimotor function after transradial amputations. APPROACH We quantify the number of functional recording and functional stimulating electrodes over time. We also calculate the signal-to-noise ratio (SNR) of USEA and iEMG recordings and quantify the stimulation current necessary to evoke detectable sensory percepts. Furthermore, we quantify the consistency of the sensory modality, receptive field location, and receptive field size of USEA-evoked percepts. MAIN RESULTS In the most recent subject, involving USEAs with technical improvements, neural recordings persisted for 502 d (entire implant duration) and the number of functional recording electrodes for one USEA increased over time. However, for six out of seven USEAs across the three participants, the number of functional recording electrodes decreased within the first 2 months after implantation. The SNR of neural recordings and electromyographic recordings stayed relatively consistent over time. Sensory percepts were consistently evoked over the span of 14 months, were not significantly different in size, and highlighted the nerves' fascicular organization. The percentage of percepts with consistent modality or consistent receptive field location between sessions (∼1 month apart) varied between 0%-86.2% and 9.1%-100%, respectively. Stimulation thresholds and electrode impedances increased initially but then remained relatively stable over time. SIGNIFICANCE This work demonstrates improved performance of USEAs, and provides a basis for comparing the longevity and stability of USEAs to that of other neural interfaces. USEAs provide a rich repertoire of neural recordings and sensory percepts. Although their performance still generally declines over time, functionality can persist long-term. Future work should leverage the results presented here to further improve USEA design or to develop adaptive algorithms that can maintain a high level of performance.
Collapse
Affiliation(s)
- Jacob A George
- Physical Medicine & Rehabilitation, University of Utah, Salt Lake City, United States of America
| | | | | | | | | | | | | |
Collapse
|
41
|
Middleton A, Ortiz-Catalan M. Neuromusculoskeletal Arm Prostheses: Personal and Social Implications of Living With an Intimately Integrated Bionic Arm. Front Neurorobot 2020; 14:39. [PMID: 32792933 PMCID: PMC7393241 DOI: 10.3389/fnbot.2020.00039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022] Open
Abstract
People with limb loss are for the first time living chronically and uninterruptedly with intimately integrated neuromusculoskeletal prostheses. This new generation of artificial limbs are fixated to the skeleton and operated by bidirectionally transferred neural information. This unprecedented level of human-machine integration is bound to have profound psychosocial effects on the individuals living with these prostheses. Here, we examined the psychosociological impact on people as they integrate neuromusculoskeletal prostheses into their bodies and lives. Three people with transhumeral amputations participated in this study, all of whom had been living with neuromusculoskeletal prostheses in their daily lives between 2 and 6 years at the time of the interview. Direct neural sensory feedback had been enabled for 6 months to 2 years. Participants were interviewed about their experiences living with the neuromusculoskeletal prostheses in their home and professional daily lives. We analyzed these interviews to elucidate themes using an interpretive phenomenological approach that regards participants' own experiences as forms of expertise and knowledge-making. Our participant-generated results indicate that people adapted and integrated the technology into functional and social arenas of daily living, with positive psychosocial effects on self-esteem, self-image, and social relations intimately linked to improved trust of the prostheses. Participants expressed enhanced prosthetic function, increased and more diverse prosthesis use in tasks of daily living, and improved relationships between their prosthesis and phantom limb. Our interviews with patients also generated critiques of the language commonly used to describe human-prosthetic relations, including terms such as "embodiment," and the need for specificity surrounding the term "natural" with regard to control versus sensory feedback. Experiences living with neuromusculoskeletal prostheses were complex and subject-dependent, and therefore future research should consider human-machine interaction as a relationship that is constantly enacted, negotiated, and deeply contextualized.
Collapse
Affiliation(s)
- Alexandra Middleton
- Department of Anthropology, Princeton University, Princeton, NJ, United States
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Operational Area 3, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
42
|
Chandrasekaran S, Nanivadekar AC, McKernan G, Helm ER, Boninger ML, Collinger JL, Gaunt RA, Fisher LE. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. eLife 2020; 9:54349. [PMID: 32691733 PMCID: PMC7373432 DOI: 10.7554/elife.54349] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/21/2020] [Indexed: 12/14/2022] Open
Abstract
Restoring somatosensory feedback to people with limb amputations is crucial to improve prosthetic control. Multiple studies have demonstrated that peripheral nerve stimulation and targeted reinnervation can provide somatotopically relevant sensory feedback. While effective, the surgical procedures required for these techniques remain a major barrier to translatability. Here, we demonstrate in four people with upper-limb amputation that epidural spinal cord stimulation (SCS), a common clinical technique to treat pain, evoked somatosensory percepts that were perceived as emanating from the missing arm and hand. Over up to 29 days, stimulation evoked sensory percepts in consistent locations in the missing hand regardless of time since amputation or level of amputation. Evoked sensations were occasionally described as naturalistic (e.g. touch or pressure), but were often paresthesias. Increasing stimulus amplitude increased the perceived intensity linearly, without increasing area of the sensations. These results demonstrate the potential of SCS as a tool to restore somatosensation after amputations. Even some of the most advanced prosthetic arms lack an important feature: the ability to relay information about touch or pressure to the wearer. In fact, many people prefer to use simpler prostheses whose cables and harnesses pass on information about tension. However, recent studies suggest that electrical stimulation might give prosthesis users more sensation and better control. After an amputation, the nerves that used to deliver sensory information from the hand still exist above the injury. Stimulating these nerves can help to recreate sensations in the missing limb and improve the control of the prosthesis. Still, this stimulation requires complicated surgical interventions to implant electrodes in or around the nerves. Spinal cord stimulation – a technique where a small electrical device is inserted near the spinal cord to stimulate nerves – may be an easier alternative. This approach only requires a simple outpatient procedure, and it is routinely used to treat chronic pain conditions. Now, Chandrasekaran, Nanivadekar et al. show that spinal cord stimulation can produce the feeling of sensations in a person’s missing hand or arm. In the experiments, four people who had an arm amputation underwent spinal cord stimulation over 29 days. During the stimulation, the participants reported feeling electrical buzzing, vibration, or pressure in their missing limb. Changing the strength of the electric signals delivered to the spinal cord altered the intensity of these sensations. The experiments are a step toward developing better prosthetics that restore some sensation. Further studies are now needed to determine whether spinal cord stimulation would allow people to perform sensory tasks with a prosthetic, for example handling an object that they cannot see.
Collapse
Affiliation(s)
- Santosh Chandrasekaran
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States
| | - Ameya C Nanivadekar
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Gina McKernan
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, United States
| | - Eric R Helm
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, United States.,University of Pittsburgh Clinical Translational Science Institute, Pittsburgh, United States
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, United States
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Center for Neural Basis of Cognition, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
43
|
Sensinger JW, Dosen S. A Review of Sensory Feedback in Upper-Limb Prostheses From the Perspective of Human Motor Control. Front Neurosci 2020; 14:345. [PMID: 32655344 PMCID: PMC7324654 DOI: 10.3389/fnins.2020.00345] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
This manuscript reviews historical and recent studies that focus on supplementary sensory feedback for use in upper limb prostheses. It shows that the inability of many studies to speak to the issue of meaningful performance improvements in real-life scenarios is caused by the complexity of the interactions of supplementary sensory feedback with other types of feedback along with other portions of the motor control process. To do this, the present manuscript frames the question of supplementary feedback from the perspective of computational motor control, providing a brief review of the main advances in that field over the last 20 years. It then separates the studies on the closed-loop prosthesis control into distinct categories, which are defined by relating the impact of feedback to the relevant components of the motor control framework, and reviews the work that has been done over the last 50+ years in each of those categories. It ends with a discussion of the studies, along with suggestions for experimental construction and connections with other areas of research, such as machine learning.
Collapse
Affiliation(s)
- Jonathon W. Sensinger
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | - Strahinja Dosen
- Department of Health Science and Technology, The Faculty of Medicine, Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
44
|
Karakuş İ, Güçlü B. Psychophysical principles of discrete event-driven vibrotactile feedback for prostheses. Somatosens Mot Res 2020; 37:186-203. [PMID: 32448043 DOI: 10.1080/08990220.2020.1769055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose/aim of the study: We aimed to establish psychophysical principles for non-invasive vibrotactile feedback signalling discrete transition events (e.g., extension to flexion) during use of prostheses, especially for the upper limbs.Materials and methods: Two vibrotactile actuators were used on both upper arms of 10 able-bodied human participants. Absolute thresholds, psychometric functions, and magnitude estimates were measured to equalize the sensation magnitudes for the tested vibrotactile frequencies and skin sites. Then, same-different and pattern recognition tasks were run to evaluate, respectfully, the discrimination and closed-set identification of stimuli with varying parameters (2 frequencies, 2 magnitudes, 2 sites). Finally, parameters of the left/right stimuli were mapped to hypothetical prosthesis events representing object/force and movement type. The stimuli were applied sequentially in accordance with the discrete event-driven feedback paradigm.Results: Reliable psychophysical models could be established for individual participants as verified by repetitive threshold measurements and relative adjustment of stimulus levels based on sensation magnitudes. Discrimination accuracy was higher for magnitude versus frequency comparisons; and magnitude discrimination accuracy was correlated with magnitude estimate differences. Pattern recognition recall/precision rates decreased from ∼0.7 to ∼0.5 for sequential delivery of two stimulus patterns to one arm versus to two arms. Using the patterns as two and three consecutive prosthesis events yielded statistically similar performance rates not correlated with magnitude estimate differences.Conclusions: By careful calibration of stimuli based on psychophysical principles, discrete event-driven vibrotactile feedback can be used to signal manipulated object and movement information with moderate identification rates as shown by confusion matrices.
Collapse
Affiliation(s)
- İpek Karakuş
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|