1
|
Seo H, Han M, Choi JR, Kim S, Park J, Lee EH. Numerical Investigation of Layered Homogeneous Skull Model for Simulations of Transcranial Focused Ultrasound. Neuromodulation 2024:S1094-7159(24)00072-2. [PMID: 38691075 DOI: 10.1016/j.neurom.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND OBJECTIVES The influence of the intracranial pressure field must be discussed with the development of a single-element transducer for low-intensity transcranial focused ultrasound because the skull plays a significant role in blocking and dispersing ultrasound wave propagation. Ultrasound propagation is mainly affected by the structure and acoustic properties of the skull; thus, we aimed to investigate the impact of simplifying the acoustic properties of the skull on the simulation of the transcranial pressure field to present guidance for efficient skull modeling in full-wave simulations. MATERIALS AND METHODS We constructed a three-dimensional computational model for ultrasound transmission with the same structure but varying acoustic properties of the skull. The structural information and heterogeneous acoustic properties of the skull were acquired from computed tomography images, and we segmented the skull into three layers (3 L), including spongy and compact bones. We then assigned homogeneous acoustic properties to a single layer (1 L) or 3 L of the skull. In addition, we investigated the influence of different types of transducers and different ultrasound frequencies (1.1 MHz, 0.5 MHz, and 0.25 MHz) on the intracranial pressure field to provide a comparison of the heterogenous and homogeneous models. RESULTS We indicated the importance of numerical simulations in estimating the intracranial pressure field of the skull owing to beam distortions. When we simplified the skull model, both the 1 L and 3 L models showed contours of the acoustic focus comparable to those of the heterogeneous model. When we evaluated the peak pressure and volume of the acoustic focus, the 1 L model produced a better estimation of peak pressure with a difference <10%, and the 3 L model is suitable to obtain smaller errors in the volume of the acoustic focus. CONCLUSIONS In conclusion, we examined the possibility of simplification of skull models using 1 L and 3 L homogeneous properties in the numerical simulation for focused ultrasound. The results show that the layered homogeneous model can provide characteristics comparable to those of the acoustic focus in heterogeneous models.
Collapse
Affiliation(s)
- Hyeon Seo
- Department of AI Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea; Department of Computer Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Mun Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Seungmin Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea; Department of High-Tech Medical Device, College of Future Industry, Gachon University, Seongnam, Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea.
| |
Collapse
|
2
|
Angla C, Chouh H, Mondou P, Toullelan G, Perlin K, Brulon V, De Schlichting E, Larrat B, Gennisson JL, Chatillon S. New semi-analytical method for fast transcranial ultrasonic field simulation. Phys Med Biol 2024; 69:095017. [PMID: 38537292 DOI: 10.1088/1361-6560/ad3882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Objective.To optimize and ensure the safety of ultrasound brain therapy, personalized transcranial ultrasound simulations are very useful. They allow to predict the pressure field, depending on the patient skull and probe position. Most transcranial ultrasound simulations are based on numerical methods which have a long computation time and a high memory usage. The goal of this study is to develop a new semi-analytical field computation method that combines realism and computation speed.Approach.Instead of the classic ray tracing, the ultrasonic paths are computed by time of flight minimization. Then the pressure field is computed using the pencil method. This method requires a smooth and homogeneous skull model. The simulation algorithm, so-called SplineBeam, was numerically validated, by comparison with existing solvers, and experimentally validated by comparison with hydrophone measured pressure fields through anex vivohuman skull.Main results.SplineBeam simulated pressure fields were close to the experimentally measured ones, with a focus position difference of the order of the positioning error and a maximum pressure difference lower than 6.02%. In addition, for those configurations, SplineBeam computation time was lower than another simulation software, k-Wave's, by two orders of magnitude, thanks to its capacity to compute the field only at the focal spot.Significance.These results show the potential of this new method to compute fast and realistic transcranial pressure fields. The combination of this two assets makes it a promising tool for real time transcranial pressure field prediction during ultrasound brain therapy interventions.
Collapse
Affiliation(s)
- C Angla
- Université Paris-Saclay, CEA List, F-91120, Palaiseau, France
- Université Paris-Saclay, CNRS, Inserm, CEA, BioMaps, F-91190, Orsay, France
| | - H Chouh
- Université Paris-Saclay, CEA List, F-91120, Palaiseau, France
| | - P Mondou
- Université Paris-Saclay, CNRS, CEA, Neurospin F-91191, Gif-sur-Yvette, France
| | - G Toullelan
- Université Paris-Saclay, CEA List, F-91120, Palaiseau, France
| | - K Perlin
- Université Paris-Saclay, CEA List, F-91120, Palaiseau, France
| | - V Brulon
- Université Paris-Saclay, CNRS, Inserm, CEA, BioMaps, F-91190, Orsay, France
| | - E De Schlichting
- CHU Grenoble-Alpes, Service de Neurochirurgie, F-38700, Grenoble, France
| | - B Larrat
- Université Paris-Saclay, CNRS, CEA, Neurospin F-91191, Gif-sur-Yvette, France
| | - J-L Gennisson
- Université Paris-Saclay, CNRS, Inserm, CEA, BioMaps, F-91190, Orsay, France
| | - S Chatillon
- Université Paris-Saclay, CEA List, F-91120, Palaiseau, France
| |
Collapse
|
3
|
Kim C, Eames M, Paeng DG. Improving Sonication Efficiency in Transcranial MR-Guided Focused Ultrasound Treatment: A Patient-Data Simulation Study. Bioengineering (Basel) 2023; 11:27. [PMID: 38247904 PMCID: PMC10813010 DOI: 10.3390/bioengineering11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
The potential improvement in sonication efficiency achieved by tilting the focused ultrasound (FUS) transducer of the transcranial MR-guided FUS system is presented. A total of 56 cases of patient treatment data were used. The relative position of the clinical FUS transducer to the patient's head was reconstructed, and region-specific skull density and porosity were calculated based on the patient's CT volume image. The total transmission coefficient of acoustic waves emitted from each channel was calculated. Then, the total energy penetrating the human skull-which represents the sonication efficiency-was estimated. As a result, improved sonication efficiency was by titling the FUS transducer to a more appropriate angle achieved in all 56 treatment cases. This simulation result suggests the potential improvement in transcranial-focused ultrasound treatment by simply adjusting the transducer angle.
Collapse
Affiliation(s)
- Changsoo Kim
- Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Republic of Korea;
| | - Matthew Eames
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA;
- Department of Radiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Dong-Guk Paeng
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA;
- Ocean System Engineering, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
4
|
Yin Y, Yan S, Huang J, Zhang B. Transcranial Ultrasonic Focusing by a Phased Array Based on Micro-CT Images. SENSORS (BASEL, SWITZERLAND) 2023; 23:9702. [PMID: 38139547 PMCID: PMC10747353 DOI: 10.3390/s23249702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In this paper, we utilize micro-computed tomography (micro-CT) to obtain micro-CT images with a resolution of 60 μm and establish a micro-CT model based on the k-wave toolbox, which can visualize the microstructures in trabecular bone, including pores and bone layers. The transcranial ultrasound phased array focusing field characteristics in the micro-CT model are investigated. The ultrasonic waves are multiply scattered in skull and time delays calculations from the transducer to the focusing point are difficult. For this reason, we adopt the pulse compression method and the linear frequency modulation Barker code to compute the time delay and implement phased array focusing in the micro-CT model. It is shown by the simulation results that ultrasonic loss is mainly caused by scattering from the microstructures of the trabecular bone. The ratio of main and side lobes of the cross-correlation calculation is improved by 5.53 dB using the pulse compression method. The focusing quality and the calculation accuracy of time delay are improved. Meanwhile, the beamwidth at the focal point and the sound pressure amplitude decrease with the increase in the signal frequency. Focusing at different depths indicates that the beamwidth broadens with the increase in the focusing depth, and beam deflection focusing maintains good consistency in the focusing effect at a distance of 9 mm from the focal point. This indicates that the phased-array method has good focusing results and focus tunability in deep cranial brain. In addition, the sound pressure at the focal point can be increased by 8.2% through amplitude regulation, thereby enhancing focusing efficiency. The preliminary experiment verification is conducted with an ex vivo skull. It is shown by the experimental results that the phased array focusing method using pulse compression to calculate the time delay can significantly improve the sound field focusing effect and is a very effective transcranial ultrasound focusing method.
Collapse
Affiliation(s)
- Yuxin Yin
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; (Y.Y.); (S.Y.); (B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouguo Yan
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; (Y.Y.); (S.Y.); (B.Z.)
| | - Juan Huang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; (Y.Y.); (S.Y.); (B.Z.)
| | - Bixing Zhang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; (Y.Y.); (S.Y.); (B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Jiang C, Li B, Xie L, Liu C, Xu K, Zhan Y, Ta D. Ray theory-based compounded plane wave ultrasound imaging for aberration corrected transcranial imaging: Phantom experiments and simulations. ULTRASONICS 2023; 135:107124. [PMID: 37541030 DOI: 10.1016/j.ultras.2023.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Compounded plane wave imaging (CPWI) allows high-frame-rate measurement and has been one of the most promising modalities for real-time brain imaging. However, ultrasonic brain imaging using the CPWI modality is usually performed with a worn thin or removal of the skull layer. Otherwise, the skull layer is expected to distort the ultrasonic wavefronts and significantly decrease intracranial imaging quality. The motivation of this study is to investigate a CPWI method for transcranial brain imaging with the skull layer. A coordinate transformation ray-tracing (CTRT) approach was proposed to track the distorted ultrasonic wavefronts and calculate the time delays for the ultrasound plane wave passing through the skull layer. With an accurate correction for the time delays in beamforming, the CTRT-based CPWI could achieve high-quality intracranial images with the presence of skulls. The proposed CTRT-based CPWI method was verified using a simplified three-layer transcranial model. The full-wave simulation demonstrated that CTRT could accurately (i.e., relative percentage error less than0.18%) track the distorted transmitting wavefront through skull. Compared with the CPWI without aberration correction, the CTRT-based CPWI provided high-quality intracranial imaging and could accurately localize intracranial point scatterers; specifically, positioning error decreases from 0.5 mm to 0.1 mm on average in the axial direction and from 0.7 mm to 0.1 mm on average in the lateral direction. As the compounded angles increased in the CTRT-based CPWI, the contrast improved by 16.2 dB on average for the region of interest, and the array performance indicator (representing resolution) decreased by 4.0 on average for the intracranial point scatterers. The CTRT is of low computational cost compared with full wave simulation. This study suggested that the proposed CTRT-based CPWI might have the potential for real-time and non-invasive transcranial aberration-corrected imaging.
Collapse
Affiliation(s)
- Chen Jiang
- Micro-nano System Center, School of Information Science and Technology, Fudan University, 200438, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, 200433, Shanghai, China
| | - Linru Xie
- Academy for Engineering and Technology, Fudan University, 200433, Shanghai, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, 200433, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, 201203, Shanghai, China
| | - Kailiang Xu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 200438, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, 201203, Shanghai, China.
| | - Yiqiang Zhan
- Micro-nano System Center, School of Information Science and Technology, Fudan University, 200438, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 200438, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
6
|
Drainville RA, Chatillon S, Moore D, Snell J, Padilla F, Lafon C. A simulation study on the sensitivity of transcranial ray-tracing ultrasound modeling to skull properties. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1211-1225. [PMID: 37610718 DOI: 10.1121/10.0020761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
In transcranial focused ultrasound therapies, such as treating essential tremor via thermal ablation in the thalamus, acoustic energy is focused through the skull using a phased-array transducer. Ray tracing is a computationally efficient method that can correct skull-induced phase aberrations via per-element phase delay calculations using patient-specific computed tomography (CT) data. However, recent studies show that variations in CT-derived Hounsfield unit may account for only 50% of the speed of sound variability in human skull specimens, potentially limiting clinical transcranial ultrasound applications. Therefore, understanding the sensitivity of treatment planning methods to material parameter variations is essential. The present work uses a ray-tracing simulation model to explore how imprecision in model inputs, arising from clinically significant uncertainties in skull properties or considerations of acoustic phenomena, affects acoustic focusing quality through the skull. We propose and validate new methods to optimize ray-tracing skull simulations for clinical treatment planning, relevant for predicting intracranial target's thermal rise, using experimental data from ex-vivo human skulls.
Collapse
Affiliation(s)
| | | | - David Moore
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903, USA
| | - John Snell
- Histosonics, Ann Arbor, Michigan 48103, USA
| | - Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903, USA
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| |
Collapse
|
7
|
Xu L, Pacia CP, Gong Y, Hu Z, Chien CY, Yang L, Gach HM, Hao Y, Comron H, Huang J, Leuthardt EC, Chen H. Characterization of the Targeting Accuracy of a Neuronavigation-Guided Transcranial FUS System In Vitro, In Vivo, and In Silico. IEEE Trans Biomed Eng 2023; 70:1528-1538. [PMID: 36374883 PMCID: PMC10176741 DOI: 10.1109/tbme.2022.3221887] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) is an emerging technique for the noninvasive and spatiotemporally controlled diagnosis of brain cancer by inducing blood-brain barrier (BBB) disruption to release brain tumor-specific biomarkers into the blood circulation. The feasibility, safety, and efficacy of sonobiopsy were demonstrated in both small and large animal models using magnetic resonance-guided FUS devices. However, the high cost and complex operation of magnetic resonance-guided FUS devices limit the future broad application of sonobiopsy in the clinic. In this study, a neuronavigation-guided sonobiopsy device is developed and its targeting accuracy is characterized in vitro, in vivo, and in silico. The sonobiopsy device integrated a commercially available neuronavigation system (BrainSight) with a nimble, lightweight FUS transducer. Its targeting accuracy was characterized in vitro in a water tank using a hydrophone. The performance of the device in BBB disruption was verified in vivo using a pig model, and the targeting accuracy was quantified by measuring the offset between the target and the actual locations of BBB opening. The feasibility of the FUS device in targeting glioblastoma (GBM) tumors was evaluated in silico using numerical simulation by the k-Wave toolbox in glioblastoma patients. It was found that the targeting accuracy of the neuronavigation-guided sonobiopsy device was 1.7 ± 0.8 mm as measured in the water tank. The neuronavigation-guided FUS device successfully induced BBB disruption in pigs with a targeting accuracy of 3.3 ± 1.4 mm. The targeting accuracy of the FUS transducer at the GBM tumor was 5.5 ± 4.9 mm. Age, sex, and incident locations were found to be not correlated with the targeting accuracy in GBM patients. This study demonstrated that the developed neuronavigation-guided FUS device could target the brain with a high spatial targeting accuracy, paving the foundation for its application in the clinic.
Collapse
|
8
|
Angla C, Larrat B, Gennisson JL, Chatillon S. Transcranial ultrasound simulations: A review. Med Phys 2023; 50:1051-1072. [PMID: 36047387 DOI: 10.1002/mp.15955] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
Transcranial ultrasound is more and more used for therapy and imaging of the brain. However, the skull is a highly attenuating and aberrating medium, with different structures and acoustic properties among samples and even within a sample. Thus, case-specific simulations are needed to perform transcranial focused ultrasound interventions safely. In this article, we provide a review of the different methods used to model the skull and to simulate ultrasound propagation through it.
Collapse
Affiliation(s)
| | - Benoit Larrat
- Université Paris Saclay, CNRS, CEA, DRF/JOLIOT/NEUROSPIN/BAOBAB, Gif-sur-Yvette, France
| | | | | |
Collapse
|
9
|
Chen M, Peng C, Wu H, Huang CC, Kim T, Traylor Z, Muller M, Chhatbar PY, Nam CS, Feng W, Jiang X. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation. Med Phys 2023; 50:38-49. [PMID: 36342303 PMCID: PMC10099743 DOI: 10.1002/mp.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound (tFUS) has gained considerable attention as a promising noninvasive neuromodulatory technique for human brains. However, the complex morphology of the skull hinders scholars from precisely predicting the acoustic energy transmitted and the region of the brain impacted during the sonication. This is due to the fact that different ultrasound frequencies and skull morphology variations greatly affect wave propagation through the skull. PURPOSE Although the acoustic properties of human skull have been studied for tFUS applications, such as tumor ablation using a multielement phased array, there is no consensus about how to choose a single-element focused ultrasound (FUS) transducer with a suitable frequency for neuromodulation. There are interests in exploring the magnitude and dimension of tFUS beam through human parietal bone for modulating specific brain lobes. Herein, we aim to investigate the wave propagation of tFUS on human skulls to understand and address the concerns above. METHODS Both experimental measurements and numerical modeling were conducted to investigate the transmission efficiency and beam pattern of tFUS on five human skulls (C3 and C4 regions) using single-element FUS transducers with six different frequencies (150-1500 kHz). The degassed skull was placed in a water tank, and a calibrated hydrophone was utilized to measure acoustic pressure past it. The cranial computed tomography scan data of each skull were obtained to derive a high-resolution acoustic model (grid point spacing: 0.25 mm) in simulations. Meanwhile, we modified the power-law exponent of acoustic attenuation coefficient to validate numerical modeling and enabled it to be served as a prediction tool, based on the experimental measurements. RESULTS The transmission efficiency and -6 dB beamwidth were evaluated and compared for various frequencies. An exponential decrease in transmission efficiency and a logarithmic decrease of -6 dB beamwidth with an increase in ultrasound frequency were observed. It is found that a >750 kHz ultrasound leads to a relatively lower tFUS transmission efficiency (<5%), whereas a <350 kHz ultrasound contributes to a relatively broader beamwidth (>5 mm). Based on these observations, we further analyzed the dependence of tFUS wave propagation on FUS transducer aperture size. CONCLUSIONS We successfully studied tFUS wave propagation through human skulls at different frequencies experimentally and numerically. The findings have important implications to predict tFUS wave propagation for ultrasound neuromodulation in clinical applications, and guide researchers to develop advanced ultrasound transducers as neural interfaces.
Collapse
Affiliation(s)
- Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.,School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Chih-Chung Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zachary Traylor
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chang S Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Slezak C, Flatscher J, Slezak P. A Comparative Feasibility Study for Transcranial Extracorporeal Shock Wave Therapy. Biomedicines 2022; 10:biomedicines10061457. [PMID: 35740477 PMCID: PMC9219950 DOI: 10.3390/biomedicines10061457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 12/03/2022] Open
Abstract
The potential beneficial regenerative and stimulatory extracorporeal shock wave therapy (ESWT) applications to the central nervous system have garnered interest in recent years. Treatment zones for these indications are acoustically shielded by bones, which heavily impact generated sound fields. We present the results of high-resolution tissue-realistic simulations, comparing the viability of different ESWT applicators in their use for transcranial applications. The performances of electrohydraulic, electromagnetic, and piezoelectric transducers for key reflector geometries are compared. Based on density information obtained from CT imaging of the head, we utilized the non-linear wave propagation toolset Matlab k-Wave to obtain spatial therapeutic sound field geometries and waveforms. In order to understand the reliability of results on the appropriate modeling of the skull, three different bone attenuation models were compared. We find that all currently clinically ESWT applicator technologies show significant retention of peak pressures and energies past the bone barrier. Electromagnetic transducers maintain a significantly higher energy flux density compared to other technologies while low focusing strength piezoelectric applicators have the weakest transmissions. Attenuation estimates provide insights into sound field degradation and energy losses, indicating that effective transcranial therapies can readily be attained with current applicators. Furthermore, the presented approach will allow for future targeted in silico development and the design of applicators and therapy plans to ultimately improve therapeutic outcomes.
Collapse
Affiliation(s)
- Cyrill Slezak
- Department of Physics, Utah Valley University, Orem, UT 84058, USA;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Jonas Flatscher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria;
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
11
|
Yu K, Liu C, Niu X, He B. Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-Related Cortical Activity in Humans. IEEE Trans Biomed Eng 2021; 68:1923-1931. [PMID: 33055021 PMCID: PMC8046844 DOI: 10.1109/tbme.2020.3030892] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) is an emerging non-invasive brain stimulation tool for safely and reversibly modulating brain circuits. The effectiveness of tFUS on human brain has been demonstrated, but how tFUS influences the human voluntary motor processing in the brain remains unclear. METHODS We apply low-intensity tFUS to modulate the movement-related cortical potential (MRCP) originating from human subjects practicing a voluntary foot tapping task. 64-channel electroencephalograph (EEG) is recorded concurrently and further used to reconstruct the brain source activity specifically at the primary leg motor cortical area using the electrophysiological source imaging (ESI). RESULTS The ESI illustrates the ultrasound modulated MRCP source dynamics with high spatiotemporal resolutions. The MRCP source is imaged and its source profile is further evaluated for assessing the tFUS neuromodulatory effects on the voluntary MRCP. Moreover, the effect of ultrasound pulse repetition frequency (UPRF) is further assessed in modulating the MRCP. The ESI results show that tFUS significantly increases the MRCP source profile amplitude (MSPA) comparing to a sham ultrasound condition, and further, a high UPRF enhances the MSPA more than a low UPRF does. CONCLUSION The present results demonstrate the neuromodulatory effects of the low-intensity tFUS on enhancing the human voluntary movement-related cortical activities evidenced through the ESI. SIGNIFICANCE This work provides the first evidence of tFUS enhancing the human endogenous motor cortical activities through excitatory modulation.
Collapse
Affiliation(s)
- Kai Yu
- Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Xiaodan Niu
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bin He
- Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|