1
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Fernandez-Comaduran M, Verbrugghe M, Xu JSM, Minotti S, Lynch J, Biswas J, Wu T, Durham H, Yeo GW, Vera M. Localized synthesis of molecular chaperones sustains neuronal proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560761. [PMID: 37873158 PMCID: PMC10592939 DOI: 10.1101/2023.10.03.560761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.
Collapse
|
2
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
3
|
Stanley TR, Otero EM, Knight AL, Saxton AD, Ding X, Borgen M, Kraemer BC, Kim Guisbert KS, Guisbert E. Activation of the heat shock response as a therapeutic strategy for tau toxicity. Dis Model Mech 2024; 17:dmm050635. [PMID: 39352120 PMCID: PMC11463952 DOI: 10.1242/dmm.050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/15/2024] [Indexed: 10/03/2024] Open
Abstract
Alzheimer's disease is associated with the misfolding and aggregation of two distinct proteins, beta-amyloid and tau. Previously, it has been shown that activation of the cytoprotective heat shock response (HSR) pathway reduces beta-amyloid toxicity. Here, we show that activation of the HSR is also protective against tau toxicity in a cell-autonomous manner. Overexpression of HSF-1, the master regulator of the HSR, ameliorates the motility defect and increases the lifespan of transgenic C. elegans expressing human tau. By contrast, RNA interference of HSF-1 exacerbates the motility defect and shortens lifespan. Targeting regulators of the HSR also affects tau toxicity. Additionally, two small-molecule activators of the HSR, Geranylgeranylacetone (GGA) and Arimoclomol (AC), have substantial beneficial effects. Taken together, this research expands the therapeutic potential of HSR manipulation to tauopathies and reveals that the HSR can impact both beta-amyloid and tau proteotoxicity in Alzheimer's disease.
Collapse
Affiliation(s)
- Taylor R. Stanley
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Elizabeth M. Otero
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Amy L. Knight
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Aleen D. Saxton
- Geriatrics Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Healthcare System, 1660 South Columbian Way Seattle, WA 98108-1532, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Harborview Medical Center, 325 9th Ave, Box 359755, Seattle, WA 98104-2499, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Box 356560, Seattle, WA 98195-6560, USA
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Box 357470, Seattle, WA 98195, USA
| | - Xinxing Ding
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Melissa Borgen
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Healthcare System, 1660 South Columbian Way Seattle, WA 98108-1532, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Harborview Medical Center, 325 9th Ave, Box 359755, Seattle, WA 98104-2499, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Box 356560, Seattle, WA 98195-6560, USA
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Box 357470, Seattle, WA 98195, USA
| | - Karen S. Kim Guisbert
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
- Department of Biology, College of Arts and Sciences, University of Nebraska Omaha, Omaha, Nebraska
| | - Eric Guisbert
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
- Department of Biology, College of Arts and Sciences, University of Nebraska Omaha, Omaha, Nebraska
| |
Collapse
|
4
|
Rifai OM, Waldron FM, O'Shaughnessy J, Read FL, Gilodi M, Pastore A, Shneider N, Tartaglia GG, Zacco E, Spence H, Gregory JM. Amygdala TDP-43 pathology is associated with behavioural dysfunction and ferritin accumulation in amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596819. [PMID: 38854008 PMCID: PMC11160765 DOI: 10.1101/2024.06.01.596819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cognitive and behavioural symptoms associated with amyotrophic lateral sclerosis and frontotemporal spectrum disorders (ALSFTSD) are thought to be driven, at least in part, by the pathological accumulation of TDP-43. Methods Here we examine post-mortem tissue from six brain regions associated with cognitive and behavioural symptoms in a cohort of 30 people with sporadic ALS (sALS), a proportion of which underwent standardized neuropsychological behavioural assessment as part of the Edinburgh Cognitive ALS Screen (ECAS). Results Overall, the behavioural screen performed as part of the ECAS predicted accumulation of pathological phosphorylated TDP-43 (pTDP-43) with 100% specificity and 86% sensitivity in behaviour-associated brain regions. Notably, of these regions, pathology in the amygdala was the most predictive correlate of behavioural dysfunction in sALS. In the amygdala of sALS patients, we show variation in morphology, cell type predominance, and severity of pTDP-43 pathology. Further, we demonstrate that the presence and severity of intra-neuronal pTDP-43 pathology, but not astroglial pathology, or phosphorylated Tau pathology, is associated with behavioural dysfunction. Cases were also evaluated using a TDP-43 aptamer (TDP-43APT), which revealed that pathology was not only associated with behavioural symptoms, but also with ferritin levels, a measure of brain iron. Conclusions Intra-neuronal pTDP-43 and cytoplasmic TDP-43APT pathology in the amygdala is associated with behavioural symptoms in sALS. TDP-43APT staining intensity is also associated with increased ferritin, regardless of behavioural phenotype, suggesting that ferritin increases may occur upstream of clinical manifestation, in line with early TDP-43APT pathology, representing a potential region-specific imaging biomarker of early disease in ALS.
Collapse
Affiliation(s)
- Olivia M Rifai
- Centre for Discovery Brain Sciences, University of Edinburgh, UK
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, USA
| | | | | | - Fiona L Read
- Institute of Medical Sciences, University of Aberdeen, UK
| | - Martina Gilodi
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Neil Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, USA
| | - Gian Gaetano Tartaglia
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Elsa Zacco
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Holly Spence
- Institute of Medical Sciences, University of Aberdeen, UK
| | | |
Collapse
|
5
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
6
|
Ugalde MV, Alecki C, Rizwan J, Le P, Jacob-Tomas S, Xu JM, Minotti S, Wu T, Durham H, Yeo G. Localized molecular chaperone synthesis maintains neuronal dendrite proteostasis. RESEARCH SQUARE 2023:rs.3.rs-3673702. [PMID: 38168440 PMCID: PMC10760236 DOI: 10.21203/rs.3.rs-3673702/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhanced HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites was impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured mouse motor neurons and expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a crucial and unexpected neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gene Yeo
- University of California, San Diego
| |
Collapse
|
7
|
Pahal S, Chaudhary A, Singh S. Screening of natural compounds against SOD1 as a therapeutic target for Amyotrophic lateral sclerosis. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180819666211228093736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Amyotrophic lateral sclerosis (ALS) is an uncommon and progressive neurological illness that predominantly includes the neurons liable for voluntary muscular activities. Starting from weakness or stiffness in muscles, this gradually exploits the strength and ability to speak, eat, move and even breathe. Its exact mechanism is still not clear, but mutations in the SOD1 gene have been reported to cause ALS, and some studies also found involvement of SOD1 overexpression in the pathogenesis of ALS. As of now, there is no remedy available for its cure.
Objective:
To identify the potential inhibitors for wild type 1HL5, l113T mutant, and A4V mutant of SOD1 (Superoxide Dismutase 1) protein.
Methods: In this study, in silico approaches like virtual screening, molecular docking, pharmacokinetic parameters study, and molecular dynamics simulation were used to identify the best potential inhibitors against wild type and mutant SOD1 protein.
Methods:
In this study, in silico approaches like virtual screening, molecular docking, pharmacokinetic parameters study, and molecular dynamics simulation were used to identify the best potential inhibitors against wild type and mutant SOD1 protein.
Results:
On the basis of binding affinity and binding energy, the top three compounds ZINC000095486263, ZINC000095485989, and ZINC000028462577, were observed as the best compounds. In the case of 1HL5, ZINC000095486263 had the highest binding affinity with docking score -10.62 Kcal/mol, 1UXM with ZINC000095485989 had the highest docking score -12.03 Kcal/mol, and 4A7V with ZINC000028462577 was found -11.72 Kcal/mol. Further, Molecular Dynamic simulations (MDS) results showed that the ZINC000095486263, ZINC000095485989, and ZINC000095485956 compounds were formed a stable complex with 1HL5, 1UXM, and 4A7V, respectively
Conclusions:
: After analyzing the results, we hereby conclude that naturals compounds such as ZINC000095486263, ZINC000095485989, and ZINC000095485956 could be used as a potential inhibitor of 1HL5, 1UXM, and 4A7V, respectively, for ALS treatment and could be used as a drug. Further, In vivo/vitro study of these compounds could be a future direction in the field of drug discovery.
Collapse
Affiliation(s)
- Sonu Pahal
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagarj, Uttar Pradesh 211015, India
| | - Amit Chaudhary
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Prayagarj, Uttar Pradesh 211004, India.
Authors ORCHID id - Sonu Pahal (0000-0001-8332-4198), Amit Chaudhary (0000-0002-3079-7239), Sangeeta Singh (0000-0002-04781663)
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagarj, Uttar Pradesh 211015, India
| |
Collapse
|
8
|
Molecular and pharmacological chaperones for SOD1. Biochem Soc Trans 2021; 48:1795-1806. [PMID: 32794552 PMCID: PMC7458393 DOI: 10.1042/bst20200318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
The efficacy of superoxide dismutase-1 (SOD1) folding impacts neuronal loss in motor system neurodegenerative diseases. Mutations can prevent SOD1 post-translational processing leading to misfolding and cytoplasmic aggregation in familial amyotrophic lateral sclerosis (ALS). Evidence of immature, wild-type SOD1 misfolding has also been observed in sporadic ALS, non-SOD1 familial ALS and Parkinson's disease. The copper chaperone for SOD1 (hCCS) is a dedicated and specific chaperone that assists SOD1 folding and maturation to produce the active enzyme. Misfolded or misfolding prone SOD1 also interacts with heat shock proteins and macrophage migration inhibitory factor to aid folding, refolding or degradation. Recognition of specific SOD1 structures by the molecular chaperone network and timely dissociation of SOD1-chaperone complexes are, therefore, important steps in SOD1 processing. Harnessing these interactions for therapeutic benefit is actively pursued as is the modulation of SOD1 behaviour with pharmacological and peptide chaperones. This review highlights the structural and mechanistic aspects of a selection of SOD1-chaperone interactions together with their impact on disease models.
Collapse
|
9
|
UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron 2021; 109:1949-1962.e6. [PMID: 33991504 DOI: 10.1016/j.neuron.2021.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/09/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Expansion of a hexanucleotide repeat GGGGCC (G4C2) in the intron of the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Transcripts carrying G4C2 repeat expansions generate neurotoxic dipeptide repeat (DPR) proteins, including poly-Gly-Ala (poly-GA), which tends to form protein aggregates. Here, we demonstrate that UBQLN2, another ALS/FTD risk factor, is recruited to reduce poly-GA aggregates and alleviate poly-GA-induced neurotoxicity. UBQLN2 could recognize HSP70 ubiquitination, which facilitates the UBQLN2-HSP70-GA complex formation and promotes poly-GA degradation. ALS/FTD-related UBQLN2 mutants fail to bind HSP70 and clear poly-GA aggregates. Disruption of the interaction between UBQLN2 and HSP70 inhibits poly-GA aggregation in C9-ALS/FTD iPSC-derived neurons. Finally, enhancing HSP70 by the chemical compound 17AAG at the adult stage mitigates behavioral defects in poly-GA animals. Our findings suggest a critical role of the UBQLN2-HSP70 axis in protein aggregate clearance in C9-ALS/FTD.
Collapse
|
10
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|