1
|
Niszezak CM, Sonza A, Garrett A, Santos GM. Muscle oxygenation and pain in different types of temporomandibular disorders. Clin Oral Investig 2024; 28:410. [PMID: 38954100 DOI: 10.1007/s00784-024-05806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES Studies exploring variations in peripheral muscle oxygenation and pressure pain thresholds (PPT) of masticatory muscles in individuals with Temporomandibular Disorders (TMDs) are limited. The purpose of this study was to compare variations in peripheral oxygenation of the masseter muscle; PPT of the masseter and temporal muscles and correlate peripheral muscle oxygenation and PPT of the masseter muscle in individuals with different types of TMDs. MATERIALS AND METHODS Cross-sectional study involving 116 participants classified into three groups: muscle group (MG, n = 32), joint group (JG, n = 30) and muscle-joint group (MJG, n = 54). Individuals aged 26.97 ± 6.93, 68.97% female, 31,03% males were included. All participants were evaluated using the Diagnostic Criteria for Temporomandibular Disorders, Near-infrared spectroscopy (NIRS) for peripheral muscle oxygenation and pressure algometer for PPT. RESULTS There was no difference in masseter muscle oxygenation among groups. In the masseter muscle, a weakly positive correlation was observed between PPT and variation in tissue saturation index in the MG (rho = 0.365) and JG (rho = 0.317). In addition, the MJG expressed lower PPT (p = 0.004) than JG, demonstrating that MJG had more pain in this muscle. CONCLUSIONS MJG have lower PPT in the masseter muscle. Although the PPT is dependent on the type of TMDs, the correlation between PPT and oxygenation is weak. All TMDs groups evaluated (MG, JG, MJG) showed hemodynamic similarities of the masseter muscle. CLINICAL RELEVANCE Understanding pain thresholds and the hemodynamic behavior of the masticatory muscles contributes to a more assertive physiotherapeutic assessment in TMDs, serving as a basis for careful and individualized interventions.
Collapse
Affiliation(s)
- Cleide Mara Niszezak
- Posture and Balance Laboratory (Lapeq), Health and Sport Sciences Center, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil
- Graduate Program in Physiotherapy, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil
| | - Anelise Sonza
- Graduate Program in Physiotherapy, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil
- Laboratory of Development and Postural Control, Health and Sports Sciences Center, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil
- Physiotherapy Department, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil
- Human Movement Sciences Graduate Program, Health and Sports Sciences Center, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil
| | - Andreza Garrett
- Laboratory of Development and Postural Control, Health and Sports Sciences Center, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil
- Human Movement Sciences Graduate Program, Health and Sports Sciences Center, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil
| | - Gilmar Moraes Santos
- Posture and Balance Laboratory (Lapeq), Health and Sport Sciences Center, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil.
- Graduate Program in Physiotherapy, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil.
- Physiotherapy Department, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil.
- Human Movement Sciences Graduate Program, Health and Sports Sciences Center, Santa Catarina State University (UDESC), St Pascoal Simone, 358, Coqueiros, Florianopolis, Santa Catarina, 88080-350, Brazil.
| |
Collapse
|
2
|
Baroni A, Fregna G, Lamberti N, Manfredini F, Straudi S. Fatigue can influence the development of late-onset pain in post-COVID-19 syndrome: An observational study. Eur J Pain 2024; 28:901-912. [PMID: 38155562 DOI: 10.1002/ejp.2228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Late-onset pain is frequent following COVID-19, and many pathogenetic mechanisms have been proposed. Identifying the main features of patients may help in designing tailored rehabilitative interventions. METHODS We enrolled post-COVID-19 patients with an increase in pain intensity of two points on the COVID-19 Yorkshire Rehabilitation Scale (C19-YRS) at 52 weeks compared to the pre-COVID-19 condition. All subjects were retrospectively monitored at 12, 26, and 52 weeks. A specific pain assessment was performed to determine the characteristics and mechanisms of pain. Catastrophizing, kinesiophobia, and other psychological symptoms were evaluated. The pressure pain threshold (PPT) and temporal summation (TS) were measured and compared in age- and sex-matched healthy controls to analyse pain characteristics. RESULTS A total of 67 patients were recruited, with 20 of them presenting an increase in pain at 52 weeks. Subjects of the two subgroups were similar in demographic and clinical characteristics at baseline; significant differences in fatigue, anxiety, mobility, ability to perform daily activities, and general health perception were recorded at 26 weeks. Fatigue significantly predicted pain onset (β = 0.54, p = 0.002). Sixteen different body regions were identified as painful, with a pain intensity of 6.0 ± 1.9. Most of the samples did not show neuropathic or nociplastic mechanisms. No differences in PPT and TS were recorded between patients and healthy controls. CONCLUSIONS Almost one out of three patients hospitalized for COVID-19 developed pain 1 year later, and fatigue seems responsible for chronicity. An overlapping of conditions may explain late-onset post-COVID-19 pain, and a comprehensive approach must be considered for patient management. SIGNIFICANCE Late-onset pain is frequent in post-COVID-19 syndrome and an overlapping of different mechanisms seems to be responsible for its development. Among many predisposing factors, fatigue in the months before seems to be one of the primary causes of pain one year following infection and its management may help to identify new strategies for prevention and treatment of late-onset pain.
Collapse
Affiliation(s)
- A Baroni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - G Fregna
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, Italy
| | - N Lamberti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - F Manfredini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - S Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| |
Collapse
|
3
|
Gao X, Li Z, Chai J, Li S, Pan X, Liu J, Li L, Qin S, Kang Y, Zhu Y. Electroencephalographic insights into the pathophysiological mechanisms of emergence delirium in children and corresponding clinical treatment strategies. Front Pharmacol 2024; 15:1349105. [PMID: 38962301 PMCID: PMC11219819 DOI: 10.3389/fphar.2024.1349105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 07/05/2024] Open
Abstract
Emergence delirium is a common postoperative complication in patients undergoing general anesthesia, especially in children. In severe cases, it can cause unnecessary self-harm, affect postoperative recovery, lead to parental dissatisfaction, and increase medical costs. With the widespread use of inhalation anesthetic drugs (such as sevoflurane and desflurane), the incidence of emergence delirium in children is gradually increasing; however, its pathogenesis in children is complex and unclear. Several studies have shown that age, pain, and anesthetic drugs are strongly associated with the occurrence of emergence delirium. Alterations in central neurophysiology are essential intermediate processes in the development of emergence delirium. Compared to adults, the pediatric nervous system is not fully developed; therefore, the pediatric electroencephalogram may vary slightly by age. Moreover, pain and anesthetic drugs can cause changes in the excitability of the central nervous system, resulting in electroencephalographic changes. In this paper, we review the pathogenesis of and prevention strategies for emergence delirium in children from the perspective of brain electrophysiology-especially for commonly used pharmacological treatments-to provide the basis for understanding the development of emergence delirium as well as its prevention and treatment, and to suggest future research direction.
Collapse
Affiliation(s)
- Xin Gao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhichao Li
- Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuanyuan Pan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linxing Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yihan Kang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Kenefati G, Rockholt MM, Ok D, McCartin M, Zhang Q, Sun G, Maslinski J, Wang A, Chen B, Voigt EP, Chen ZS, Wang J, Doan LV. Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients. Front Neurosci 2023; 17:1278183. [PMID: 37901433 PMCID: PMC10611481 DOI: 10.3389/fnins.2023.1278183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. Methods We compared measured pain responses to peripheral mechanical stimuli applied to a site of chronic pain and at a pain-free site in participants suffering from chronic lower back pain (n = 15) versus pain-free control participants (n = 15) by analyzing behavioral and electroencephalographic (EEG) data. Results As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. Discussion These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
Collapse
Affiliation(s)
- George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Julia Maslinski
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Baldwin Chen
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Erich P. Voigt
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Rockholt MM, Kenefati G, Doan LV, Chen ZS, Wang J. In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand? Front Neurosci 2023; 17:1186418. [PMID: 37389362 PMCID: PMC10301750 DOI: 10.3389/fnins.2023.1186418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
Machine learning is becoming an increasingly common component of routine data analyses in clinical research. The past decade in pain research has witnessed great advances in human neuroimaging and machine learning. With each finding, the pain research community takes one step closer to uncovering fundamental mechanisms underlying chronic pain and at the same time proposing neurophysiological biomarkers. However, it remains challenging to fully understand chronic pain due to its multidimensional representations within the brain. By utilizing cost-effective and non-invasive imaging techniques such as electroencephalography (EEG) and analyzing the resulting data with advanced analytic methods, we have the opportunity to better understand and identify specific neural mechanisms associated with the processing and perception of chronic pain. This narrative literature review summarizes studies from the last decade describing the utility of EEG as a potential biomarker for chronic pain by synergizing clinical and computational perspectives.
Collapse
Affiliation(s)
- Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
6
|
Zebhauser PT, Hohn VD, Ploner M. Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: a systematic review. Pain 2023; 164:1200-1221. [PMID: 36409624 PMCID: PMC10184564 DOI: 10.1097/j.pain.0000000000002825] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
ABSTRACT Reliable and objective biomarkers promise to improve the assessment and treatment of chronic pain. Resting-state electroencephalography (EEG) is broadly available, easy to use, and cost efficient and, therefore, appealing as a potential biomarker of chronic pain. However, results of EEG studies are heterogeneous. Therefore, we conducted a systematic review (PROSPERO CRD42021272622) of quantitative resting-state EEG and magnetoencephalography (MEG) studies in adult patients with different types of chronic pain. We excluded populations with severe psychiatric or neurologic comorbidity. Risk of bias was assessed using a modified Newcastle-Ottawa Scale. Semiquantitative data synthesis was conducted using modified albatross plots. We included 76 studies after searching MEDLINE, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and EMBASE. For cross-sectional studies that can serve to develop diagnostic biomarkers, we found higher theta and beta power in patients with chronic pain than in healthy participants. For longitudinal studies, which can yield monitoring and/or predictive biomarkers, we found no clear associations of pain relief with M/EEG measures. Similarly, descriptive studies that can yield diagnostic or monitoring biomarkers showed no clear correlations of pain intensity with M/EEG measures. Risk of bias was high in many studies and domains. Together, this systematic review synthesizes evidence on how resting-state M/EEG might serve as a diagnostic biomarker of chronic pain. Beyond, this review might help to guide future M/EEG studies on the development of pain biomarkers.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vanessa D. Hohn
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Markus Ploner
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
7
|
Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev 2023; 146:105062. [PMID: 36682424 DOI: 10.1016/j.neubiorev.2023.105062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Pain-induced gamma-band oscillations (GBOs) are one of the most promising biomarkers of the pain experience. Although GBOs reliably encode pain perception across different individuals and species, considerable heterogeneity could be observed in the characteristics and functions of GBOs. However, such heterogeneity of GBOs and its underlying sources have rarely been detailed previously. Here, we conducted a systematic review and meta-analysis to characterize the temporal, frequential, and spatial characteristics of GBOs and summarize the functional significance of distinct GBOs. We found that GBO heterogeneity was mainly related to pain types, with a higher frequency (∼66 Hz) GBOs at the sensorimotor cortex elicited by phasic pain and a lower frequency (∼55 Hz) GBOs at the prefrontal cortex associated with tonic and chronic pains. Positive correlations between GBO magnitudes and pain intensity were observed in healthy participants. Notably, the characteristics and functions of GBOs seemed to be phylogenetically conserved across humans and rodents. Altogether, we provided a comprehensive description of heterogeneous GBOs in pain and nociception, laying the foundation for clinical applications of GBOs.
Collapse
|
8
|
The Effect of Spinal Muscle Fatigue and Psychosocial Factors on Pressure-Pain Threshold in Healthy Adults. Pain Res Manag 2023; 2023:7336477. [PMID: 36741677 PMCID: PMC9891829 DOI: 10.1155/2023/7336477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 01/26/2023]
Abstract
Objective Pain sensitivity decreases following isometric exercise. It is not clear whether this exercise-induced hypoalgesia (EIH) occurs to the same extent in men and women. It is also unclear if the effect is systemic or local to the exercised musculature. The aim of our study was to investigate whether fatiguing isometric exercise of the spinal and hip extensors would result in increased pressure pain threshold (PPT) at sites local to and remote from the exercised muscles in healthy men and women and whether there is a relationship between central sensitization, psychosocial factors, and PPT. Subjects 35 healthy adults (age 27.1 ± 4.5 years, 22 women). Methods This was a within-subjects cohort study. Participants completed questionnaires quantifying central sensitization, pain catastrophizing, sleepiness/insomnia, anxiety, and depression. PPT was assessed at the lumbar and thoracic paraspinals, hamstrings, gastrocnemius, wrist, and third digit before and immediately after participants performed the Biering-Sorensen test to failure. Results PPT increased postexercise in the thoracic paraspinals, hamstrings, and gastrocnemius in men and women and in the lumbar paraspinals in men only but did not change at the wrist and digit sites. A lower average PPT at baseline was associated with a higher central sensitization scores. A greater increase in average PPT postfatigue was significantly associated with higher average PPT at baseline. Conclusions Exercise-induced hypoalgesia occurs at sites overlying the muscles involved in fatiguing exercise, but not at remote sites, and is more evident in males than females. The magnitude of EIH depends upon baseline PPT. Even in healthy individuals, greater central sensitization is associated with lower baseline PPT.
Collapse
|
9
|
Ferreira NDR, Marto CMM, de Oliveira AT, Rodrigues MJ, DosSantos MF. Development of core outcome sets for clinical trials in temporomandibular disorders: A study protocol. PLoS One 2022; 17:e0267722. [PMID: 35482750 PMCID: PMC9049344 DOI: 10.1371/journal.pone.0267722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Temporomandibular Disorder (TMD) is a generic term applied to describe musculoskeletal disorders that affect the temporomandibular joint (TMJ), the masticatory muscles and the related structures. TMD comprises two groups of disorders, namely intra-articular TMD and masticatory muscle disorders. There is still difficulty in establishing the effectiveness of different therapeutic modalities for TMD with robust evidence, despite the large volume of publications in the area. The lack of outcomes standardization may represent a limiting factor in the search for scientific evidence. Objective This study aims to develop a core outcome sets (COS) for clinical trials in intra-articular TMD and masticatory muscle disorders. Methods The protocol for determining the COS-TMD will consist of three phases: 1. Synthesis of TMD Management Intervention Outcomes. The identification of outcomes will be carried out through a systematic review, which will include randomized clinical trials that evaluated the effectiveness of interventions used in TMD management. 2. Through a two-round international Delphi survey, the list of outcomes will be scored by three panels of stakeholders. 3. A representative sample of key stakeholders will be invited to participate in a face-to-face meeting where they can discuss the results of the Delphi survey and determine the final core set. Conclusions The implementation of this protocol will determine the COS-TMD, which will be made available for use in all TMD clinical studies. The use of COS when planning and reporting TMD clinical trials will reduce the risk of publication bias and enable proper comparison of results found by different studies.
Collapse
Affiliation(s)
- Natália dos Reis Ferreira
- Faculty of Medicine, Institute for Occlusion and Orofacial Pain, University of Coimbra, Coimbra, Portugal
- Postgraduate Program in Medicine (Radiology), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos Miguel Machado Marto
- Faculty of Medicine, Institute of Experimental Pathology, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Aleli Tôrres de Oliveira
- Postgraduate Program in Medicine (Radiology), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria João Rodrigues
- Faculty of Medicine, Institute for Occlusion and Orofacial Pain, University of Coimbra, Coimbra, Portugal
| | - Marcos Fabio DosSantos
- Postgraduate Program in Medicine (Radiology), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Mechanical Properties and Cell Biology (PropBio), Prosthodontics and Materials Sciences Department, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Postgraduate Program in Dentistry (PPGO), School of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Postgraduate Program in Translational Neuroscience (PGNET), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail: ,
| |
Collapse
|
10
|
Deodato M, Granato A, Ceschin M, Galmonte A, Manganotti P. Algometer Assessment of Pressure Pain Threshold After Onabotulinumtoxin-A and Physical Therapy Treatments in Patients With Chronic Migraine: An Observational Study. FRONTIERS IN PAIN RESEARCH 2022; 3:770397. [PMID: 35295800 PMCID: PMC8915742 DOI: 10.3389/fpain.2022.770397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to evaluate pain hypersensitivity in chronic migraine patients 3 months after undergoing onabotulinumtoxin-A therapy, physical therapy (PT), or the combination of the two. Pressure pain threshold (PPT) was assessed in accordance with Andersen's guidelines, focusing on five muscles in the trigeminocervical area (namely, trapezius, levator scapulae, temporalis, sub-occipitalis, and scalenus medius) and one muscle outside of the area, (i.e., tensor fasciae latae). Moreover, three headache parameters, namely, attack frequency, duration, and pain intensity, were recorded in an ad hoc diary kept by the patients. A total of 30 patients were included in three treatment groups: 1. onabotulinumtoxin-A therapy, 2. PT, and 3. a combination of onabotulinumtoxin-A and PT. The results show that, at the final assessment, the PPT was significantly reduced in the combined treatment group compared to the two single-therapy groups. As regards headache parameters, frequency and duration of the attacks were decreased significantly in all three treatment groups, whereas in pain intensity, the reduction was statistically significant in the combined treatment group and the onabotulinumtoxin-A therapy. Results suggest that a better pain modulation in patients with chronic migraine can be achieved with a combined treatment of onabotulinumtoxin-A and physical therapy. Indeed, the combination of both pharmacological and non-pharmacological treatments results in the reduction of both headache-related parameters and widespread pressure hyperalgesia.
Collapse
Affiliation(s)
- Manuela Deodato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- *Correspondence: Manuela Deodato
| | - Antonio Granato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Marta Ceschin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Alessandra Galmonte
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| |
Collapse
|
11
|
Simis M, Imamura M, Pacheco-Barrios K, Marduy A, de Melo PS, Mendes AJ, Teixeira PEP, Battistella L, Fregni F. EEG theta and beta bands as brain oscillations for different knee osteoarthritis phenotypes according to disease severity. Sci Rep 2022; 12:1480. [PMID: 35087082 PMCID: PMC8795380 DOI: 10.1038/s41598-022-04957-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
This study aims to investigate the multivariate relationship between different sociodemographic, clinical, and neurophysiological variables with resting-state, high-definition, EEG spectral power in subjects with chronic knee osteoarthritis (OA) pain. This was a cross-sectional study. Sociodemographic and clinical data were collected from 66 knee OA subjects. To identify associated factors, we performed independent univariate and multivariate regression models by frequency bands (delta, theta, alpha, beta, low-beta, and high-beta) and by pre-defined regions (frontal, central, and parietal). From adjusted multivariate models, we found that: (1) increased frontocentral high-beta power and reduced central theta activity are positively correlated with pain intensity (β = 0.012, 95% CI 0.004-0.020; and β = - 0.008; 95% CI 0.014 to - 0.003; respectively); (2) delta and alpha oscillations have a direct relationship with higher cortical inhibition; (3) diffuse increased power at low frequencies (delta and theta) are associated with poor cognition, aging, and depressive symptoms; and (4) higher alpha and beta power over sensorimotor areas seem to be a maladaptive compensatory mechanism to poor motor function and severe joint degeneration. Subjects with higher pain intensity and higher OA severity (likely subjects with maladaptive compensatory mechanisms to severe OA) have higher frontocentral beta power and lower theta activity. On the other hand, subjects with less OA severity and less pain have higher theta oscillations power. These associations showed the potential role of brain oscillations as a marker of pain intensity and clinical phenotypes in chronic knee OA patients. Besides, they suggest a potential compensatory mechanism of these two brain oscillators according to OA severity.
Collapse
Affiliation(s)
- Marcel Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Imamura
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
| | - Paulo S de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
| | - Augusto J Mendes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Paulo E P Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA
| | - Linamara Battistella
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA, USA.
| |
Collapse
|
12
|
Gamma-band activities in the context of pain: A signal from brain or muscle? Neurophysiol Clin 2021; 51:287-289. [PMID: 33895067 DOI: 10.1016/j.neucli.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
|