1
|
Fettiplace MR, Vincent KF, Cho A, Dillon E, Stapley BM, Stewart V, Solt K. Dopaminergic psychostimulants cause arousal from isoflurane-induced sedation without reversing memory impairment in rats. Br J Anaesth 2024; 133:793-803. [PMID: 38965013 PMCID: PMC11443133 DOI: 10.1016/j.bja.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Dopaminergic psychostimulants can restore arousal in anaesthetised animals, and dopaminergic signalling contributes to hippocampal-dependent memory formation. We tested the hypothesis that dopaminergic psychostimulants can antagonise the amnestic effects of isoflurane on visuospatial working memory. METHODS Sixteen adult Sprague-Dawley rats were trained on a trial-unique nonmatching-to-location (TUNL) task which assessed the ability to identify a novel touchscreen location after a fixed delay. Once trained, the effects of low-dose isoflurane (0.3 vol%) on task performance and activity, assessed by infrared beam breaks, were assessed. We attempted to rescue deficits in performance and activity with a dopamine D1 receptor agonist (chloro-APB), a noradrenergic reuptake inhibitor (atomoxetine), and a mixed dopamine/norepinephrine releasing agent (dextroamphetamine). Anaesthetic induction, emergence, and recovery from anaesthesia were also investigated. RESULTS Low-dose isoflurane impaired working memory in a sex-independent and intra-trial delay-independent manner as assessed by task performance, and caused an overall reduction in activity. Administration of chloro-APB, atomoxetine, or dextroamphetamine did not restore visuospatial working memory, but chloro-APB and dextroamphetamine recovered arousal to levels observed in the baseline awake state. Performance did not differ between induction and emergence. Animals recovered to baseline performance within 15 min of discontinuing isoflurane. CONCLUSIONS Low-dose isoflurane impairs visuospatial working memory in a nondurable and delay-independent manner that potentially implicates non-hippocampal structures in isoflurane-induced memory deficits. Dopaminergic psychostimulants counteracted sedation but did not reverse memory impairments, suggesting that isoflurane-induced amnesia and isoflurane-induced sedation have distinct underlying mechanisms that can be antagonised independently.
Collapse
Affiliation(s)
- Michael R Fettiplace
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| | - Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Angel Cho
- Touro College of Osteopathic Medicine, New York, NY, USA
| | - Emmaline Dillon
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Brendan M Stapley
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Victoria Stewart
- University of California Irvine School of Medicine, Irvine, CA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Silverstein BH, Parkar A, Groenhout T, Fracz Z, Fryzel AM, Fields CW, Nelson A, Liu T, Vanini G, Mashour GA, Pal D. Effect of prolonged sedation with dexmedetomidine, midazolam, propofol, and sevoflurane on sleep homeostasis in rats. Br J Anaesth 2024; 132:1248-1259. [PMID: 38071152 PMCID: PMC11541083 DOI: 10.1016/j.bja.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Sleep disruption is a common occurrence during medical care and is detrimental to patient recovery. Long-term sedation in the critical care setting is a modifiable factor that affects sleep, but the impact of different sedative-hypnotics on sleep homeostasis is not clear. METHODS We conducted a systematic comparison of the effects of prolonged sedation (8 h) with i.v. and inhalational agents on sleep homeostasis. Adult Sprague-Dawley rats (n=10) received dexmedetomidine or midazolam on separate days. Another group (n=9) received propofol or sevoflurane on separate days. A third group (n=12) received coadministration of dexmedetomidine and sevoflurane. Wakefulness (wake), slow-wave sleep (SWS), and rapid eye movement (REM) sleep were quantified during the 48-h post-sedation period, during which we also assessed wake-associated neural dynamics using two electroencephalographic measures: theta-high gamma phase-amplitude coupling and high gamma weighted phase-lag index. RESULTS Dexmedetomidine-, midazolam-, or propofol-induced sedation increased wake and decreased SWS and REM sleep (P<0.0001) during the 48-h post-sedation period. Sevoflurane produced no change in SWS, decreased wake for 3 h, and increased REM sleep for 6 h (P<0.02) post-sedation. Coadministration of dexmedetomidine and sevoflurane induced no change in wake (P>0.05), increased SWS for 3 h, and decreased REM sleep for 9 h (P<0.02) post-sedation. Dexmedetomidine, midazolam, and coadministration of dexmedetomidine with sevoflurane reduced wake-associated phase-amplitude coupling (P≤0.01). All sedatives except sevoflurane decreased wake-associated high gamma weighted phase-lag index (P<0.01). CONCLUSIONS In contrast to i.v. drugs, prolonged sevoflurane sedation produced minimal changes in sleep homeostasis and neural dynamics. Further studies are warranted to assess inhalational agents for long-term sedation and sleep homeostasis.
Collapse
Affiliation(s)
- Brian H Silverstein
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Anjum Parkar
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Trent Groenhout
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Zuzanna Fracz
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Anna M Fryzel
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Amanda Nelson
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Tiecheng Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Wang Y, Li M, Li W, Xiao L, Huo X, Ding J, Sun T. Is the insula linked to sleep? A systematic review and narrative synthesis. Heliyon 2022; 8:e11406. [DOI: 10.1016/j.heliyon.2022.e11406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
|
4
|
Mashour GA, Pal D, Brown EN. Prefrontal cortex as a key node in arousal circuitry. Trends Neurosci 2022; 45:722-732. [PMID: 35995629 PMCID: PMC9492635 DOI: 10.1016/j.tins.2022.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
The role of the prefrontal cortex (PFC) in the mechanism of consciousness is a matter of active debate. Most theoretical and empirical investigations have focused on whether the PFC is critical for the content of consciousness (i.e., the qualitative aspects of conscious experience). However, there is emerging evidence that, in addition to its well-established roles in cognition, the PFC is a key regulator of the level of consciousness (i.e., the global state of arousal). In this opinion article we review recent data supporting the hypothesis that the medial PFC is a critical node in arousal-promoting networks.
Collapse
Affiliation(s)
- George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Dean JG, Fields CW, Brito MA, Silverstein BH, Rybicki-Kler C, Fryzel AM, Groenhout T, Liu T, Mashour GA, Pal D. Inactivation of Prefrontal Cortex Attenuates Behavioral Arousal Induced by Stimulation of Basal Forebrain During Sevoflurane Anesthesia. Anesth Analg 2022; 134:1140-1152. [PMID: 35436248 PMCID: PMC9093733 DOI: 10.1213/ane.0000000000006011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cholinergic stimulation of prefrontal cortex (PFC) can reverse anesthesia. Conversely, inactivation of PFC can delay emergence from anesthesia. PFC receives cholinergic projections from basal forebrain, which contains wake-promoting neurons. However, the role of basal forebrain cholinergic neurons in arousal from the anesthetized state requires refinement, and it is currently unknown whether the arousal-promoting effect of basal forebrain is mediated through PFC. To address these gaps in knowledge, we implemented a novel approach to the use of chemogenetic stimulation and tested the role of basal forebrain cholinergic neurons in behavioral arousal during sevoflurane anesthesia. Next, we investigated the effect of tetrodotoxin-mediated inactivation of PFC on behavioral arousal produced by electrical stimulation of basal forebrain during sevoflurane anesthesia.
Collapse
Affiliation(s)
- Jon G Dean
- From the Departments of Anesthesiology.,Molecular and Integrative Physiology.,Center for Consciousness Science
| | | | - Michael A Brito
- From the Departments of Anesthesiology.,Center for Consciousness Science.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | - George A Mashour
- From the Departments of Anesthesiology.,Center for Consciousness Science.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Dinesh Pal
- From the Departments of Anesthesiology.,Molecular and Integrative Physiology.,Center for Consciousness Science.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Huels ER, Groenhout T, Fields CW, Liu T, Mashour GA, Pal D. Inactivation of Prefrontal Cortex Delays Emergence From Sevoflurane Anesthesia. Front Syst Neurosci 2021; 15:690717. [PMID: 34305541 PMCID: PMC8299111 DOI: 10.3389/fnsys.2021.690717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2023] Open
Abstract
Studies aimed at investigating brain regions involved in arousal state control have been traditionally limited to subcortical structures. In the current study, we tested the hypothesis that inactivation of prefrontal cortex, but not two subregions within parietal cortex—somatosensory barrel field and medial/lateral parietal association cortex—would suppress arousal, as measured by an increase in anesthetic sensitivity. Male and female Sprague Dawley rats were surgically prepared for recording electroencephalogram and bilateral infusion into prefrontal cortex (N = 13), somatosensory barrel field (N = 10), or medial/lateral parietal association cortex (N = 9). After at least 10 days of post-surgical recovery, 156 μM tetrodotoxin or saline was microinjected into one of the cortical sites. Ninety minutes after injection, rats were anesthetized with 2.5% sevoflurane and the time to loss of righting reflex, a surrogate for loss of consciousness, was measured. Sevoflurane was stopped after 45 min and the time to return of righting reflex, a surrogate for return of consciousness, was measured. Tetrodotoxin-mediated inactivation of all three cortical sites decreased (p < 0.05) the time to loss of righting reflex. By contrast, only inactivation of prefrontal cortex, but not somatosensory barrel field or medial/lateral parietal association cortex, increased (p < 0.001) the time to return of righting reflex. Burst suppression ratio was not altered following inactivation of any of the cortical sites, suggesting that there was no global effect due to pharmacologic lesion. These findings demonstrate that prefrontal cortex plays a causal role in emergence from anesthesia and behavioral arousal.
Collapse
Affiliation(s)
- Emma R Huels
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Trent Groenhout
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher W Fields
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Tiecheng Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
|