1
|
Liao W, Wang Y, Wang L, Li J, Huang D, Cheng W, Luan P. The current status and challenges of olfactory dysfunction study in Alzheimer's Disease. Ageing Res Rev 2024; 100:102453. [PMID: 39127444 DOI: 10.1016/j.arr.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Olfactory functioning involves multiple cognitive processes and the coordinated actions of various neural systems. Any disruption at any stage of this process may result in olfactory dysfunction, which is consequently widely used to predict the onset and progression of diseases, such as Alzheimer's Disease (AD). Although the underlying mechanisms have not yet been fully unraveled, apparent changes were observed in olfactory brain areas form patients who suffer from AD by means of medical imaging and electroencephalography (EEG). Olfactory dysfunction holds significant promise in detecting AD during the preclinical stage preceding mild cognitive impairment (MCI). Owing to the strong specificity, olfactory tests are prevalently applied for screening in community cohorts. And combining olfactory tests with other biomarkers may further establish an optimal model for AD prediction in studies of specific olfactory dysfunctions and improve the sensitivity and specificity of early AD diagnosis.
Collapse
Affiliation(s)
- Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lei Wang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Weibin Cheng
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
2
|
Jobin B, Magdamo C, Delphus D, Runde A, Reineke S, Soto AA, Ergun B, Albers AD, Albers MW. AROMHA Brain Health Test: A Remote Olfactory Assessment as a Screen for Cognitive Impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.03.24311283. [PMID: 39211882 PMCID: PMC11361214 DOI: 10.1101/2024.08.03.24311283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cost-effective, noninvasive screening methods for preclinical Alzheimer's disease (AD) and other neurocognitive disorders remain an unmet need. The olfactory neural circuits develop AD pathological changes prior to symptom onset. To probe these vulnerable circuits, we developed the digital remote AROMHA Brain Health Test (ABHT), an at-home odor identification, discrimination, memory, and intensity assessment. The ABHT was self-administered among cognitively normal (CN) English and Spanish speakers (n=127), participants with subjective cognitive complaints (SCC; n=34), and mild cognitive impairment (MCI; n=19). Self-administered tests took place remotely at home under unobserved (among interested CN participants) and observed modalities (CN, SCC, and MCI), as well as in-person with a research assistant present (CN, SCC, and MCI). Olfactory performance was similar across observed and unobserved remote self-administration and between English and Spanish speakers. Odor memory, identification, and discrimination scores decreased with age, and olfactory identification and discrimination were lower in the MCI group compared to CN and SCC groups, independent of age, sex, and education. The ABHT revealed age-related olfactory decline, and discriminated CN older adults from those with cognitive impairment. Replication of our results in other populations would support the use of the ABHT to identify and monitor individuals at risk for developing dementia.
Collapse
|
3
|
Igeta Y, Hemmi I, Yuyama K, Ouchi Y. Odor identification score as an alternative method for early identification of amyloidogenesis in Alzheimer's disease. Sci Rep 2024; 14:4658. [PMID: 38409432 PMCID: PMC10897211 DOI: 10.1038/s41598-024-54322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/11/2024] [Indexed: 02/28/2024] Open
Abstract
A simple screening test to identify the early stages of Alzheimer's disease (AD) is urgently needed. We investigated whether odor identification impairment can be used to differentiate between stages of the A/T/N classification (amyloid, tau, neurodegeneration) in individuals with amnestic mild cognitive impairment or AD and in healthy controls. We collected data from 132 Japanese participants visiting the Toranomon Hospital dementia outpatient clinic. The odor identification scores correlated significantly with major neuropsychological scores, regardless of apolipoprotein E4 status, and with effective cerebrospinal fluid (CSF) biomarkers [amyloid β 42 (Aβ42) and the Aβ42/40 and phosphorylated Tau (p-Tau)/Aβ42 ratios] but not with ineffective biomarkers [Aβ40 and the p-Tau/total Tau ratio]. A weak positive correlation was observed between the corrected odor identification score (adjusted for age, sex, ApoE4 and MMSE), CSF Aβ42, and the Aβ42/40 ratio. The odor identification score demonstrated excellent discriminative power for the amyloidogenesis stage , according to the A/T/N classification, but was unsuitable for differentiating between the p-Tau accumulation and the neurodegeneration stages. After twelve odor species were analyzed, a version of the score comprising only four odors-India ink, wood, curry, and sweaty socks-proved highly effective in identifying AD amyloidogenesis, showing promise for the screening of preclinical AD.
Collapse
Affiliation(s)
- Yukifusa Igeta
- Department of Dementia, Dementia Center, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
- Division of Dementia Research, Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Isao Hemmi
- Japanese Red Cross College of Nursing, 4-1-3 Hiroo, Shibuya-ku, Tokyo, 150-0012, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasuyoshi Ouchi
- Department of Dementia, Dementia Center, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
- Division of Dementia Research, Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| |
Collapse
|
4
|
Bothwell AR, Resnick SM, Ferrucci L, Tian Q. Associations of olfactory function with brain structural and functional outcomes. A systematic review. Ageing Res Rev 2023; 92:102095. [PMID: 37913831 PMCID: PMC10872938 DOI: 10.1016/j.arr.2023.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
In aging, olfactory deficits have been associated with lower cognition and motor function. Olfactory dysfunction is also one of the earliest features of neurodegenerative disease. A comprehensive review of the neural correlates of olfactive function may reveal mechanisms underlying the associations among olfaction, cognition, motor function, and neurodegenerative diseases. Here, we summarize existing knowledge on the relationship between brain structural and functional measures and olfaction in older adults without and with cognitive impairment, including Alzheimer's disease. We identified 33 eligible studies (30 MRI/DTI,3 fMRI); 31 were cross-sectional, most assessed odor identification, and few examined multiple brain areas. Lower olfactory function was associated with smaller volumes in the temporal lobe (hippocampus,parahippocampal gyrus,fusiform gyrus), olfactory-related regions (piriform cortex,amygdala,entorhinal cortex), pre- and postcentral gyri, and globus pallidus. During aging, olfactory impairment may be associated with pathology in brain areas important for motor function and cognition, especially memory. Future longitudinal studies that include neuroimaging across different brain areas are warranted to determine the neurobiological changes underlying olfactory changes in the aging brain and the progression of neurodegeneration.
Collapse
Affiliation(s)
- Adam R Bothwell
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Qu Tian
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
5
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
6
|
Jobin B, Boller B, Frasnelli J. Smaller grey matter volume in the central olfactory system in mild cognitive impairment. Exp Gerontol 2023; 183:112325. [PMID: 37952649 DOI: 10.1016/j.exger.2023.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the major challenges in the diagnosis of Alzheimer's disease (AD) is to increase the specificity of the early diagnosis. While episodic memory impairment is a sensitive AD marker, other measures are needed to improve diagnostic specificity. A promising biomarker might be a cerebral atrophy of the central olfactory processing areas in the early stages of the disease since an impairment of olfactory identification is present at the clinical stage of AD. Our goal was therefore, (1) to evaluate the grey matter volume (GMV) of central olfactory processing regions in prodromal AD and (2) to assess its association with episodic memory. We included 34 cognitively normal healthy controls (HC), 92 individuals with subjective cognitive decline (SCD), and 40 with mild cognitive impairment (MCI). We performed regions of interest analysis (ROI) using two different approaches, allowing to extract GMV from (1) atlas-based anatomical ROIs and from (2) functional and non-functional subregions of these ROIs (olfactory ROIs and non-olfactory ROIs). Participants with MCI exhibited smaller olfactory ROIs GMV, including significant reductions in the piriform cortex, amygdala, entorhinal cortex, and left hippocampus compared to other groups (p ≤ 0.05, corrected). No significant effect was found regarding anatomical or non-olfactory ROIs GMV. The left hippocampus olfactory ROI GMV was correlated with episodic memory performance (p < 0.05 corrected). Limbic/medial-temporal olfactory processing areas are specifically atrophied at the MCI stage, and the degree of atrophy might predict cognitive decline in AD early stages.
Collapse
Affiliation(s)
- Benoît Jobin
- Department of Psychology, Université du Québec à Trois-Rivières, Qc, Canada; Research Centre of the Institut universitaire de Gériatrie de Montréal, Qc, Canada; Research Centre of the Hôpital du Sacré-Cœur de Montréal, Qc, Canada.
| | - Benjamin Boller
- Department of Psychology, Université du Québec à Trois-Rivières, Qc, Canada; Research Centre of the Institut universitaire de Gériatrie de Montréal, Qc, Canada
| | - Johannes Frasnelli
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Qc, Canada; Department of Anatomy, Université du Québec à Trois-Rivières, Qc, Canada
| |
Collapse
|
7
|
Jain M, Dhariwal R, Patil N, Ojha S, Tendulkar R, Tendulkar M, Dhanda PS, Yadav A, Kaushik P. Unveiling the Molecular Footprint: Proteome-Based Biomarkers for Alzheimer's Disease. Proteomes 2023; 11:33. [PMID: 37873875 PMCID: PMC10594437 DOI: 10.3390/proteomes11040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Early and accurate diagnosis of AD is crucial for implementing timely interventions and developing effective therapeutic strategies. Proteome-based biomarkers have emerged as promising tools for AD diagnosis and prognosis due to their ability to reflect disease-specific molecular alterations. There is of great significance for biomarkers in AD diagnosis and management. It emphasizes the limitations of existing diagnostic approaches and the need for reliable and accessible biomarkers. Proteomics, a field that comprehensively analyzes the entire protein complement of cells, tissues, or bio fluids, is presented as a powerful tool for identifying AD biomarkers. There is a diverse range of proteomic approaches employed in AD research, including mass spectrometry, two-dimensional gel electrophoresis, and protein microarrays. The challenges associated with identifying reliable biomarkers, such as sample heterogeneity and the dynamic nature of the disease. There are well-known proteins implicated in AD pathogenesis, such as amyloid-beta peptides, tau protein, Apo lipoprotein E, and clusterin, as well as inflammatory markers and complement proteins. Validation and clinical utility of proteome-based biomarkers are addressing the challenges involved in validation studies and the diagnostic accuracy of these biomarkers. There is great potential in monitoring disease progression and response to treatment, thereby aiding in personalized medicine approaches for AD patients. There is a great role for bioinformatics and data analysis in proteomics for AD biomarker research and the importance of data preprocessing, statistical analysis, pathway analysis, and integration of multi-omics data for a comprehensive understanding of AD pathophysiology. In conclusion, proteome-based biomarkers hold great promise in the field of AD research. They provide valuable insights into disease mechanisms, aid in early diagnosis, and facilitate personalized treatment strategies. However, further research and validation studies are necessary to harness the full potential of proteome-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Rupal Dhariwal
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Sandhya Ojha
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Reshma Tendulkar
- Vivekanand Education Society, College of Pharmacy, Chembur, Mumbai 400071, India;
| | - Mugdha Tendulkar
- Sardar Vallabhbhai Patel College of Science, Mira Rd (East), Thane 400071, India;
| | | | - Alpa Yadav
- Department of Botany, Indira Gandhi University, Meerpur, Rewari 122502, India;
| | - Prashant Kaushik
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
8
|
Wang SM, Kang DW, Um YH, Kim S, Lee CU, Lim HK. Olfactory Dysfunction Is Associated with Cerebral Amyloid Deposition and Cognitive Function in the Trajectory of Alzheimer's Disease. Biomolecules 2023; 13:1336. [PMID: 37759734 PMCID: PMC10526796 DOI: 10.3390/biom13091336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Olfactory dysfunction is consistently observed in individuals with Alzheimer's disease (AD), but its association with beta-amyloid (Aβ) deposition remains unclear. This study aimed to investigate the relationship among olfactory function, cerebral Aβ deposition, and neuropsychological profiles in individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD dementia. A total of 164 participants were included, and olfactory function was assessed using the brief smell identification test (B-SIT). Cerebral Aβ deposition was measured using [18F]-flutemetamol PET imaging (A-PET). The results show a significant group difference in olfactory function, with the highest impairment observed in the Aβ-positive MCI and AD dementia groups, and the impairment was the lowest in Aβ-negative NCI. Olfactory dysfunction was positively associated with cognitive impairments across multiple domains. Furthermore, individuals with Aβ deposition had lower olfactory function compared to those without Aβ, even within the same neuropsychological stage. The association between olfactory dysfunction and Aβ deposition was observed globally and in specific cortical regions. These findings suggest that olfactory dysfunction is associated with both cognitive function and cerebral Aβ pathology in the trajectory of AD. Olfactory deficits may serve as an additional marker for disease progression and contribute to understanding the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent Hospital, Suwon, Korea, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
Tian Q, An Y, Kitner-Triolo MH, Davatzikos C, Studenski SA, Ferrucci L, Resnick SM. Associations of Olfaction With Longitudinal Trajectories of Brain Volumes and Neuropsychological Function in Older Adults. Neurology 2023; 100:e964-e974. [PMID: 36460474 PMCID: PMC9990434 DOI: 10.1212/wnl.0000000000201646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Olfactory function declines with aging, and olfactory deficits are one of the earliest features of neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. Previous studies have shown that olfaction is associated with brain volumes and cognitive function, but data are exclusively cross-sectional. We aimed to examine longitudinal associations of olfaction with changes in brain volumes and neuropsychological function. METHODS In the Baltimore Longitudinal Study of Aging, we chose the first assessment of olfaction to examine the associations with retrospective and prospective changes in neuropsychological performance and brain volumes in participants aged 50 years or older using linear mixed-effects models, adjusted for demographic variables and cardiovascular disease. Olfaction was measured as odor identification scores through the 16-item Sniffin' Sticks. RESULTS We analyzed data from 567 (58% women, 42% men, 27% Black, 66% White, and 7% others) participants who had data on odor identification scores and brain volumetric MRI (n = 420 with retrospective repeats over a mean of 3.7 years, n = 280 with prospective repeats over a mean of 1.2 years). We also analyzed data from 754 participants (56% women, 44% men, 29% Black, 65% White, and 6% others) with neuropsychological assessments (n = 630 with retrospective repeats over a mean of 6.6 years, n = 280 with prospective repeats over a mean of 1.5 years). After adjustment, higher odor identification scores were associated with prior and subsequent slower brain atrophy in the entorhinal cortex (β ± SE = 0.0093 ± 0.0031, p = 0.0028 and β ± SE = 0.0176 ± 0.0073, p = 0.0169, respectively), hippocampus (β ± SE = 0.0070 ± 0.0030, p = 0.0192 and β ± SE = 0.0173 ± 0.0066, p = 0.0089, respectively), and additional frontal and temporal areas (all p < 0.05). Higher odor identification scores were also associated with prior slower decline in memory, attention, processing speed, and manual dexterity and subsequent slower decline in attention (all p < 0.05). Some associations were attenuated after exclusion of data points at and after symptom onset of cognitive impairment or dementia. DISCUSSION In older adults, olfaction is related to brain atrophy of specific brain regions and neuropsychological changes in specific domains over time. The observed associations are driven, in part, by those who developed cognitive impairment or dementia. Future longitudinal studies with longer follow-ups are needed to understand whether olfactory decline precedes cognitive decline and whether it is mediated through regionally specific brain atrophy.
Collapse
Affiliation(s)
- Qu Tian
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia.
| | - Yang An
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia.
| | - Melissa H Kitner-Triolo
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Christos Davatzikos
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Stephanie A Studenski
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Luigi Ferrucci
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Susan M Resnick
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
10
|
Dong Y, Li Y, Liu K, Han X, Liu R, Ren Y, Cong L, Zhang Q, Hou T, Song L, Tang S, Shi L, Luo Y, Kalpouzos G, Laukka EJ, Winblad B, Wang Y, Du Y, Qiu C. Anosmia, mild cognitive impairment, and biomarkers of brain aging in older adults. Alzheimers Dement 2023; 19:589-601. [PMID: 36341691 DOI: 10.1002/alz.12777] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022]
Abstract
Olfactory impairment is a potential marker for prodromal dementia, but the underlying mechanisms are poorly understood. This population-based study included 4214 dementia-free participants (age ≥65 years). Olfaction was assessed using the 16-item Sniffin' Sticks identification test. In the subsamples, we measured plasma amyloid beta (Aβ)40, Aβ42, total tau, and neurofilament light chain (NfL; n = 1054); and quantified hippocampal, entorhinal cortex, and white matter hyperintensity (WMH) volumes, and Alzheimer's disease (AD)-signature cortical thickness (n = 917). Data were analyzed with logistic and linear regression models. In the total sample, mild cognitive impairment (MCI) was diagnosed in 1102 persons (26.2%; amnestic MCI, n = 931; non-amnestic MCI, n = 171). Olfactory impairment was significantly associated with increased likelihoods of MCI, amnestic MCI, and non-amnestic MCI. In the subsamples, anosmia was significantly associated with higher plasma total tau and NfL concentrations, smaller hippocampal and entorhinal cortex volumes, and greater WMH volume, and marginally with lower AD-signature cortical thickness. These results suggest that cerebral neurodegenerative and microvascular lesions are common neuropathologies linking anosmia with MCI in older adults.
Collapse
Affiliation(s)
- Yi Dong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yuanjing Li
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yifei Ren
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | - Grégoria Kalpouzos
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Erika J Laukka
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Bengt Winblad
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Charnley M, Islam S, Bindra GK, Engwirda J, Ratcliffe J, Zhou J, Mezzenga R, Hulett MD, Han K, Berryman JT, Reynolds NP. Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19. Nat Commun 2022; 13:3387. [PMID: 35697699 PMCID: PMC9189797 DOI: 10.1038/s41467-022-30932-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
COVID-19 is primarily known as a respiratory disease caused by SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, severe headaches, and even stroke are reported in up to 30% of cases and can persist even after the infection is over (long COVID). These neurological symptoms are thought to be produced by the virus infecting the central nervous system, however we don't understand the molecular mechanisms triggering them. The neurological effects of COVID-19 share similarities to neurodegenerative diseases in which the presence of cytotoxic aggregated amyloid protein or peptides is a common feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we identified two peptides from the SARS-CoV-2 proteome that self-assemble into amyloid assemblies. Furthermore, these amyloids were shown to be highly toxic to neuronal cells. We suggest that cytotoxic aggregates of SARS-CoV-2 proteins may trigger neurological symptoms in COVID-19.
Collapse
Affiliation(s)
- Mirren Charnley
- Centre for Optical Sciences and Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, VIC, 3000, Australia
| | - Saba Islam
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Guneet K Bindra
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jeremy Engwirda
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Julian Ratcliffe
- La Trobe University Bioimaging Platform, Bundoora, 3086, VIC, Australia
| | - Jiangtao Zhou
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Mark D Hulett
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kyunghoon Han
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, 162a Avenue de la Faïencerie, Esch-sur-Alzette, L-1511, Luxembourg
| | - Joshua T Berryman
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, 162a Avenue de la Faïencerie, Esch-sur-Alzette, L-1511, Luxembourg.
| | - Nicholas P Reynolds
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
12
|
Tian Q, Bilgel M, Moghekar AR, Ferrucci L, Resnick SM. Olfaction, Cognitive Impairment, and PET Biomarkers in Community-Dwelling Older Adults. J Alzheimers Dis 2022; 86:1275-1285. [PMID: 35180111 DOI: 10.3233/jad-210636] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Olfactory deficits are early features of preclinical Alzheimer's disease (AD). Whether olfaction is associated with PET biomarkers among community-dwelling older adults is less clear. OBJECTIVE Investigate cross-sectional and longitudinal associations of olfaction with mild cognitive impairment (MCI) and amyloid-β (Aβ) and tau deposition. METHODS We analyzed 364 initially cognitively normal participants (58% women, 24% black) who had baseline olfaction data and subsequent cognitive assessments during an average 2.4-year. A subset of 129 had PET-PiB (Aβ) (n = 72 repeated) and 105 had 18F-flortaucipir (FTP)-PET (tau) (n = 44 repeated). Olfaction was measured using a 16-item Sniffin' Sticks Odor Identification Test. The association of olfaction with incident MCI was examined using Cox regression. Associations with PiB-distribution volume ratio (DVR) and FTP-standardized uptake value ratio (SUVR) were examined using partial correlation. We tested whether PiB+/-status modified these associations. Analyses were adjusted for demographics and olfactory test version. RESULTS 17 (5%) participants developed MCI. Each unit lower odor identification score was associated with 22% higher risk of developing MCI (p = 0.04). In the PET subset, lower scores were associated with higher mean cortical DVR and DVR in orbitofrontal cortex (OFC), precuneus, and middle temporal gyrus (p≤0.04). The "olfaction*PiB+/-" interaction in OFC DVR was significant (p = 0.03), indicating the association was limited to PiB positive individuals. Greater decline in odor identification score was associated with greater increase in anterior OFC DVR and entorhinal tau SUVR (p≤0.03). CONCLUSION Among community-dwelling older adults, poorer olfaction predicts incident MCI and is associated with overall and regional Aβ. Greater olfaction decline is associated with faster Aβ and tau accumulation in olfaction-related regions. Whether olfaction predicts AD-related neurodegenerative changes warrants further investigations.
Collapse
Affiliation(s)
- Qu Tian
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Abhay R Moghekar
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
13
|
Su MW, Ni JN, Cao TY, Wang SS, Shi J, Tian JZ. The Correlation Between Olfactory Test and Hippocampal Volume in Alzheimer's Disease and Mild Cognitive Impairment Patients: A Meta-Analysis. Front Aging Neurosci 2021; 13:755160. [PMID: 34744696 PMCID: PMC8564359 DOI: 10.3389/fnagi.2021.755160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Previous studies have reported that olfactory identification deficits may be the earliest clinical features of Alzheimer's disease (AD). However, the association between odor identification and hippocampal atrophy remains unclear. Objective: This meta-analysis quantified the correlation between odor identification test scores and hippocampal volume in AD. Method: A search of the PUBMED, EMBASE, and WEB OF SCIENCE databases was conducted from January 2003 to June 2020 on studies with reported correlation coefficients between olfactory identification score and hippocampal volume in patients with amnestic AD or mild cognitive impairment (MCI). The quality of the studies was assessed using the Newcastle-Ottawa quality assessment scale (NOS). Pooled r-values were combined and computed in R studio. Results: Seven of 627 original studies on AD/MCI using an olfactory identification test (n = 902) were included. A positive correlation was found between hippocampal volume and olfactory test scores (r = 0.3392, 95% CI: 0.2335–0.4370). Moderator analysis showed that AD and MCI patients were more profoundly correlated than normal controls (AD: r = 0.3959, 95% CI: 0.2605–0.5160; MCI: r = 0.3691, 95% CI: 0.1841–0.5288; NC: r = 0.1305, 95% CI: −0.0447–0.2980). Age difference and patient type were the main sources of heterogeneity in this analysis. Conclusion: The correlation appears to be more predominant in the cognitive disorder group (including MCI and AD) than in the non-cognitive disorder group. Age is an independent factor that affects the severity of the correlation during disease progression. The mildness of the correlation suggests that olfactory tests may be more accurate when combined with other non-invasive examinations for early detection. Systematic Review Registration:https://inplasy.com/, identifier INPLASY202140088.
Collapse
Affiliation(s)
- Ming-Wan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Nian Ni
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Yu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo-Shi Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Zhou Tian
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Park H, Kim H, Kim S, Cha H. The Association between Olfactory Function and Cognitive Impairment in Older Persons with Cognitive Impairments: A Cross-Sectional Study. Healthcare (Basel) 2021; 9:healthcare9040399. [PMID: 33916102 PMCID: PMC8065920 DOI: 10.3390/healthcare9040399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
Olfactory function is an emerging topic of research in the fields of cognitive impairment and neurodegenerative diseases. We aimed to confirm the association between olfactory function and cognitive impairment by assessing the olfactory function of older persons with cognitive impairment and identify whether olfactory function is associated with cognitive impairment. For this study, we recruited 117 older people aged ≥65 years with cognitive impairments from a public hospital in Korea. We used the Korean version of the expanded clinical dementia rating scale to evaluate participants’ cognitive impairments, and the University of Pennsylvania’s smell identification test to assess their olfactory function. Our results indicate a significant negative correlation between olfactory function and all domains of cognitive impairment (memory, orientation, judgement and problem-solving, community affairs, home and hobbies, and personal care). In addition, olfactory function was a factor associated with cognitive impairment in older persons. Therefore, we expect that our results to provide useful data for the development of interventions using olfactory stimulation to improve cognitive function in older persons with cognitive impairment.
Collapse
Affiliation(s)
- Hyangjeong Park
- Department of Nursing, Cheonan Medical Center, Cheonan 31071, Chungcheongnam-do, Korea;
| | - Heejeong Kim
- Department of Nursing, College of Health & Health Care, Namseoul University, Cheonan 31020, Chungcheongnam-do, Korea; (H.K.); (S.K.)
| | - Sisook Kim
- Department of Nursing, College of Health & Health Care, Namseoul University, Cheonan 31020, Chungcheongnam-do, Korea; (H.K.); (S.K.)
| | - Hyegyeong Cha
- Department of Nursing, College of Health & Health Care, Namseoul University, Cheonan 31020, Chungcheongnam-do, Korea; (H.K.); (S.K.)
- Correspondence: ; Tel.: +82-10-4322-7941
| |
Collapse
|