1
|
Li J, He Z, Chai W, Tian M, Yu H, He X, Zhu X. Dip2a regulates stress susceptibility in the basolateral amygdala. Neural Regen Res 2025; 20:1735-1748. [PMID: 39104112 PMCID: PMC11688567 DOI: 10.4103/nrr.nrr-d-23-01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00025/figure1/v/2024-08-05T133530Z/r/image-tiff Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post-traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A (Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid-associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Zixuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Weitai Chai
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Meng Tian
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Huali Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaoxiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Dinger TF, Chihi M, Gümüs M, Rieß C, Santos AN, Moskopp ML, Rodemerk J, Schüßler M, Darkwah Oppong M, Li Y, Wrede KH, Dammann PR, Sure U, Jabbarli R. Patients' Characteristics Associated With Size of Ruptured and Unruptured Intracranial Aneurysms. Brain Behav 2024; 14:e70161. [PMID: 39607092 PMCID: PMC11603431 DOI: 10.1002/brb3.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE The size of unruptured intracranial aneurysms (UIA) remains the most crucial risk factor for treatment decisions. On the other side, there is a non-negligible portion of small ruptured IA and large stable UIA. This study aimed to identify the patients' characteristics related to IA size in the context of IA rupture status. METHODS A total of 2152 patients, with 1002 being hospitalized for an acute aneurysmal subarachnoid hemorrhage (SAH), were included from our institutional IA database. Different demographic and clinical characteristics of patients and IA were collected. IA size was the study endpoint, assessed as continuous variable in univariate and multivariable linear regression analysis, separately for ruptured (R) IA and UIA. RESULTS The mean IA size was 8.3 and 7.3 mm in the UIA and RIA subpopulations, respectively. Higher age (p = 0.003) and baseline blood urea level (p < 0.001) were independently associated with increasing UIA size. In contrast, location at the posterior circulation (p < 0.001), familiar intracranial aneurysms (p < 0.001), serum potassium (p = 0.006), and total serum protein (p = 0.019) were related to smaller UIA size in the multivariate analysis. For RIA, a statistically significant and independent association was detected for location (p = 0.019), history of gastrointestinal diseases (p = 0.042), and levothyroxine intake (p = 0.002). CONCLUSIONS Identification of clinical characteristics related to the size of ruptured and unruptured IA allows a more differentiated view on the genesis of RIA and UIA and the value of sack size as a basis for therapeutic decision-making. More research is needed to verify the identified risk factors.
Collapse
Affiliation(s)
- Thiemo Florin Dinger
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Mehdi Chihi
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Meltem Gümüs
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Christoph Rieß
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Alejandro Nicolas Santos
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Mats Leif Moskopp
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
- Institute of Physiology, Medical Faculty Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Jan Rodemerk
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Maximilian Schüßler
- University Hospital Essen, Institute for Diagnostic and Interventional Radiology and NeuroradiologyUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Yan Li
- University Hospital Essen, Institute for Diagnostic and Interventional Radiology and NeuroradiologyUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Karsten Henning Wrede
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Philipp René Dammann
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| |
Collapse
|
3
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
4
|
Tatti E, Cinti A, Serbina A, Luciani A, D'Urso G, Cacciola A, Quartarone A, Ghilardi MF. Resting-State EEG Alterations of Practice-Related Spectral Activity and Connectivity Patterns in Depression. Biomedicines 2024; 12:2054. [PMID: 39335567 PMCID: PMC11428598 DOI: 10.3390/biomedicines12092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Depression presents with altered energy regulation and neural plasticity. Previous electroencephalography (EEG) studies showed that practice in learning tasks increases power in beta range (13-30 Hz) in healthy subjects but not in those with impaired plasticity. Here, we ascertain whether depression presents with alterations of spectral activity and connectivity before and after a learning task. METHODS We used publicly available resting-state EEG recordings (64 electrodes) from 122 subjects. Based on Beck Depression Inventory (BDI) scores, they were assigned to either a high BDI (hBDI, BDI > 13, N = 46) or a control (CTL, BDI < 7, N = 75) group. We analyzed spectral activity, theta-beta, and theta-gamma phase-amplitude coupling (PAC) of EEG recorded at rest before and after a learning task. RESULTS At baseline, compared to CTL, hBDI exhibited greater power in beta over fronto-parietal regions and in gamma over the right parieto-occipital area. At post task, power increased in all frequency ranges only in CTL. Theta-beta and theta-gamma PAC were greater in hBDI at baseline but not after the task. CONCLUSIONS The lack of substantial post-task growth of beta power in depressed subjects likely represents power saturation due to greater baseline values. We speculate that inhibitory/excitatory imbalance, altered plasticity mechanisms, and energy dysregulation present in depression may contribute to this phenomenon.
Collapse
Affiliation(s)
- Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
| | - Alessandra Cinti
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology & Clinical Neurophysiology, Department of Medicine, Surgery & Neuroscience, University of Siena, 53100 Siena, Italy
| | - Anna Serbina
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
- Department of Psychology, City College of New York, City University of New York, New York, NY 10031, USA
| | - Adalgisa Luciani
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Giordano D'Urso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences & Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | | | - Maria Felice Ghilardi
- Department of Molecular, Cellular & Biomedical Sciences, School of Medicine, City University of New York, New York, NY 10031, USA
| |
Collapse
|
5
|
Nian J, Lan W, Wang Z, Zhang X, Yao H, Zhang F. Exploring the metabolic implications of blue light exposure during daytime in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116436. [PMID: 38723383 DOI: 10.1016/j.ecoenv.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Excessive exposure to light is a global issue. Artificial light pollution has been shown to disrupt the body's natural circadian rhythm. To investigate the impacts of light on metabolism, we studied Sprague-Dawley rats chronically exposed to red or blue light during daytime or nighttime. Rats in the experimental group were exposed to extended light for 4 hours during daytime or nighttime to simulate the effects of excessive light usage. Strikingly, we found systemic metabolic alterations only induced by blue light during daytime. Furthermore, we conducted metabolomic analyses of the cerebrospinal fluid, serum, heart, liver, spleen, adrenal, cerebellum, pituitary, prostate, spermatophore, hypothalamus and kidney from rats in the control and blue light exposure during daytime. Significant changes in metabolites have been observed in cerebrospinal fluid, serum, hypothalamus and kidney of rats exposed to blue light during daytime. Metabolic alterations observed in rats encompassing pyruvate metabolism, glutathione metabolism homocysteine degradation, phosphatidylethanolamine biosynthesis, and phospholipid biosynthesis, exhibit analogous patterns to those inherent in specific physiological processes, notably neurodevelopment, cellular injury, oxidative stress, and autophagic pathways. Our study provides insights into tissue-specific metabolic changes in rats exposed to blue light during the daytime and may help explain potential mechanisms of photopathogenesis.
Collapse
Affiliation(s)
- Jingjing Nian
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Ziran Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Xiaojing Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
6
|
Liu F, Tian Q, Tang HL, Cheng X, Zou W, Zhang P. Hydrogen sulfide attenuates depression-like behaviours in Parkinson's disease model rats by improving synaptic plasticity in a hippocampal Warburg effect-dependent manner. Pharmacol Biochem Behav 2024; 234:173677. [PMID: 37967673 DOI: 10.1016/j.pbb.2023.173677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Depression is a highly prevalent comorbidity arising in patients with Parkinson's disease (PD). However, depression in patients with PD is poorly treated. Hydrogen sulfide (H2S), a neuromodulator, has the potential to relieve depression. OBJECTIVE To investigate whether H2S attenuates depression-like behaviours in a rat model of PD and examine the underlying mechanisms. METHODS We utilised rotenone to develop a PD model with subcutaneous injections in the dorsal cervical region of Sprague-Dawley rats. The depression-like behaviours in the rotenone-induced PD model rats were assessed through forced swimming, tail suspension, open field, novelty-suppressed feeding, and elevated plus-maze tests. The expression of postsynaptic density protein-95 and synapsin-1, related to synaptic plasticity, was detected using Western blot in the hippocampus. The hippocampal ultrastructure, including the synaptic density, length of the synaptic active zone, postsynaptic density thickness, and synaptic gap width, was detected using transmission electron microscopy. RESULTS We proved that sodium hydrosulfide (NaHS; a donor of H2S) significantly attenuated the depression-like behaviours and disorders of hippocampal synaptic plasticity in rotenone-induced PD rats. Furthermore, inhibition of the hippocampal Warburg effect by 2-deoxyglucose abolished NaHS-enhanced hippocampal synaptic plasticity and reversed NaHS-attenuated depression-like behaviours in the rotenone-induced PD rats. CONCLUSION H2S attenuates PD-associated depression by improving the hippocampal synaptic plasticity in a hippocampal Warburg effect-dependent manner.
Collapse
Affiliation(s)
- Fen Liu
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Tian
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui-Ling Tang
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiang Cheng
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Zou
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, China.
| | - Ping Zhang
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Wang C, Cui C, Xu P, Zhu L, Xue H, Chen B, Jiang P. Targeting PDK2 rescues stress-induced impaired brain energy metabolism. Mol Psychiatry 2023; 28:4138-4150. [PMID: 37188779 DOI: 10.1038/s41380-023-02098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Depression is a mental illness frequently accompanied by disordered energy metabolism. A dysregulated hypothalamus pituitary adrenal axis response with aberrant glucocorticoids (GCs) release is often observed in patients with depression. However, the associated etiology between GCs and brain energy metabolism remains poorly understood. Here, using metabolomic analysis, we showed that the tricarboxylic acid (TCA) cycle was inhibited in chronic social defeat stress (CSDS)-exposed mice and patients with first-episode depression. Decreased mitochondrial oxidative phosphorylation was concomitant with the impairment of the TCA cycle. In parallel, the activity of pyruvate dehydrogenase (PDH), the gatekeeper of mitochondrial TCA flux, was suppressed, which is associated with the CSDS-induced neuronal pyruvate dehydrogenase kinase 2 (PDK2) expression and consequently enhanced PDH phosphorylation. Considering the well-acknowledged role of GCs in energy metabolism, we further demonstrated that glucocorticoid receptors (GR) stimulated PDK2 expression by directly binding to its promoter region. Meanwhile, silencing PDK2 abrogated glucocorticoid-induced PDH inhibition, restored the neuronal oxidative phosphorylation, and improved the flux of isotope-labeled carbon (U-13C] glucose) into the TCA cycle. Additionally, in vivo, pharmacological inhibition and neuron-specific silencing of GR or PDK2 restored CSDS-induced PDH phosphorylation and exerted antidepressant activities against chronic stress exposure. Taken together, our findings reveal a novel mechanism of depression manifestation, whereby elevated GCs levels regulate PDK2 transcription via GR, thereby impairing brain energy metabolism and contributing to the onset of this condition.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Pengfei Xu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Li Zhu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Beibei Chen
- ADFA School of Science, University of New South Wales, Canberra, ACT, Australia
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China.
| |
Collapse
|
8
|
Wang Z, Haange SB, Haake V, Huisinga M, Kamp H, Buesen R, Schubert K, Canzler S, Hackermüller J, Rolle-Kampczyk U, Bergen MV. Assessing the Influence of Propylthiouracil and Phenytoin on the Metabolomes of the Thyroid, Liver, and Plasma in Rats. Metabolites 2023; 13:847. [PMID: 37512556 PMCID: PMC10383188 DOI: 10.3390/metabo13070847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The thyroid hormones (THs) regulate various physiological mechanisms in mammals, such as cellular metabolism, cell structure, and membrane transport. The therapeutic drugs propylthiouracil (PTU) and phenytoin are known to induce hypothyroidism and decrease blood thyroid hormone levels. To analyze the impact of these two drugs on systemic metabolism, we focused on metabolic changes after treatment. Therefore, in a rat model, the metabolome of thyroid and liver tissue as well as from the blood plasma, after 2-week and 4-week administration of the drugs and after a following 2-week recovery phase, was investigated using targeted LC-MS/MS and GC-MS. Both drugs were tested at a low dose and a high dose. We observed decreases in THs plasma levels, and higher doses of the drugs were associated with a high decrease in TH levels. PTU administration had a more pronounced effect on TH levels than phenytoin. Both drugs had little or no influence on the metabolomes at low doses. Only PTU exhibited apparent metabolome alterations at high doses, especially concerning lipids. In plasma, acylcarnitines and triglycerides were detected at decreased levels than in the controls after 2- and 4-week exposure to the drug, while sphingomyelins and phosphatidylcholines were observed at increased levels. Interestingly, in the thyroid tissue, triglycerides were observed at increased concentrations in the 2-week exposure group to PTU, which was not observed in the 4-week exposure group and in the 4-week exposure group followed by the 2-week recovery group, suggesting an adaptation by the thyroid tissue. In the liver, no metabolites were found to have significantly changed. After the recovery phase, the thyroid, liver, and plasma metabolomic profiles showed little or no differences from the controls. In conclusion, although there were significant changes observed in several plasma metabolites in PTU/Phenytoin exposure groups, this study found that only PTU exposure led to adaptation-dependent changes in thyroid metabolites but did not affect hepatic metabolites.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Volker Haake
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
| | - Maike Huisinga
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Sebastian Canzler
- Department of Computational Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Jörg Hackermüller
- Department of Computational Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
10
|
Purinergic signaling in thyroid disease. Purinergic Signal 2023; 19:221-227. [PMID: 35347568 PMCID: PMC9984614 DOI: 10.1007/s11302-022-09858-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
Abstract
It is known that thyroid hormones play pivotal roles in a wide variety of pathological and physiological events. Thyroid diseases, mainly including hyperthyroidism, hypothyroidism, and thyroid cancer, are highly prevalent worldwide health problems and frequently associated with severe clinical manifestations. However, etiology of hyperthyroidism, hypothyroidism, and thyroid cancer is not fully understood. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. It has been established that purinergic signaling modulates pathways in a wide range of physiopathological conditions including hypertension, diabetes, hepatic diseases, psychiatric and neurodegeneration, rheumatic immune diseases, and cancer. More recently, the purinergic system is found to exist in thyroid gland and play an important role in the pathophysiology of thyroid diseases. Therefore, throughout this review, we focus on elaborating the changes in purinergic receptors, extracellular enzymes, and extracellular nucleotides and adenosine in hyperthyroidism, hypothyroidism, and thyroid cancer. Profound understanding of the relationship between the purinergic signaling with thyroid diseases provides a promising research area for insights into the molecular basis of thyroid diseases and also develops new and exciting insights into the treatment of thyroid diseases, especially thyroid cancer.
Collapse
|
11
|
Wu S, Wang H, Zhou Y, Xia X, Yue Y, Wu Y, Peng R, Yang R, Li R, Yuan N, Li Z, Zhao X, Yin M, Du X, Zhang X. Clinical correlates of autoimmune thyroiditis and non-autoimmune hypothyroidism in treatment-naïve patients with major depressive disorders. J Affect Disord 2023; 323:755-761. [PMID: 36529413 DOI: 10.1016/j.jad.2022.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Thyroid autoimmunity is a potentially critical factor that is often neglected in the association between subclinical hypothyroidism (SCH) and depressive disorders. This study aimed to investigate the clinical correlates of autoimmune thyroiditis (AIT) and non-autoimmune hypothyroidism (NAIH) in treatment-naïve patients with major depressive disorder (MDD). METHOD Using a cross-sectional design, we recruited a total of 1718 outpatients with treatment-naïve MDD. Demographic and relevant clinical information including duration of MDD, severity of depression and anxiety, psychotic symptoms, suicide attempts, thyroid function parameters, etc. were collected. According to thyroid function parameters, patients were classified as AIT, NAIH, latent Hashimoto's thyroiditis (LH) and euthyroidism (ET). RESULTS Patients with SCH (including AIT and NAIH) had older age at onset, and were more likely to have psychotic symptoms compared to those with ET. Multiple linear regression analysis showed that SCH was associated with duration of MDD and HAMD scores. Logistic regression analysis showed that the odds of having more severe anxiety and metabolic syndrome were greater among patients with SCH compared to those with ET. The odds of having suicide attempts were greater among patients with AIT than among those with ET. LIMITATION Because of the cross-sectional design of this study, we were unable to sort out causality between MDD and SCH. CONCLUSION Our findings suggested that AIT and NAIH were associated with duration of MDD, HAMD scores, severity of anxiety, and metabolic syndrome. However, only AIT in SCH was associated with suicide attempts.
Collapse
Affiliation(s)
- Siqi Wu
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, China; Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Haitao Wang
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, China
| | - Yue Zhou
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Xingzhi Xia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Yan Yue
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China; Medical College of Soochow University, Suzhou, China
| | - Yuxuan Wu
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China; Medical College of Soochow University, Suzhou, China
| | - Ruijie Peng
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China; Medical College of Soochow University, Suzhou, China
| | - Ruchang Yang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China; Medical College of Soochow University, Suzhou, China
| | - Ronghua Li
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Nian Yuan
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Zhe Li
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xueli Zhao
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ming Yin
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Attenuation of Hypothyroidism-Induced Cognitive Impairment by Modulating Serotonin Mediation. Vet Sci 2023; 10:vetsci10020122. [PMID: 36851426 PMCID: PMC9966518 DOI: 10.3390/vetsci10020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormones play an important role in the modeling of neural networks in the brain. Besides its metabolic effects, thyroid dysfunction, and hypothyroidism in particular, is frequently associated with cognitive decline and depressive-like behavior. The current study aimed to examine the changes in behavior, cognition, and memory in rats with propylthiouracil-induced overt hypothyroidism. The behavior and cognition were assessed using the open field test, T-maze, and novel object recognition test. We found significant differences in the behavioral patterns of the hypothyroid animals showing a reduction in locomotor activity, frequency of rearing, and impaired memory function compared to the euthyroid controls. As serotonin is an essential biomarker regulating cognition and mood, we tried to modulate the serotonin mediation in hypothyroid animals through tryptophan administration. Treatment with 5-hydroxy-tryptophan (5-OH-TRP) intraperitoneally for 10 days or directly into the hippocampus as a single injection led to attenuation of the hypothyroidism-induced cognitive and memory decline. A staggering amount of research is suggesting that the common denominators in the pathophysiology of depression and the behavior changes in hypothyroidism are the hippocampal complex and the distorted serotonin metabolism. In our study, it was observed a significant alleviation of cognitive impairment and an improvement of memory performance in hypothyroid rats after 5-OH-TRP administration. Current results are promising and may serve as groundwork for further investigation of functional and structural changes in the hippocampus during a hypothyroid state, and in particular, the effects of serotonin mediation in hypothyroid-associated depressive-like behavior.
Collapse
|
13
|
Wang J, Sun R, Xia L, Zhu X, Zhang Q, Ye Y. Potential Therapeutic Effects of NAMPT-Mediated NAD Biosynthesis in Depression In Vivo. Brain Sci 2022; 12:brainsci12121699. [PMID: 36552159 PMCID: PMC9775136 DOI: 10.3390/brainsci12121699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the potential therapeutic effects of nicotinamide phosphoribosyltransferase (NAMPT)-mediated adenine dinucleotide (NAD) biosynthesis in depression models in vivo. Namptflox/flox mice were used to evaluate the role of NAMPT in depression. NAMPT and NAD levels in the prefrontal cortex (PFC) were measured, and depression-associated behavior, cognitive function, and social interaction were evaluated. The expression levels of BDNF, pCREB, CREB, monoamine neurotransmitters, and corticosterone (CORT) were also detected in the PFC. The contents of NAMPT and NAD decreased in the PFC in Namptflox/flox mice. Namptflox/flox mice showed depression-like behaviors, cognitive function deterioration, decreased social ability, and decreased dominance. Meanwhile, there were decreased expression levels of the pCREB/CREB ratio, but not BDNF, in the PFC. Levels of DA, 5-HT, and NE were decreased, and CORT was activated in the PFC of Namptflox/flox mice. Additionally, the role of NAMPT-NAD was examined in rats treated with nicotinamide riboside (NR) after being exposed to chronic unexpected mild stress (CUMS). NR reversed the decreased NAMPT expression in the PFC and HIP, and the NAD content in the PFC, but not HIP in rats with CUMS-induced depression. NR also improved depressive- and anxiolytic-like behaviors, locomotor activity, and cognitive function. BDNF expression and the pCREB/CREB ratio were significantly increased in both the PFC and HIP after NR treatment. The activation of CORT and decreased content of DA were reversed after NR treatment in the PFC. There was no difference in the 5-HT content among groups in both the PFC and HIP. Taken together, NAD synthesis induced by NAMPT could be associated with depression-like behaviors in mice, and the elevated NAD level by NR improved depression in rats.
Collapse
Affiliation(s)
- Jue Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Runxuan Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Linhan Xia
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Xinying Zhu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China
| | - Qi Zhang
- College of Medicine, Jiaxing University, Jiaxing 314001, China
- Correspondence: (Q.Z.); (Y.Y.)
| | - Yilu Ye
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Correspondence: (Q.Z.); (Y.Y.)
| |
Collapse
|
14
|
Lu S, Li C, Jin X, Zhu L, Shen J, Bai M, Li Y, Xu E. Baicalin improves the energy levels in the prefrontal cortex of mice exposed to chronic unpredictable mild stress. Heliyon 2022; 8:e12083. [DOI: 10.1016/j.heliyon.2022.e12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
|
15
|
Changes in regulators of lipid metabolism in the brain: a study of animal models of depression and hypothyroidism. Pharmacol Rep 2022; 74:859-870. [PMID: 35951260 PMCID: PMC9584974 DOI: 10.1007/s43440-022-00395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Metabolic disturbances in the brain are assumed to be early changes involved in the pathogenesis of depression, and these alterations may be intensified by a deficiency of thyroid hormones. In contrast to glucose metabolism, the link between altered brain lipids and the pathogenesis of depression is poorly understood, therefore in the present study, we determine transcription factors and enzymes regulating cholesterol and fatty acid biosynthesis in the brain structures in an animal model of depression, hypothyroidism and the coexistence of these diseases. In used model of depression, a decrease in the active form of the transcription factor SREBP-2 in the hippocampus was demonstrated, thus suggesting a reduction in cholesterol biosynthesis. In turn, in the hypothyroidism model, the reduction of cholesterol biosynthesis in the frontal cortex was demonstrated by both the reduction of mature SREBP-2 and the concentration of enzymes involved in cholesterol biosynthesis. The lower expression of LDL receptors in the frontal cortex indicates the restriction of cholesterol uptake into the cells in the model of coexistence of depression and hypothyroidism. Moreover, the identified changes in the levels of SNAP-25, GLP-1R and GLP-2R pointed to disturbances in synaptic plasticity and neuroprotection mechanisms in the examined brain structures. In conclusion, a reduction in cholesterol synthesis in the hippocampus in the model of depression may be the reason for the reduction of synaptic plasticity, whereas a lower level of LDL-R occurring in the frontal cortex in rats from the model of depression and hypothyroidism coexistence could be the reason of anxiogenic and depression-like behaviors.
Collapse
|
16
|
Relationship between thyroid hormones and central nervous system metabolism in physiological and pathological conditions. Pharmacol Rep 2022; 74:847-858. [PMID: 35771431 DOI: 10.1007/s43440-022-00377-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Thyroid hormones (THs) play an important role in the regulation of energy metabolism. They also take part in processes associated with the central nervous system (CNS), including survival and differentiation of neurons and energy expenditure. It has been reported that a correlation exists between the functioning of the thyroid gland and the symptoms of CNS such as cognitive impairment, depression, and dementia. Literature data also indicate the influence of THs on the pathogenesis of CNS diseases, such as Alzheimer's disease, epilepsy, depression, and Parkinson's disease. This review describes the relationship between THs and metabolism in the CNS, the effect of THs on the pathological conditions of the CNS, and novel options for treating these conditions with TH derivatives.
Collapse
|
17
|
Alteration in the Expression of Genes Involved in Cerebral Glucose Metabolism as a Process of Adaptation to Stressful Conditions. Brain Sci 2022; 12:brainsci12040498. [PMID: 35448030 PMCID: PMC9030173 DOI: 10.3390/brainsci12040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Exposure to chronic stress leads to disturbances in glucose metabolism in the brain, and changes in the functioning of neurons coexisting with the development of depression. The detailed molecular mechanism and cerebral gluconeogenesis during depression are not conclusively established. The aim of the research was to assess the expression of selected genes involved in cerebral glucose metabolism of mice in the validated animal paradigm of chronic stress. To confirm the induction of depression-like disorders, we performed three behavioral tests: sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST). In order to study the cerebral glucose metabolism of the brain, mRNA levels of the following genes were determined in the prefrontal cortex of mice: Slc2a3, Gapdh, Ldha, Ldhb, and Pkfb3. It has been shown that exogenous, chronic administration of corticosterone developed a model of depression in behavioral tests. There were statistically significant changes in the mRNA level of the Slc2a3, Ldha, Gapdh, and Ldhb genes. The obtained results suggest changes in cerebral glucose metabolism as a process of adaptation to stressful conditions, and may provide the basis for introducing new therapeutic strategies for chronic stress-related depression.
Collapse
|
18
|
Karakatsoulis GN, Tsapakis EM, Mitkani C, Fountoulakis KN. Subclinical thyroid dysfunction and major depressive disorder. Hormones (Athens) 2021; 20:613-621. [PMID: 34427900 DOI: 10.1007/s42000-021-00312-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE This review attempts to investigate the link between subclinical thyroid dysfunction (SCH) and major depressive disorder (MDD). It has been speculated that SCH may be related to MDD through an autoimmune mechanism. METHODS A comprehensive literature search was conducted in the PubMed database for relevant research and review articles. RESULTS There appears to be an association between an autoimmune mechanism, possibly involving the thyroid gland, and depressive disorders, but the available evidence is so far inconclusive. CONCLUSION Lifetime prevalence of depression is significantly higher in patients with SCH, a finding reflecting a possible effect of SCH in lowering the threshold for the emergence of MDD. The relationship between SCH and MDD is, however, not clear, with large and well-designed studies investigating possible links between reference-range thyroid hormone levels and MDD having as yet found no relation between the two.
Collapse
Affiliation(s)
- Grigorios N Karakatsoulis
- 3rd Department of Psychiatry, Aristotle University of Thessaloniki, University General Hospital AHEPA, Stilponos Kyriakidi Str. 1, Thessaloniki, Greece.
- , Thessaloniki, Greece.
| | - Eva-Maria Tsapakis
- 1st Department of Psychiatry, Aristotle University of Thessaloniki, Papageorgiou General Hospital, 564 29, Thessaloniki, Greece
- "Agios Charalambos" Mental Health Clinic, 71305, Heraklion, Crete, Greece
| | - Calypso Mitkani
- "Agios Pavlos" General Hospital, Ethnikis Antistaseos Ave. 161, Thessaloniki, Greece
| | - Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Aristotle University of Thessaloniki, University General Hospital AHEPA, Stilponos Kyriakidi Str. 1, Thessaloniki, Greece
| |
Collapse
|
19
|
Shaw GA. Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 2021; 18:100350. [PMID: 34746877 PMCID: PMC8554460 DOI: 10.1016/j.bbih.2021.100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in the synthesis of steroid hormones, including the sex hormone estrogen. Sex-specific regulation of these hormones is important for phenotypic development and downstream, sex-specific activational effects in both brain and behavior. First, mitochondrial contribution to the synthesis of estrogen, followed by a discussion of the signaling interactions between estrogen and the mitochondria will be reviewed. Next, disorders with an established sex difference related to aging, mood, and cognition will be examined. Finally, review of mitochondria as a biomarker of disease and data supporting efforts in targeting mitochondria as a therapeutic target for the amelioration of these disorders will be discussed. Taken together, this review aims to assess the influence of E2 on mitochondrial function within the brain via exploration of E2-ER interactions within neural mitochondria and how they may act to influence the development and presentation of neurodegenerative and neurocognitive diseases with known sex differences.
Collapse
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Głombik K, Detka J, Budziszewska B. Hormonal Regulation of Oxidative Phosphorylation in the Brain in Health and Disease. Cells 2021; 10:2937. [PMID: 34831160 PMCID: PMC8616269 DOI: 10.3390/cells10112937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
The developing and adult brain is a target organ for the vast majority of hormones produced by the body, which are able to cross the blood-brain barrier and bind to their specific receptors on neurons and glial cells. Hormones ensure proper communication between the brain and the body by activating adaptive mechanisms necessary to withstand and react to changes in internal and external conditions by regulating neuronal and synaptic plasticity, neurogenesis and metabolic activity of the brain. The influence of hormones on energy metabolism and mitochondrial function in the brain has gained much attention since mitochondrial dysfunctions are observed in many different pathological conditions of the central nervous system. Moreover, excess or deficiency of hormones is associated with cell damage and loss of function in mitochondria. This review aims to expound on the impact of hormones (GLP-1, insulin, thyroid hormones, glucocorticoids) on metabolic processes in the brain with special emphasis on oxidative phosphorylation dysregulation, which may contribute to the formation of pathological changes. Since the brain concentrations of sex hormones and neurosteroids decrease with age as well as in neurodegenerative diseases, in parallel with the occurrence of mitochondrial dysfunction and the weakening of cognitive functions, their beneficial effects on oxidative phosphorylation and expression of antioxidant enzymes are also discussed.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
21
|
Głombik K, Detka J, Budziszewska B. Venlafaxine and L-Thyroxine Treatment Combination: Impact on Metabolic and Synaptic Plasticity Changes in an Animal Model of Coexisting Depression and Hypothyroidism. Cells 2021; 10:cells10061394. [PMID: 34198731 PMCID: PMC8227539 DOI: 10.3390/cells10061394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical effectiveness of supportive therapy with thyroid hormones in drug-resistant depression is well-known; however, the mechanisms of action of these hormones in the adult brain have not been fully elucidated to date. We determined the effects of venlafaxine and/or L-thyroxine on metabolic parameters and markers involved in the regulation of synaptic plasticity and cell damage in an animal model of coexisting depression and hypothyroidism, namely, Wistar Kyoto rats treated with propylthiouracil. In this model, in relation to the depression model itself, the glycolysis process in the brain was weakened, and a reduction in pyruvate dehydrogenase in the frontal cortex was normalized only by the combined treatment with L-thyroxine and venlafaxine, whereas changes in pyruvate and lactate levels were affected by all applied therapies. None of the drugs improved the decrease in the expression of mitochondrial respiratory chain enzymes. No intensification of glucocorticoid action was shown, while an unfavorable change caused by the lack of thyroid hormones was an increase in the caspase-1 level, which was not reversed by venlafaxine alone. The results indicated that the combined administration of drugs was more effective in normalizing glycolysis and the transition to the Krebs cycle than the use of venlafaxine or L-thyroxine alone.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Correspondence: ; Tel.: +48-12-662-33-94
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
22
|
Ling-Hu T, Liu SB, Gao Y, Han YM, Tian JS, Qin XM. Stable Isotope-Resolved Metabolomics Reveals the Abnormal Brain Glucose Catabolism in Depression Based on Chronic Unpredictable Mild Stress Rats. J Proteome Res 2021; 20:3549-3558. [PMID: 34077228 DOI: 10.1021/acs.jproteome.1c00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The severe harm of depression to human life has attracted great attention to neurologists, but its pathogenesis is extremely complicated and has not yet been fully elaborated. Here, we provided a new strategy for revealing the specific pathways of abnormal brain glucose catabolism in depression, based on the supply of energy substrates and the evaluation of the mitochondrial structure and function. By using stable isotope-resolved metabolomics, we discovered that the tricarboxylic acid cycle (TCA cycle) is blocked and gluconeogenesis is abnormally activated in chronic unpredictable mild stress (CUMS) rats. In addition, our results showed an interesting phenomenon that the brain attempted to activate all possible metabolic enzymes in energy-producing pathways, but CUMS rats still exhibited a low TCA cycle activity due to impaired mitochondria. Depression caused the mitochondrial structure and function to be impaired and then led to abnormal brain glucose catabolism. The combination of the stable isotope-resolved metabolomics and mitochondrial structure and function analysis can accurately clarify the mechanism of depression. The mitochondrial pyruvate carrier and acetyl-CoA may be the key targets for depression treatment. The strategy provides a unique insight for exploring the mechanism of depression, the discovery of new targets, and the development of ideal novel antidepressants. Data are available via ProteomeXchange with identifier PXD025548.
Collapse
Affiliation(s)
- Ting Ling-Hu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shao-Bo Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yu-Mei Han
- School of Physical Education, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| |
Collapse
|
23
|
Detka J, Głombik K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. Pharmacol Rep 2021; 73:1020-1032. [PMID: 34003475 PMCID: PMC8413152 DOI: 10.1007/s43440-021-00274-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
Abstract
Depression is a highly prevalent mood disorder and one of the major health concerns in modern society. Moreover, it is characterized by a high prevalence of coexistence with many other diseases including metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity. Currently used antidepressant drugs, which mostly target brain monoaminergic neurotransmission, have limited clinical efficacy. Although the etiology of depression has not been fully elucidated, current scientific data emphasize the role of neurotrophic factors deficiencies, disturbed homeostasis between the nervous system and the immune and endocrine systems, as well as disturbances in brain energy metabolism and dysfunctions in the gut-brain axis as important factors in the pathogenesis of this neuropsychiatric disorder. Therefore, therapeutic options that could work in a way other than classic antidepressants are being sought to increase the effectiveness of the treatment. Interestingly, glucagon-like peptide-1 receptor agonists (GLP-1RAs), used in the treatment of T2DM and obesity, are known to show pro-cognitive and neuroprotective properties, and exert modulatory effects on immune, endocrine and metabolic processes in the central nervous system. This review article discusses the potential antidepressant effects of GLP-1RAs, especially in the context of their action on the processes related to neuroprotection, inflammation, stress response, energy metabolism, gut-brain crosstalk and the stability of the gut microbiota.
Collapse
Affiliation(s)
- Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Cracow, Poland.
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Cracow, Poland
| |
Collapse
|
24
|
Contribution of Hypothyroidism to Cognitive Impairment and Hippocampal Synaptic Plasticity Regulation in an Animal Model of Depression. Int J Mol Sci 2021; 22:ijms22041599. [PMID: 33562494 PMCID: PMC7915890 DOI: 10.3390/ijms22041599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
The role that thyroid hormone deficiency plays in depression and synaptic plasticity in adults has only begun to be elucidated. This paper analyzes the possible link between depression and hypothyroidism in cognitive function alterations, using Wistar–Kyoto (WKY—an animal model of depression) rats and control Wistar rats under standard and thyroid hormone deficiency conditions (propylthiouracil administration—PTU). A weakening of memory processes in the WKY rats is shown behaviorally, and in the reduction of long-term potentiation (LTP) in the dentate gyrus (DG) and CA1 hippocampal regions. PTU administration decreased LTP and increased basal excitatory transmission in the DG in Wistar rats. A decrease in short-term synaptic plasticity is shown by the paired-pulse ratio measurement, occurring during hypothyroidism in DG and CA1 in WKY rats. Differences between the strains may result from decreases in the p-CaMKII, p-AKT, and the level of acetylcholine, while in the case of the co-occurrence of depression and hypothyroidism, an increase in the p-ERK1-MAP seemed to be important. Obtained results show that thyroid hormones are less involved in the inhibition of glutamate release and/or excitability of the postsynaptic neurons in WKY rats, which may indicate a lower sensitivity of the hippocampus to the action of thyroid hormones in depression.
Collapse
|