1
|
Liu C, Shao FH, He XC, Du HZ, Liu CM, Zhou B, Teng ZQ. Single-Cell RNA Sequencing Uncovers Molecular Features Underlying the Disrupted Neurogenesis Following Traumatic Brain Injury. Glia 2025. [PMID: 39760225 DOI: 10.1002/glia.24671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with limited effective treatment strategies. Endogenous neural stem cells (NSCs) give rise to neurons and glial cells throughout life. However, NSCs are more likely to differentiate into glial cells rather than neurons at the lesion site after TBI and the underlying molecular mechanism remains largely unknown. Here, we performed large-scale single-cell transcriptome sequencing of subventricular zone (SVZ) NSCs and NSCs-derived cells in the mouse brain, and provide molecular evidence for previous observations that glial differentiation of NSCs prevails after TBI. In addition, we show that the disrupted neurogenesis following TBI is caused by the reduction of a NSC subcluster (NSC-4) expressing the neuronal gene Tubb3. Finally, we demonstrate that the transcriptional factor Dlx2 is significantly downregulated in NSC-4, and Dlx2 overexpression is sufficient to drive NSCs towards neuronal lineage differentiation at the expense of astrocytic lineage differentiation under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Cong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Mental Health, Wenzhou Medical University, Zhejiang, China
| | - Fang-Hong Shao
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuan-Cheng He
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
3
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Gorthy AS, Balleste AF, Placeres-Uray F, Atkins CM. Chronic Stress in Early Development and Effects on Traumatic Brain Injury Outcome. ADVANCES IN NEUROBIOLOGY 2024; 42:179-204. [PMID: 39432043 PMCID: PMC11556197 DOI: 10.1007/978-3-031-69832-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
In recent years, significant advances have been made in the study of mild traumatic brain injury (mTBI). Complete recovery from mTBI normally requires days to weeks, yet a subset of the population suffers from symptoms for weeks to months after injury. The risk factors for these prolonged symptoms have not yet been fully understood. In this chapter, we address one proposed risk factor, early life stress (ELS) and its influence on mTBI recovery. To study the effects of ELS on mTBI recovery, accepted animal models of ELS, including maternal separation, limited bedding and nesting, and chronic unpredictable stress, have been implemented. Combining these ELS models with standardized mTBI models, such as fluid percussion injury or controlled cortical impact, has allowed for a deeper understanding of the neuronal, hormonal, and cognitive changes that occur after mTBI following ELS. These preclinical findings are being used to understand how adverse childhood experiences may predispose a subset of individuals to poorer recovery after mTBI.
Collapse
Affiliation(s)
- Aditi S Gorthy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alyssa F Balleste
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fabiola Placeres-Uray
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Latchney SE, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Neuronal deletion of phosphatase and tensin homolog in mice results in spatial dysregulation of adult hippocampal neurogenesis. Front Mol Neurosci 2023; 16:1308066. [PMID: 38130682 PMCID: PMC10733516 DOI: 10.3389/fnmol.2023.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adult neurogenesis is a persistent phenomenon in mammals that occurs in select brain structures in both healthy and diseased brains. The tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome 10 (Pten) has previously been found to restrict the proliferation of neural stem/progenitor cells (NSPCs) in vivo. In this study, we aimed to provide a comprehensive picture of how conditional deletion of Pten may regulate the genesis of adult NSPCs in the dentate gyrus of the hippocampus and the subventricular zone bordering the lateral ventricles. Using conventional markers and stereology, we quantified multiple stages of neurogenesis, including proliferating cells, immature neurons (neuroblasts), and apoptotic cells in several regions of the dentate gyrus, including the subgranular zone (SGZ), outer granule cell layer (oGCL), molecular layer, and hilus at 4 and 10 weeks of age. Our data demonstrate that conditional deletion of Pten in mice produces successive increases in dentate gyrus proliferating cells and immature neuroblasts, which confirms the known negative roles Pten has on cell proliferation and maturation. Specifically, we observe a significant increase in Ki67+ proliferating cells in the neurogenic SGZ at 4 weeks of age, but not 10 weeks of age. We also observe a delayed increase in neuroblasts at 10 weeks of age. However, our study expands on previous work by providing temporal, subregional, and neurogenesis-stage resolution. Specifically, we found that Pten deletion initially increases cell proliferation in the neurogenic SGZ, but this increase spreads to non-neurogenic dentate gyrus areas, including the hilus, oGCL, and molecular layer, as mice age. We also observed region-specific increases in apoptotic cells in the dentate gyrus hilar region that paralleled the regional increases in Ki67+ cells. Our work is accordant with the literature showing that Pten serves as a negative regulator of dentate gyrus neurogenesis but adds temporal and spatial components to the existing knowledge.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Brayan R. Ruiz Lopez
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Katherine J. Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
6
|
Neale KJ, Reid HMO, Sousa B, McDonagh E, Morrison J, Shultz S, Eyolfson E, Christie BR. Repeated mild traumatic brain injury causes sex-specific increases in cell proliferation and inflammation in juvenile rats. J Neuroinflammation 2023; 20:250. [PMID: 37907981 PMCID: PMC10617072 DOI: 10.1186/s12974-023-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Childhood represents a period of significant growth and maturation for the brain, and is also associated with a heightened risk for mild traumatic brain injuries (mTBI). There is also concern that repeated-mTBI (r-mTBI) may have a long-term impact on developmental trajectories. Using an awake closed head injury (ACHI) model, that uses rapid head acceleration to induce a mTBI, we investigated the acute effects of repeated-mTBI (r-mTBI) on neurological function and cellular proliferation in juvenile male and female Long-Evans rats. We found that r-mTBI did not lead to cumulative neurological deficits with the model. R-mTBI animals exhibited an increase in BrdU + (bromodeoxyuridine positive) cells in the dentate gyrus (DG), and that this increase was more robust in male animals. This increase was not sustained, and cell proliferation returning to normal by PID3. A greater increase in BrdU + cells was observed in the dorsal DG in both male and female r-mTBI animals at PID1. Using Ki-67 expression as an endogenous marker of cellular proliferation, a robust proliferative response following r-mTBI was observed in male animals at PID1 that persisted until PID3, and was not constrained to the DG alone. Triple labeling experiments (Iba1+, GFAP+, Brdu+) revealed that a high proportion of these proliferating cells were microglia/macrophages, indicating there was a heightened inflammatory response. Overall, these findings suggest that rapid head acceleration with the ACHI model produces an mTBI, but that the acute neurological deficits do not increase in severity with repeated administration. R-mTBI transiently increases cellular proliferation in the hippocampus, particularly in male animals, and the pattern of cell proliferation suggests that this represents a neuroinflammatory response that is focused around the mid-brain rather than peripheral cortical regions. These results add to growing literature indicating sex differences in proliferative and inflammatory responses between females and males. Targeting proliferation as a therapeutic avenue may help reduce the short term impact of r-mTBI, but there may be sex-specific considerations.
Collapse
Affiliation(s)
- Katie J Neale
- Division of Medical Sciences, University of Victoria, Medical Sciences Building,3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Hannah M O Reid
- Division of Medical Sciences, University of Victoria, Medical Sciences Building,3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Barbara Sousa
- Division of Medical Sciences, University of Victoria, Medical Sciences Building,3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Erin McDonagh
- Division of Medical Sciences, University of Victoria, Medical Sciences Building,3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Jamie Morrison
- Division of Medical Sciences, University of Victoria, Medical Sciences Building,3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Sandy Shultz
- Division of Medical Sciences, University of Victoria, Medical Sciences Building,3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
- Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada
- Monash Trauma Group, Monash University, Melbourne, Australia
| | - Eric Eyolfson
- Division of Medical Sciences, University of Victoria, Medical Sciences Building,3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Medical Sciences Building,3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
- Institute for Aging and Life Long Health, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
- Island Medical Program, Cellular and Physiological Sciences, University of British Columbia, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
7
|
Liu Y, Fan Z, Wang J, Dong X, Ouyang W. Modified mouse model of repeated mild traumatic brain injury through a thinned-skull window and fluid percussion. J Neurosci Res 2023; 101:1633-1650. [PMID: 37382058 DOI: 10.1002/jnr.25227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Mild traumatic brain injury (mTBI) is a clinically highly heterogeneous neurological disorder, none of the existing animal models can replicate the entire sequelae. This study aimed to develop a modified closed head injury (CHI) model of repeated mTBI (rmTBI) for investigating Ca2+ fluctuations of the affected neural network, the alternations of electrophysiology, and behavioral dysfunctions. The transcranial Ca2+ study protocol includes AAV-GCaMP6s infection in the right motor cortex, thinned-skull preparation, and two-photon laser scanning microscopy (TPLSM) imaging. The CHI rmTBI model is fabricated using the thinned-skull site and applying 2.0 atm fluid percussion with 48-h interval. The neurological dysfunction, minor motor performance, evident mood, spatial working, and reference deficits we found in this study mimic the clinically relevant syndromes after mTBI. Besides, our study revealed that there was a trend of transition from Ca2+ singlepeak to multipeak and plateau, and the total Ca2+ activities of multipeaks and plateaus (p < .001 vs. pre-rmTBI value) were significantly increased in ipsilateral layer 2/3 motor neurons after rm TBI. In parallel, there is a low-frequency power shift from delta to theta band (p < .01 vs. control) in the ipsilateral layer 2/3 of motor cortex of the rmTBI mice, and the overall firing rates significantly increased (p < .01 vs. control). Moreover, rmTBI causes slight cortical and hippocampal neuron damage and possibly induces neurogenesis in the dentate gyrus (DG). The alternations of Ca2+ and electrophysiological characteristics in layer 2/3 neuronal network, histopathological changes, and possible neurogenesis may play concertedly and partially contribute to the functional outcome post-rmTBI.
Collapse
Affiliation(s)
- Yuncheng Liu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhiheng Fan
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Jihui Wang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Xuefen Dong
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
8
|
Corrubia L, Huang A, Nguyen S, Shiflett MW, Jones MV, Ewell LA, Santhakumar V. Early Deficits in Dentate Circuit and Behavioral Pattern Separation after Concussive Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.22.546120. [PMID: 37745454 PMCID: PMC10515770 DOI: 10.1101/2023.06.22.546120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Traumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations in vivo one week after concussive lateral fluid percussion injury (FPI) in mice. Despite posttraumatic increases in perforant path evoked excitatory drive to granule cells and enhanced ΔFosB labeling, indicating sustained increase in excitability, the reliability of granule cell spiking was not compromised after FPI. Although granule cells continued to effectively decorrelate output spike trains recorded in response to similar temporally patterned input sets after FPI, their ability to decorrelate highly similar input patterns was reduced. In parallel, encoding of similar spatial locations in a novel object location task that involves the dentate inhibitory circuits was impaired one week after FPI. Injury induced changes in pattern separation were accompanied by loss of somatostatin expressing inhibitory neurons in the hilus. Together, these data suggest that the early posttraumatic changes in the dentate circuit undermine dentate circuit decorrelation of temporal input patterns as well as behavioral discrimination of similar spatial locations, both of which could contribute to deficits in episodic memory.
Collapse
Affiliation(s)
- Lucas Corrubia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Andrew Huang
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Susan Nguyen
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | | | - Mathew V. Jones
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53705
| | - Laura A. Ewell
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| |
Collapse
|
9
|
Yun S, Soler I, Tran FH, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. Front Behav Neurosci 2023; 17:1151877. [PMID: 37324519 PMCID: PMC10267474 DOI: 10.3389/fnbeh.2023.1151877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities that are disrupted in many brain disorders. A better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on the integrity of the hippocampal dentate gyrus (DG) which receives glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). An inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here, we asked if the activity of LEC fan cells that directly project to the DG (LEC → DG neurons) regulates the relatively more complex hippocampal-dependent abilities of behavioral pattern separation or cognitive flexibility. C57BL/6J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA). Prior work shows that 4 weeks post-surgery, TRIP8b mice have more DG neurogenesis and greater activity of LEC → DG neurons compared to SCR shRNA mice. Here, 4 weeks post-surgery, the mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based location discrimination reversal [LDR]) and innate fear of open spaces (elevated plus maze [EPM]) followed by quantification of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). There was no effect of treatment (SCR shRNA vs. TRIP8b) on performance during general touchscreen training, LDR training, or the 1st days of LDR testing. However, in the last days of LDR testing, the TRIP8b shRNA mice had improved pattern separation (reached the first reversal more quickly and had more accurate discrimination) compared to the SCR shRNA mice, specifically when the load on pattern separation was high (lit squares close together or "small separation"). The TRIP8b shRNA mice were also more cognitively flexible (achieved more reversals) compared to the SCR shRNA mice in the last days of LDR testing. Supporting a specific influence on cognitive behavior, the SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate that the TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis compared to the SCR shRNA mice. This study advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival-behavioral pattern separation and cognitive flexibility-and suggests that the activity of LEC → DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- University of Pennsylvania, Philadelphia, PA, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Harley A. Haas
- University of Pennsylvania, Philadelphia, PA, United States
| | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, United States
| | | | - Maiko Suarez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Christopher R. de Santis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Attaluri S, Shuai B, Shankar G, Shetty AK. A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling. Front Mol Neurosci 2023; 16:1185883. [PMID: 37284464 PMCID: PMC10239975 DOI: 10.3389/fnmol.2023.1185883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.
Collapse
|
11
|
Yun S, Soler I, Tran F, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525756. [PMID: 36747871 PMCID: PMC9900985 DOI: 10.1101/2023.01.26.525756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities which are disrupted in many brain disorders. Better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on integrity of the hippocampal dentate gyrus (DG) which both receive glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). Inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here we asked if the activity of LEC fan cells that directly project to the DG (LEC➔DG neurons) regulates behavioral pattern separation or cognitive flexibility. C57BL6/J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA); this approach increases the activity of LEC➔DG neurons. Four weeks later, mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based Location Discrimination Reversal [LDR] task) and innate fear of open spaces (elevated plus maze [EPM]) followed by counting of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). TRIP8b and SCR shRNA mice performed similarly in general touchscreen training and LDR training. However, in late LDR testing, TRIP8b shRNA mice reached the first reversal more quickly and had more accurate discrimination vs. SCR shRNA mice, specifically when pattern separation was challenging (lit squares close together or "small separation"). Also, TRIP8b shRNA mice achieved more reversals in late LDR testing vs. SCR shRNA mice. Supporting a specific influence on cognitive behavior, SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis vs. SCR shRNA mice. This work advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival - behavioral pattern separation and cognitive flexibility - and suggests the activity of LEC➔DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
|
12
|
Kang YJ, Lee SH, Boychuk JA, Butler CR, Juras JA, Cloyd RA, Smith BN. Adult Born Dentate Granule Cell Mediated Upregulation of Feedback Inhibition in a Mouse Model of Traumatic Brain Injury. J Neurosci 2022; 42:7077-7093. [PMID: 36002261 PMCID: PMC9480876 DOI: 10.1523/jneurosci.2263-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Post-traumatic epilepsy (PTE) and behavioral comorbidities frequently develop after traumatic brain injury (TBI). Aberrant neurogenesis of dentate granule cells (DGCs) after TBI may contribute to the synaptic reorganization that occurs in PTE, but how neurogenesis at different times relative to the injury contributes to feedback inhibition and recurrent excitation in the dentate gyrus is unknown. Thus, we examined whether DGCs born at different postnatal ages differentially participate in feedback inhibition and recurrent excitation in the dentate gyrus using the controlled cortical impact (CCI) model of TBI. Both sexes of transgenic mice expressing channelrhodopsin2 (ChR2) in postnatally born DGCs were used for optogenetic activation of three DGC cohorts: postnatally early born DGCs, or those born just before or after CCI. We performed whole-cell patch-clamp recordings from ChR2-negative, mature DGCs and parvalbumin-expressing basket cells (PVBCs) in hippocampal slices to determine whether optogenetic activation of postnatally born DGCs increases feedback inhibition and/or recurrent excitation in mice 8-10 weeks after CCI and whether PVBCs are targets of ChR2-positive DGCs. In the dentate gyrus ipsilateral to CCI, activation of ChR2-expressing DGCs born before CCI produced increased feedback inhibition in ChR2-negative DGCs and increased excitation in PVBCs compared with those from sham controls. This upregulated feedback inhibition was less prominent in DGCs born early in life or after CCI. Surprisingly, ChR2-positive DGC activation rarely evoked recurrent excitation in mature DGCs from any cohort. These results support that DGC birth date-related increased feedback inhibition in of DGCs may contribute to altered excitability after TBI.SIGNIFICANCE STATEMENT Dentate granule cells (DGCs) control excitability of the dentate gyrus through synaptic interactions with inhibitory GABAergic interneurons. Persistent changes in DGC synaptic connectivity develop after traumatic brain injury, contributing to hyperexcitability in post-traumatic epilepsy (PTE). However, the impact of DGC neurogenesis on synaptic reorganization, especially on inhibitory circuits, after brain injury is not adequately described. Here, upregulation of feedback inhibition in mature DGCs from male and female mice was associated with increased excitation of parvalbumin-expressing basket cells by postnatally born DGCs, providing novel insights into underlying mechanisms of altered excitability after brain injury. A better understanding of these inhibitory circuit changes can help formulate hypotheses for development of novel, evidence-based treatments for post-traumatic epilepsy by targeting birth date-specific subsets of DGCs.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Sang-Hun Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
| | - Jeffery A Boychuk
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - J Anna Juras
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Ryan A Cloyd
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Bret N Smith
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
13
|
Zhao L, Liu JW, Shi HY, Ma YM. Neural stem cell therapy for brain disease. World J Stem Cells 2021; 13:1278-1292. [PMID: 34630862 PMCID: PMC8474718 DOI: 10.4252/wjsc.v13.i9.1278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/28/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovascular diseases, and traumatic brain injuries, are among the major disorders influencing human health, currently with no effective therapy. Due to the low regeneration capacity of neurons, insufficient secretion of neurotrophic factors, and the aggravation of ischemia and hypoxia after nerve injury, irreversible loss of functional neurons and nerve tissue damage occurs. This damage is difficult to repair and regenerate the central nervous system after injury. Neural stem cells (NSCs) are pluripotent stem cells that only exist in the central nervous system. They have good self-renewal potential and ability to differentiate into neurons, astrocytes, and oligodendrocytes and improve the cellular microenvironment. NSC transplantation approaches have been made for various neurodegenerative disorders based on their regenerative potential. This review summarizes and discusses the characteristics of NSCs, and the advantages and effects of NSCs in the treatment of brain diseases and limitations of NSC transplantation that need to be addressed for the treatment of brain diseases in the future.
Collapse
Affiliation(s)
- Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jian-Wei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui-Yan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Ya-Min Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|