1
|
Adler EP, Nguyen L, Gottfried-Blackmore A. Clinical applications of vagal nerve stimulation for gastrointestinal motility disorders and chronic abdominal pain. VAGUS NERVE STIMULATION 2025:299-306. [DOI: 10.1016/b978-0-12-816996-4.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Errico J. Metabolic syndrome: Understanding its root cause, and the role of macrophages and why vagus nerve stimulation may be an effective treatment. VAGUS NERVE STIMULATION 2025:313-325. [DOI: 10.1016/b978-0-12-816996-4.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Atalar K, Alim E, Yigman Z, Belen HB, Erten F, Sahin K, Soylu A, Dizakar SOA, Bahcelioglu M. Transauricular vagal nerve stimulation suppresses inflammatory responses in the gut and brain in an inflammatory bowel disease model. J Anat 2024. [PMID: 39707162 DOI: 10.1111/joa.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/23/2024] Open
Abstract
Inflammatory bowel disease (IBD) encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a major health problem on a global scale and its treatment is unsatisfactory. We aimed to investigate the effects of transauricular vagal nerve stimulation (tVNS) on inflammation in rats with IBD induced by trinitrobenzene sulfonic acid (TNBS). A total of 36 adult female Sprague-Dawley rats were given TNBS, or vehicle, and tVNS, or sham, every other day for 30 min for 10 days. Postmortem macroscopic and microscopic colon morphology were evaluated by histological staining. Additionally, IL-1β, IL-6, IL-10, and TNF-α cytokine levels in the colon and the brain were evaluated by immunohistochemistry and western blotting analysis. TNBS induced epithelial damage, inflammation, ulceration, and thickened mucosal layer in the colonic tissues. Administration of tVNS significantly ameliorated the severity of TNBS-induced tissue damage and inflammatory response. TNBS also alters pro-inflammatory and anti-inflammatory balance in the brain tissue. TVNS application significantly suppressed the protein levels of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF- α while augmenting the level of anti-inflammatory cytokine IL-10 in the colonic and the brain tissue. We have shown that TNBS-mediated colonic inflammation and tissue damage are associated with neuroinflammatory responses in the brain tissue. Also demonstrated for the first time that neuroinflammatory response in the gut-brain axis is suppressed by tVNS in the IBD model. Non-invasive tVNS stands out as a new potential treatment option for types of IBD.
Collapse
Affiliation(s)
- Kerem Atalar
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Ece Alim
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Zeynep Yigman
- Department of Histology and Embryology, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Türkiye
| | - Hayrunnisa Bolay Belen
- Department of Neurology and Algology, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Fusun Erten
- Department of Veterinary Medicine, Pertek Sakine Genc Vocational School, Munzur University, Tunceli, Türkiye
| | - Kazım Sahin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ayse Soylu
- Department of Anatomy Faculty of Medicine, Gazi University, Ankara, Türkiye
| | | | - Meltem Bahcelioglu
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| |
Collapse
|
4
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2024. [DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Hesampour F, Tshikudi DM, Bernstein CN, Ghia JE. Exploring the efficacy of Transcutaneous Auricular Vagus nerve stimulation (taVNS) in modulating local and systemic inflammation in experimental models of colitis. Bioelectron Med 2024; 10:29. [PMID: 39648211 PMCID: PMC11626753 DOI: 10.1186/s42234-024-00162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Current inflammatory bowel disease (IBD) treatments often fail to achieve lasting remission and have adverse effects. Vagus nerve stimulation (VNS) offers a promising therapy due to its anti-inflammatory effects. Its invasive nature, however, has led to the development of non-invasive methods like transcutaneous auricular VNS (taVNS). This study assesses taVNS's impact on acute colitis progression, inflammatory, anti-inflammatory, and apoptosis-related markers. METHODS Male C57BL/6 mice (11-12 weeks) were used for dextran sulfate sodium (DSS)- and dinitrobenzene sulfonic acid (DNBS)-induced colitis studies. The administration of taVNS or no stimulation (anesthesia without stimulation) for 10 min per mouse began one day before colitis induction and continued daily until sacrifice. Ulcerative colitis (UC)-like colitis was induced by administering 5% DSS in drinking water for 5 days, after which the mice were sacrificed. Crohn's disease (CD)-like colitis was induced through a single intrarectal injection of DNBS/ethanol, with the mice sacrificed after 3 days. Disease activity index (DAI), macroscopic evaluations, and histological damage were assessed. Colon, spleen, and blood samples were analyzed via qRT-PCR and ELISA. One-way or two-way ANOVA with Bonferroni and Šídák tests were applied. RESULTS taVNS improved DAI, macroscopic, and histological scores in DSS colitis mice, but only partially mitigated weight loss and DAI in DNBS colitis mice. In DSS colitis, taVNS locally decreased colonic inflammation by downregulating pro-inflammatory markers (IL-1β, TNF-α, Mip1β, MMP 9, MMP 2, and Nos2) at the mRNA level and upregulating anti-inflammatory TGF-β in non-colitic conditions at both mRNA and protein levels and IL-10 mRNA levels in both non-colitic and colitic conditions. Systemically, taVNS decreased splenic TNF-α in non-colitic mice and increased serum levels of TGF-β in colitic mice and splenic levels in non-colitic and colitic mice. Effects were absent in DNBS-induced colitis. Additionally, taVNS decreased pro-apoptotic markers (Bax, Bak1, and caspase 8) in non-colitic and colitic conditions and increased the pro-survival molecule Bad in non-colitic mice. CONCLUSIONS This study demonstrates that taVNS has model-dependent local and systemic effects, reducing inflammation and apoptosis in UC-like colitis while offering protective benefits in non-colitic conditions. These findings encourage further research into underlying mechanisms and developing adjunct therapies for UC.
Collapse
Affiliation(s)
- Fatemeh Hesampour
- Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Diane M Tshikudi
- Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Charles N Bernstein
- Internal Medicine Section of Gastroenterology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical & Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
- Internal Medicine Section of Gastroenterology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
- Inflammatory Bowel Disease Clinical & Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
- Department of Immunology, Internal Medicine Section of Gastroenterology, Apotex Centre 431, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.
| |
Collapse
|
6
|
Janssen HJB, Geraedts TCM, Fransen LFC, van Ark I, Leusink-Muis T, Folkerts G, Garssen J, Ruurda JP, Nieuwenhuijzen GAP, van Hillegersberg R, Luyer MDP. Electrical vagus nerve stimulation is a promising approach to reducing pulmonary complications after an esophagectomy: an experimental rodent model. Immunol Res 2024; 72:1247-1258. [PMID: 39083131 PMCID: PMC11618150 DOI: 10.1007/s12026-024-09523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 12/08/2024]
Abstract
After esophagectomy, an imbalanced inflammatory response increases the risk of postoperative morbidity. The vagus nerve modulates local and systemic inflammatory responses, but its pulmonary branches are transected during esophagectomy as part of the oncological resection, which may account for the high incidence of postoperative (pulmonary) complications. This study investigated the effect of electrical vagus nerve stimulation (VNS) on lipopolysaccharide (LPS)-induced lung injury in rats. Rats (n = 60) were randomly assigned to a non-vagotomy or cervical vagotomy group, with VNS or without (NOSTIM). There were four non-vagotomy groups: NOSTIM and bilateral VNS with 100, 50, or 10 µA. The four vagotomy groups were NOSTIM and VNS with fixed amplitude (50 µA) bilaterally before (VNS-50-before) or after bilateral vagotomy (VNS-50-after), or unilaterally (left) before ipsilateral vagotomy (VNS-50-unilaterally). LPS was administered intratracheally after surgery. Pulmonary function, pro-inflammatory cytokines in serum, broncho-alveolar lavage fluid (BALF), and histopathological lung injury (LIS) were assessed 180 min post-procedure. In non-vagotomized rats, neutrophil influx in BALF following intra-tracheal LPS (mean 30 [± 23]; P = 0.075) and LIS (mean 0.342 [± 0.067]; P = 0.142) were similar after VNS-100, compared with NOSTIM. VNS-50 reduced neutrophil influx (23 [± 19]; P = 0.024) and LIS (0.316 [± 0.093]; P = 0.043). VNS-10 reduced neutrophil influx (15 [± 6]; P = 0.009), while LIS (0.331 [± 0.053]; P = 0.088) was similar. In vagotomized rats, neutrophil influx (52 [± 37]; P = 0.818) and LIS (0.407 [SD ± 0.037]; P = 0.895) in VNS-50-before were similar compared with NOSTIM, as well as in VNS-50-after (neutrophils 30 [± 26]; P = 0.090 and LIS 0.344 [± 0.053]; P = 0.073). In contrast, VNS-50-unilaterally reduced neutrophil influx (26 [± 10]; P = 0.050) and LIS (0.296 [± 0.065]; P = 0.005). Systemic levels of cytokines TNF-α and IL-6 were undetectable in all groups. Pulmonary function was not statistically significantly affected. In conclusion, VNS limited influx of neutrophils in lungs in non-vagotomized rats and may attenuate LIS. Unilateral VNS attenuated lung injury even after ipsilateral vagotomy. This effect was absent for bilateral VNS before and after bilateral vagotomy. It is suggested that the effect of VNS is dependent on (partially) intact vagus nerves and that the level of the vagotomy during esophagectomy may influence postoperative pulmonary outcomes.
Collapse
Affiliation(s)
- Henricus J B Janssen
- Department of Surgery, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands.
| | - Tessa C M Geraedts
- Department of Surgery, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands
| | - Laura F C Fransen
- Department of Surgery, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Nutricia Research, Immunology, Utrecht, The Netherlands
| | - Jelle P Ruurda
- Department of Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grard A P Nieuwenhuijzen
- Department of Surgery, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands
| | - Richard van Hillegersberg
- Department of Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Misha D P Luyer
- Department of Surgery, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands.
- Department of Electrical Engineering, University of Technology Eindhoven, Eindhoven, The Netherlands.
| |
Collapse
|
7
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
8
|
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci 2024; 18:1490300. [PMID: 39605787 PMCID: PMC11599236 DOI: 10.3389/fnins.2024.1490300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) represents a transformative approach for managing a broad spectrum of inflammatory and autoimmune conditions, including rheumatoid arthritis and inflammatory bowel disease. This comprehensive review delineates the mechanisms underlying VNS, emphasizing the cholinergic anti-inflammatory pathway, and explores interactions within the neuro-immune and vagus-gut axes based on both clinical outcomes and pre-clinical models. Clinical applications have confirmed the efficacy of VNS in managing specific autoimmune diseases, such as rheumatoid arthritis, and chronic inflammatory conditions like inflammatory bowel disease, showcasing the variability in stimulation parameters and patient responses. Concurrently, pre-clinical studies have provided insights into the potential of VNS in modulating cardiovascular and broader inflammatory responses, paving the way for its translational application in clinical settings. Innovations in non-invasive VNS technology and precision neuromodulation are enhancing its therapeutic potential, making it a viable option for patients who are unresponsive to conventional treatments. Nonetheless, the widespread adoption of this promising therapy is impeded by regulatory challenges, patient compliance issues, and the need for extensive studies on long-term efficacy and safety. Future research directions will focus on refining VNS technology, optimizing treatment parameters, and exploring synergistic effects with other therapeutic modalities, which could revolutionize the management of chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Neurology Medical Center II, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Medical Imaging, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Li-Jun Gong
- Center of Surgical Anesthesia, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuai Yang
- Central Operating Room, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Dumargne H, Patural H, Charbonnieras F, Charier D, Biscarrat C, Chivot M, Argaud L, Cour M, Dargent A. Exploration of COVID-19 associated bradycardia using heart rate variability analysis in a case-control study of ARDS patients. Heart Lung 2024; 68:74-80. [PMID: 38941770 DOI: 10.1016/j.hrtlng.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Bradycardia and dysautonomia observed during SARS-Cov2 infection suggests involvement of the autonomic nervous system (ANS). Limited data exists on ANS dysregulation and its association with outcomes in patients with acute respiratory distress syndrome (ARDS) related to COVID-19 (C-ARDS) or other etiologies (NC-ARDS). OBJECTIVES We aimed to explore sympathovagal balance, assessed by heart rate variability (HRV), and its clinical prognostic value in C-ARDS compared with NC-ARDS. METHODS A single-center, prospective case-control study was conducted. Consecutive patients meeting ARDS criteria between 2020 and 2022 were included. HRV was assessed using 1-hour electrographic tracing during a stable, daytime period. RESULTS Twenty-four patients with C-ARDS and 19 with NC-ARDS were included. Age, sex and ARDS severity were similar between groups. The median heart rate was markedly lower in the C-ARDS group than in the NC-ARDS group (60 [53-72] versus 101 [91-112] bpm, p<.001). Most of HRV parameters were significantly increased in patients with C-ARDS. HRV correlated with heart rate only in patients with C-ARDS. A positive correlation was found between the low-to high-frequency ratio (LF/HF) and length of intensive care unit stay (r = 0.576, p<.001). CONCLUSION This study confirmed that C-ARDS was associated with marked bradycardia and severe ANS impairment, suggesting a sympathovagal imbalance with vagal overtone. Poor outcomes appeared to be more related to sympathetic rather than parasympathetic hyperactivation.
Collapse
Affiliation(s)
- Hugo Dumargne
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Hugues Patural
- Centre Hospitalier Universitaire de Saint Etienne, Service de réanimation pédiatrique, Saint-Etienne, France; INSERM, SAINBIOSE U1059, 42055 Saint-Etienne, France
| | - François Charbonnieras
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Service de Cardiologie soins intensifs, 69004 Lyon, France
| | - David Charier
- INSERM, SAINBIOSE U1059, 42055 Saint-Etienne, France; Centre Hospitalier Universitaire de Saint Etienne, Service d'Anesthésie-Réanimation, Saint-Etienne, France
| | - Charlotte Biscarrat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Matthieu Chivot
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 69003 Lyon, France
| | - Auguste Dargent
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Anesthésie-Réanimation Médecine Intensive-Réanimation, 69495 Pierre-Bénite, Lyon, France; APCSe VetAgro Sup UPSP 2016.A101, 69280 Marcy l'Etoile, France.
| |
Collapse
|
10
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Bonaz B, Sinniger V, Pellissier S. Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 2024; 18:1458918. [PMID: 39319312 PMCID: PMC11420137 DOI: 10.3389/fnins.2024.1458918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Numerous preclinical and clinical studies have shown that stress is one of the main environmental factor playing a significant role in the pathogeny and life-course of bowel diseases. However, stressful events that occur early in life, even during the fetal life, leave different traces within the central nervous system, in area involved in stress response and autonomic network but also in emotion, cognition and memory regulation. Early-life stress can disrupt the prefrontal-amygdala circuit thus favoring an imbalance of the autonomic nervous system and the hypothalamic-pituitary adrenal axis, resulting in anxiety-like behaviors. The down regulation of vagus nerve and cholinergic anti-inflammatory pathway favors pro-inflammatory conditions. Recent data suggest that emotional abuse at early life are aggravating risk factors in inflammatory bowel disease. This review aims to unravel the mechanisms that explain the consequences of early life events and stress in the pathophysiology of inflammatory bowel disease and their mental co-morbidities. A review of therapeutic potential will also be covered.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Sonia Pellissier
- Université Savoie Mont Blanc, Université Grenoble Alpes, LIP/PC2S, Chambéry, France
| |
Collapse
|
12
|
Populin LC, Rajala AZ, Matkowskyj KA, Saha S, Zeng W, Christian B, McVea A, Tay EX, Mueller EM, Malone ME, Brust-Mascher I, McMillan AB, Ludwig KA, Suminski AJ, Reardon C, Furness JB. Characterization of idiopathic chronic diarrhea and associated intestinal inflammation and preliminary observations of effects of vagal nerve stimulation in a non-human primate. Neurogastroenterol Motil 2024; 36:e14876. [PMID: 39072841 PMCID: PMC11321913 DOI: 10.1111/nmo.14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Diarrhea is commonly associated with irritable bowel syndrome, inflammatory bowel disease, microscopic colitis, and other gastrointestinal dysfunctions. Spontaneously occurring idiopathic chronic diarrhea is frequent in rhesus macaques, but has not been used as a model for the investigation of diarrhea or its treatment. We characterized this condition and present preliminary data demonstrating that left vagal nerve stimulation provides relief. METHODS Stool consistency scores were followed for up to 12 years. Inflammation was assessed by plasma C-reactive protein, [18F]fluorodeoxyglucose (FDG) uptake, measured by positron emission tomography (PET), multiplex T cell localization, endoscopy and histology. The vagus was stimulated for 9 weeks in conscious macaques, using fully implanted electrodes, under wireless control. KEY RESULTS Macaques exhibited recurrent periods of diarrhea for up to 12 years, and signs of inflammation: elevated plasma C-reactive protein, increased bowel FDG uptake and increased mucosal T helper1 T-cells. The colon and distal ileum were endoscopically normal, and histology revealed mild colonic inflammation. Application of vagal nerve stimulation to conscious macaques (10 Hz, 30 s every 3 h; 24 h a day for 9 weeks) significantly reduced severity of diarrhea and also reduced inflammation, as measured by FDG uptake and C-reactive protein. CONCLUSIONS AND INFERENCES These macaques exhibit spontaneously occurring diarrhea with intestinal inflammation that can be reduced by VNS. The data demonstrate the utility of this naturally occurring primate model to study the physiology and treatments for chronic diarrhea and the neural control circuits influencing diarrhea and inflammation that are not accessible in human subjects.
Collapse
Affiliation(s)
- Luis C Populin
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Abigail Z Rajala
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Kristina A Matkowskyj
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Sumona Saha
- Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Weifeng Zeng
- Department of Surgery, Dental and Plastic Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Bradley Christian
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Andrew McVea
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Emmy Xue Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis
| | - Ellie M Mueller
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Margaret E Malone
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | | | - Alan B McMillan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Kip A Ludwig
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Aaron J Suminski
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis
| | - John B Furness
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Giannotti A, Santanché R, Zinno C, Carpaneto J, Micera S, Riva ER. Characterization of a conductive hydrogel@Carbon fibers electrode as a novel intraneural interface. Bioelectron Med 2024; 10:20. [PMID: 39187894 PMCID: PMC11348655 DOI: 10.1186/s42234-024-00154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Peripheral neural interfaces facilitate bidirectional communication between the nervous system and external devices, enabling precise control for prosthetic limbs, sensory feedback systems, and therapeutic interventions in the field of Bioelectronic Medicine. Intraneural interfaces hold great promise since they ensure high selectivity in communicating only with the desired nerve fascicles. Despite significant advancements, challenges such as chronic immune response, signal degradation over time, and lack of long-term biocompatibility remain critical considerations in the development of such devices. Here we report on the development and benchtop characterization of a novel design of an intraneural interface based on carbon fiber bundles. Carbon fibers possess low impedance, enabling enhanced signal detection and stimulation efficacy compared to traditional metal electrodes. We provided a 3D-stabilizing structure for the carbon fiber bundles made of PEDOT:PSS hydrogel, to enhance the biocompatibility between the carbon fibers and the nervous tissue. We further coated the overall bundles with a thin layer of elastomeric material to provide electrical insulation. Taken together, our results demonstrated that our electrode possesses adequate structural and electrochemical properties to ensure proper stimulation and recording of peripheral nerve fibers and a biocompatible interface with the nervous tissue.
Collapse
Affiliation(s)
- Alice Giannotti
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Ranieri Santanché
- Dipartimento Di Ingegneria Civile E Industriale (DICI), Università Di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Ciro Zinno
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Silvestro Micera
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Bertarelli Foundation Chair in Translational Neuroengineering, ÉcolePolytechniqueFédérale de Lausanne (EPFL), 1007, Lausanne, Switzerland
| | - Eugenio Redolfi Riva
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
| |
Collapse
|
14
|
Wang Y, Duan C, Du X, Zhu Y, Wang L, Hu J, Sun Y. Vagus Nerve and Gut-Brain Communication. Neuroscientist 2024:10738584241259702. [PMID: 39041416 DOI: 10.1177/10738584241259702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The vagus nerve, as an important component of the gut-brain axis, plays a crucial role in the communication between the gut and brain. It influences food intake, fat metabolism, and emotion by regulating the gut-brain axis, which is closely associated with the development of gastrointestinal, psychiatric, and metabolism-related disorders. In recent years, significant progress has been made in understanding the vagus-mediated regulatory pathway, highlighting its profound implications in the development of many diseases. Here, we summarize the latest advancements in vagus-mediated gut-brain pathways and the novel interventions targeting the vagus nerve. This will provide valuable insights for future research on treatment of obesity and gastrointestinal and depressive disorders based on vagus nerve stimulation.
Collapse
Affiliation(s)
- Yiyang Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenxi Duan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Du
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Jun Hu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Nakamura M, Murate K, Maeda K, Yamamura T, Sawada T, Ishikawa E, Furukawa K, Hirose T, Uetsuki K, Iida T, Mizutani Y, Yamao K, Ishizu Y, Ishikawa T, Honda T, Kawashima H. Analysis of Neuropeptides in the Intestinal Mucus of Patients with Ulcerative Colitis Using RNA Sequencing. Digestion 2024; 105:400-410. [PMID: 39033748 DOI: 10.1159/000540052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Inflammation in ulcerative colitis (UC) originates in the colorectal mucosa. Transcriptome sequencing analysis of the colorectal mucosa allows the identification of potential neuropeptides related to local neurotransmission. The intestinal mucus lining the surface of the mucosa may harbor biomarkers of mucosal inflammation; however, this has not been sufficiently investigated, given the difficulty in obtaining human samples. We previously reported the feasibility of obtaining mucin samples for proteomic analysis by brushing during colonoscopy. Herein, we aimed to investigate the composition of the intestinal mucus and detect neuropeptides characteristic of UC. METHODS Mucus and mucosal samples were collected from patients with UC from the colorectum in areas showing remission or active UC using a brush catheter and biopsy forceps during colonoscopy. RNA sequencing findings of mucus samples of active and remission areas were compared. RNA and protein expression levels of significantly upregulated neuropeptides were analyzed. RESULTS Of the neuropeptides associated with UC, somatostatin (SST) was significantly elevated in areas of remission, according to RNA sequencing results of mucus and expression levels in mucus RNA and proteins. Conversely, SST expression in the mucosa was increased in the inflamed areas. Flow cytometry revealed that the fluorescence intensity of SST-positive cells in the remission zone was higher in the mucus than in the mucosa. CONCLUSION SST expression in the mucus is considered to be an important factor associated with UC activity.
Collapse
Affiliation(s)
- Masanao Nakamura
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan,
| | - Kentaro Murate
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Maeda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Hirose
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Kota Uetsuki
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kentaro Yamao
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Baek IS, Choi S, Yoon H, Chung G, Kim SK. Analgesic Effect of Auricular Vagus Nerve Stimulation on Oxaliplatin-induced Peripheral Neuropathic Pain in a Rodent Model. Exp Neurobiol 2024; 33:129-139. [PMID: 38993080 PMCID: PMC11247280 DOI: 10.5607/en24012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer chemotherapy often triggers peripheral neuropathy in patients, leading to neuropathic pain in the extremities. While previous research has explored various nerve stimulation to alleviate chemotherapy-induced peripheral neuropathy (CIPN), evidence on the effectiveness of noninvasive auricular vagus nerve stimulation (aVNS) remains uncertain. This study aimed to investigate the efficacy of non-invasive aVNS in relieving CIPN pain. To induce CIPN in experimental animals, oxaliplatin was intraperitoneally administered to rats (6 mg/kg). Mechanical and cold allodynia, the representative symptoms of neuropathic pain, were evaluated using the von Frey test and acetone test, respectively. The CIPN animals were randomly assigned to groups and treated with aVNS (5 V, square wave) at different frequencies (2, 20, or 100 Hz) for 20 minutes. Results revealed that 20 Hz aVNS exhibited the most pronounced analgesic effect, while 2 or 100 Hz aVNS exhibited weak effects. Immunohistochemistry analysis demonstrated increased c-Fos expression in the locus coeruleus (LC) in the brain of CIPN rats treated with aVNS compared to sham treatment. To elucidate the analgesic mechanisms involving the adrenergic descending pathway, α1-, α2-, or β-adrenergic receptor antagonists were administered to the spinal cord before 20 Hz aVNS. Only the β-adrenergic receptor antagonist, propranolol, blocked the analgesic effect of aVNS. These findings suggest that 20 Hz aVNS may effectively alleviate CIPN pain through β-adrenergic receptor activation.
Collapse
Affiliation(s)
- In Seon Baek
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seunghwan Choi
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Heera Yoon
- Division of Preclinical R&D, Neurogrin Inc., Seoul 02447, Korea
| | - Geehoon Chung
- Division of Preclinical R&D, Neurogrin Inc., Seoul 02447, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
17
|
Song G, Sclocco R, Sharma A, Guerrero-López I, Kuo B. Electroceuticals and Magnetoceuticals in Gastroenterology. Biomolecules 2024; 14:760. [PMID: 39062474 PMCID: PMC11275046 DOI: 10.3390/biom14070760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
In the realm of gastroenterology, the inadequacy of current medical treatments for gastrointestinal (GI) motility disorders and inflammatory bowel disease (IBD), coupled with their potential side effects, necessitates novel therapeutic approaches. Neuromodulation, targeting the nervous system's control of GI functions, emerges as a promising alternative. This review explores the promising effects of vagal nerve stimulation (VNS), magnetic neuromodulation, and acupuncture in managing these challenging conditions. VNS offers targeted modulation of GI motility and inflammation, presenting a potential solution for patients not fully relieved from traditional medications. Magnetic neuromodulation, through non-invasive means, aims to enhance neurophysiological processes, showing promise in improving GI function and reducing inflammation. Acupuncture and electroacupuncture, grounded in traditional medicine yet validated by modern science, exert comprehensive effects on GI physiology via neuro-immune-endocrine mechanisms, offering relief from motility and inflammatory symptoms. This review highlights the need for further research to refine these interventions, emphasizing their prospective role in advancing patient-specific management strategies for GI motility disorders and IBD, thus paving the way for a new therapeutic paradigm.
Collapse
Affiliation(s)
- Gengqing Song
- Division of Gastroenterology & Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44109, USA;
| | - Roberta Sclocco
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amol Sharma
- Division of Gastroenterology & Hepatology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ingrid Guerrero-López
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain;
| | - Braden Kuo
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
18
|
Bonaz B. Enteric neuropathy and the vagus nerve: Therapeutic implications. Neurogastroenterol Motil 2024:e14842. [PMID: 38873822 DOI: 10.1111/nmo.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Enteric neuropathies are characterized by abnormalities of gut innervation, which includes the enteric nervous system, inducing severe gut dysmotility among other dysfunctions. Most of the gastrointestinal tract is innervated by the vagus nerve, the efferent branches of which have close interconnections with the enteric nervous system and whose afferents are distributed throughout the different layers of the digestive wall. The vagus nerve is a key element of the autonomic nervous system, involved in the stress response, at the interface of the microbiota-gut-brain axis, has anti-inflammatory and prokinetic properties, modulates intestinal permeability, and has a significant capacity of plasticity and regeneration. Targeting these properties of the vagus nerve, with vagus nerve stimulation (or non-stimulation/ pharmacological methods), could be of interest in the therapeutic management of enteric neuropathies.
Collapse
Affiliation(s)
- Bruno Bonaz
- Grenoble Institut des Neurosciences, Université Grenoble Alpes-Faculté de Médecine, Grenoble, France
| |
Collapse
|
19
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Bonaz B. A novel neuroimmune modulation system for the treatment of rheumatoid arthritis. Bioelectron Med 2024; 10:9. [PMID: 38566215 PMCID: PMC10988796 DOI: 10.1186/s42234-024-00142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 04/04/2024] Open
Abstract
The vagus nerve has an anti-inflammatory effect through the inflammatory reflex, which inhibits the release of proinflammatory cytokines by macrophages. Recent pilot clinical trials, using implantable bioelectronic devices, have demonstrated the efficacy of vagus nerve stimulation in adult patients with rheumatoid arthritis and inflammatory bowel diseases as an alternative to drugs, which are not devoid of side effects and are costly. In this issue of Bioelectronic Medicine, Peterson et al. report the safety of novel implantable neuroimmune modulation device for treating rheumatoid arthritis (The RESET RA study), which I will discuss in this commentary.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes-Faculté de Médicine, Grenoble Institut Neurosciences (GIN, Inserm U1216), site Santé, Bâtiment Edmond J. Safra, 31 Chem. Fortuné Ferrini, 38700, La Tronche, France.
| |
Collapse
|
21
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2024:S2090-1232(24)00124-3. [PMID: 38579985 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Bonaz B. Unmet needs of drugs for irritable bowel syndrome and inflammatory bowel diseases: interest of vagus nerve stimulation and hypnosis. Inflammopharmacology 2024; 32:1005-1015. [PMID: 38512653 DOI: 10.1007/s10787-024-01446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The gut and the brain communicate bidirectionally through the autonomic nervous system. The vagus nerve is a key component of this gut-brain axis, and has numerous properties such as anti-inflammatory, antinociceptive, anti-depressive effects. A perturbation of this gut-brain communication is involved in the pathogeny of functional digestive disorders, such as irritable bowel syndrome, and inflammatory bowel diseases. Stress plays a role in the pathogeny of these diseases, which are biopsychosocial models. There are presently unmet needs of pharmacological treatments of these chronic debilitating diseases. Treatments are not devoid of side effects, cost-effective, do not cure the diseases, can lose effects over time, thus explaining the poor satisfaction of patients, their lack of compliance, and their interest for non-drug therapies. The gut-brain axis can be targeted for therapeutic purposes in irritable bowel syndrome and inflammatory bowel disease through non-drug therapies, such as hypnosis and vagus nerve stimulation, opening up possibilities for responding to patient expectations.
Collapse
Affiliation(s)
- Bruno Bonaz
- Service d'hépato-Gastroentérologie, Grenoble Institut Neurosciences, Université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
23
|
Coverdell TC, Abbott SBG, Campbell JN. Molecular cell types as functional units of the efferent vagus nerve. Semin Cell Dev Biol 2024; 156:210-218. [PMID: 37507330 PMCID: PMC10811285 DOI: 10.1016/j.semcdb.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
24
|
Gillan R, Bachtel G, Webber K, Ezzair Y, Myers NE, Bishayee A. Osteopathic manipulative treatment for chronic inflammatory diseases. J Evid Based Med 2024; 17:172-186. [PMID: 38488211 DOI: 10.1111/jebm.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/25/2024] [Indexed: 04/02/2024]
Abstract
Chronic inflammatory diseases (CIDs) are debilitating and potentially lethal illnesses that affect a large proportion of the global population. Osteopathic manipulative treatment (OMT) is a manual therapy technique developed and performed by osteopathic physicians that facilitates the body's innate healing processes. Therefore, OMT may prove a beneficial anti-inflammatory modality useful in the management and treatment of CIDs. This work aims to objectively evaluate the therapeutic benefits of OMT in patients with various CIDs. In this review, a structured literature search was performed. The included studies involving asthma, chronic obstructive pulmonary disease, irritable bowel syndrome, ankylosing spondylitis, and peripheral arterial disease were selected for this work. Various OMT modalities, including lymphatic, still, counterstain, and muscle energy techniques, were utilized. Control treatments included sham techniques, routine care, or no treatment. OMT utilization led to variable patient outcomes in individuals with pathologies linked to CID.
Collapse
Affiliation(s)
- Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yasmine Ezzair
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Nicole E Myers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
25
|
Hesampour F, Bernstein CN, Ghia JE. Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches. Inflamm Bowel Dis 2024; 30:482-495. [PMID: 37738641 DOI: 10.1093/ibd/izad211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 09/24/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing condition with no known etiology and is characterized by disrupted gut homeostasis, chronic inflammation, and ulcerative lesions. Although current treatments can reduce disease activity, IBD frequently recurs once treatments are discontinued, indicating that treatments are ineffective in providing long-term remission. The lack of responsiveness and reluctance of some affected persons to take medications because of potential adverse effects has enhanced the need for novel therapeutic approaches. The vagus nerve (VN) is likely important in the pathogenesis of IBD, considering the decreased activity of the parasympathetic nervous system, especially the VN, and the impaired interaction between the enteric nervous system and central nervous system in patients with IBD. Vagus nerve stimulation (VNS) has demonstrated anti-inflammatory effects in various inflammatory disorders, including IBD, by inhibiting the production of inflammatory cytokines by immune cells. It has been suggested that stimulating the vagus nerve to induce its anti-inflammatory effects may be a potential therapeutic approach for IBD. Noninvasive techniques for VNS have been developed. Considering the importance of VN function in the brain-gut axis, VNS is a promising treatment option for IBD. This review discusses the potential therapeutic advantages and drawbacks of VNS, particularly the use of noninvasive transcutaneous auricular vagus nerve stimulation.
Collapse
Affiliation(s)
| | - Charles N Bernstein
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, Canada
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| |
Collapse
|
26
|
Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, Wu L, Wang Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024; 16:1334887. [PMID: 38476661 PMCID: PMC10927744 DOI: 10.3389/fnagi.2024.1334887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Junfeng Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemin Zhang
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Wu
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
27
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
28
|
Giunta S, Xia S, Pelliccioni G, Olivieri F. Autonomic nervous system imbalance during aging contributes to impair endogenous anti-inflammaging strategies. GeroScience 2024; 46:113-127. [PMID: 37821752 PMCID: PMC10828245 DOI: 10.1007/s11357-023-00947-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Inflammaging refers to the age-related low grade, sterile, chronic, systemic, and long-lasting subclinical, proinflammatory status, currently recognized as the main risk factor for development and progression of the most common age-related diseases (ARDs). Extensive investigations were focused on a plethora of proinflammatory stimuli that can fuel inflammaging, underestimating and partly neglecting important endogenous anti-inflammaging mechanisms that could play a crucial role in such age-related proinflammatory state. Studies on autonomic nervous system (ANS) functions during aging highlighted an imbalance toward an overactive sympathetic nervous system (SNS) tone, promoting proinflammatory conditions, and a diminished parasympathetic nervous system (PNS) activity, playing anti-inflammatory effects mediated by the so called cholinergic anti-inflammatory pathway (CAP). At the molecular level, CAP is characterized by signals communicated via the vagus nerve (with the possible involvement of the splenic nerves) through acetylcholine release to downregulate the inflammatory actions of macrophages, key players of inflammaging. Notably, decreased vagal function and increased burden of activated/senescent macrophages (macrophaging) probably precede the development of several age-related risk factors and diseases, while increased vagal function and reduced macrophaging could be associated with relevant reduction of risk profiles. Hypothalamic-pituitary-adrenal axis (HPA axis) is another pathway related to ANS promoting some anti-inflammatory response mainly through increased cortisol levels. In this perspective review, we highlighted that CAP and HPA, representing broadly "anti-inflammaging" mechanisms, have a reduced efficacy and lose effectiveness in aged people, a phenomenon that could contribute to fuel inflammaging. In this framework, strategies aimed to re-balance PNS/SNS activities could be explored to modulate systemic inflammaging especially at an early subclinical stage, thus increasing the chances to reach the extreme limit of human lifespan in healthy status.
Collapse
Affiliation(s)
- Sergio Giunta
- Casa Di Cura Prof. Nobili (Gruppo Garofalo (GHC)), Castiglione Dei Pepoli, Bologna, Italy
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
29
|
Jelinek M, Lipkova J, Duris K. Vagus nerve stimulation as immunomodulatory therapy for stroke: A comprehensive review. Exp Neurol 2024; 372:114628. [PMID: 38042360 DOI: 10.1016/j.expneurol.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Stroke is a devastating cerebrovascular pathology with high morbidity and mortality. Inflammation plays a central role in the pathophysiology of stroke. Vagus nerve stimulation (VNS) is a promising immunomodulatory method that has shown positive effects in stroke treatment, including neuroprotection, anti-apoptosis, anti-inflammation, antioxidation, reduced infarct volume, improved neurological scores, and promotion of M2 microglial polarization. In this review, we summarize the current knowledge about the vagus nerve's immunomodulatory effects through the cholinergic anti-inflammatory pathway (CAP) and provide a comprehensive assessment of the available experimental literature focusing on the use of VNS in stroke treatment.
Collapse
Affiliation(s)
- Matyas Jelinek
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jolana Lipkova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamil Duris
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurosurgery, The University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
30
|
Manzotti A, Panisi C, Pivotto M, Vinciguerra F, Benedet M, Brazzoli F, Zanni S, Comassi A, Caputo S, Cerritelli F, Chiera M. An in-depth analysis of the polyvagal theory in light of current findings in neuroscience and clinical research. Dev Psychobiol 2024; 66:e22450. [PMID: 38388187 DOI: 10.1002/dev.22450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 02/24/2024]
Abstract
The polyvagal theory has led to the understanding of the functions of the autonomic nervous system in biological development in humans, since the vagal system, a key structure within the polyvagal theory, plays a significant role in addressing challenges of the mother-child dyad. This article aims to summarize the neurobiological aspects of the polyvagal theory, highlighting some of its strengths and limitations through the lens of new evidence emerging in several research fields-including comparative anatomy, embryology, epigenetics, psychology, and neuroscience-in the 25 years since the theory's inception. Rereading and incorporating the polyvagal idea in light of modern scientific findings helps to interpret the role of the vagus nerve through the temporal dimension (beginning with intrauterine life) and spatial dimension (due to the numerous connections of the vagus with various structures and systems) in the achievement and maintenance of biopsychosocial well-being, from the uterus to adulthood.
Collapse
Affiliation(s)
- Andrea Manzotti
- Division of Neonatology, "V. Buzzi" Children's Hospital, ASST-FBF-Sacco, Milan, Italy
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Cristina Panisi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Micol Pivotto
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Matteo Benedet
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Silvia Zanni
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Alberto Comassi
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Sara Caputo
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Francesco Cerritelli
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| | - Marco Chiera
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| |
Collapse
|
31
|
Chen Z, Li J, Ma Q, Pikov V, Li M, Wang L, Liu Y, Ni M. Anti-Inflammatory Effects of Two-Week Sacral Nerve Stimulation Therapy in Patients With Ulcerative Colitis. Neuromodulation 2024; 27:360-371. [PMID: 37055336 DOI: 10.1016/j.neurom.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND AND AIMS Sacral nerve stimulation (SNS) showed anti-inflammatory properties in animal models of inflammatory bowel disease. We aimed to evaluate the effectiveness and safety of SNS in patients with ulcerative colitis (UC). MATERIALS AND METHODS Twenty-six patients with mild and moderate disease were randomized into two groups: SNS (delivered at S3 and S4 sacral foramina) and sham-SNS (delivered 8-10 mm away from sacral foramina), with the therapy applied once daily for one hour, for two weeks. We evaluated the Mayo score and several exploratory biomarkers, including C-reactive protein in the plasma, pro-inflammatory cytokines and norepinephrine in the serum, assessment of autonomic activity, and diversity and abundance of fecal microbiota species. RESULTS After two weeks, 73% of the subjects in the SNS group achieved clinical response, compared with 27% in the sham-SNS group. Levels of C-reactive protein, pro-inflammatory cytokines in the serum, and autonomic activity were significantly improved toward a healthy profile in the SNS group but not in the sham-SNS group. Absolute abundance of fecal microbiota species and one of the metabolic pathways were changed in the SNS group but not in the sham-SNS group. Significant correlations were observed between pro-inflammatory cytokines and norepinephrine in the serum on the one side and fecal microbiota phyla on the other side. CONCLUSIONS Patients with mild and moderate UC were responsive to a two-week SNS therapy. After performing further studies to evaluate its efficacy and safety, temporary SNS delivered through acupuncture needles may become a useful screening tool for identifying SNS therapy responders before considering long-term implantation of the implantable pulse generator and SNS leads for performing long-term SNS therapy.
Collapse
Affiliation(s)
- Zhengxin Chen
- National Center for Colorectal Diseases, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Qiyao Ma
- Graduate School, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China; Anorectal Surgery of Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, China
| | | | - Min Li
- National Center for Colorectal Diseases, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ling Wang
- Graduate School, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ying Liu
- National Center for Colorectal Diseases, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Min Ni
- National Center for Colorectal Diseases, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
32
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
34
|
Chen LJ, Burr R, Cain K, Kamp K, Heitkemper M. Age Differences in Upper Gastrointestinal Symptoms and Vagal Modulation in Women With Irritable Bowel Syndrome. Biol Res Nurs 2024; 26:46-55. [PMID: 37353474 PMCID: PMC10850873 DOI: 10.1177/10998004231186188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
BACKGROUND/AIMS Patients with irritable bowel syndrome (IBS) often report upper gastrointestinal (GI) (e.g., nausea and heartburn), somatic, and emotional symptoms. This study seeks to examine the relationships among younger and older women with IBS and indicators of autonomic nervous system (ANS) function and daily nausea and heartburn symptoms. METHODS Women were recruited through clinics and the community. Nocturnal heart rate variability (HRV) was obtained using ambulatory electrocardiogram Holter monitors. Individual symptom severity and frequency were collected using 28-day diaries. All variables were stratified by younger (<46 years) and older (≥46 years) age groups. RESULTS Eighty-nine women with IBS were included in this descriptive correlation study (n = 57 younger; n = 32 older). Older women had reduced indices of vagal activity when compared to younger women. In older women, there was an inverse correlation between nausea and vagal measures (Ln RMSSD, r = -.41, p = .026; Ln pNN50, r = -.39, p = .034). Heartburn in older women was associated with sleepiness (r = .59, p < .001) and anger (r = .48, p = .006). Nausea was significantly correlated with anger in the younger group (r = .41, p = .001). There were no significant relationships between HRV indicators and nausea and heartburn in younger women. CONCLUSIONS Age-related differences in ANS function that are associated with nausea may portend unique opportunities to better understand the vagal dysregulation in women with IBS.
Collapse
Affiliation(s)
- Li Juen Chen
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
- UW Medicine Valley Medical Center, Renton, WA, USA
| | - Robert Burr
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
| | - Kevin Cain
- Center for Biomedical Statistics, University of Washington, Seattle, WA, USA
| | - Kendra Kamp
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
| | - Margaret Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Kocyigit BF, Assylbek MI, Akyol A, Abdurakhmanov R, Yessirkepov M. Vagus nerve stimulation as a therapeutic option in inflammatory rheumatic diseases. Rheumatol Int 2024; 44:1-8. [PMID: 37814148 DOI: 10.1007/s00296-023-05477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
The vagus nerve forms intricate neural connections with an extensive number of organs, particularly the digestive system. The vagus nerve has a pivotal role as a fundamental component of the autonomic nervous system, exhibiting an essential effect. It establishes a direct link with the parasympathetic system, consequently eliciting the synaptic release of acetylcholine. Recent studies have revealed the potential anti-inflammatory function of the vagus nerve. The activation of the hypothalamic system through the stimulation of vagal afferents is fundamentally involved in regulating inflammation. This activation process leads to the production of cortisol. The other mechanism, defined as the cholinergic anti-inflammatory pathway, is characterized by the involvement of vagal efferents. These fibers release the neurotransmitter acetylcholine at particular synaptic connections, involving interactions with macrophages and enteric neurons. The mechanism under consideration is ascribed to the α-7-nicotinic acetylcholine receptors. The fusion of acetylcholine receptors is responsible for the restricted secretion of inflammatory mediators by macrophages. A potential mechanism for anti-inflammatory effects involves the stimulation of the sympathetic system through the vagus nerve, leading to the control of immunological responses within the spleen. This article offers an extensive summary of the present knowledge regarding the therapeutic effectiveness of stimulating the vagus nerve in managing inflammatory rheumatic conditions based on the relationship of inflammation with the vagus nerve. Furthermore, the objective is to present alternatives that may be preferred while applying vagus nerve stimulation approaches.
Collapse
Affiliation(s)
- Burhan Fatih Kocyigit
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Adana Health Practice and Research Center, Adana, Turkey.
| | - Meirgul I Assylbek
- Department of Neurology, Psychiatry, Neurosurgery and Rehabilitation, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
- Department of Social Health Insurance and Public Health, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
- Medical Center ''Mediker'', Shymkent, Kazakhstan
| | - Ahmet Akyol
- Physiotherapy and Rehabilitation Application and Research Center, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Ruslan Abdurakhmanov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Marlen Yessirkepov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| |
Collapse
|
36
|
Seicol BJ, Guo Z, Garrity K, Xie R. Potential uses of auditory nerve stimulation to modulate immune responses in the inner ear and auditory brainstem. Front Integr Neurosci 2023; 17:1294525. [PMID: 38162822 PMCID: PMC10755874 DOI: 10.3389/fnint.2023.1294525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Bioelectronic medicine uses electrical stimulation of the nervous system to improve health outcomes throughout the body primarily by regulating immune responses. This concept, however, has yet to be applied systematically to the auditory system. There is growing interest in how cochlear damage and associated neuroinflammation may contribute to hearing loss. In conjunction with recent findings, we propose here a new perspective, which could be applied alongside advancing technologies, to use auditory nerve (AN) stimulation to modulate immune responses in hearing health disorders and following surgeries for auditory implants. In this article we will: (1) review the mechanisms of inflammation in the auditory system in relation to various forms of hearing loss, (2) explore nerve stimulation to reduce inflammation throughout the body and how similar neural-immune circuits likely exist in the auditory system (3) summarize current methods for stimulating the auditory system, particularly the AN, and (4) propose future directions to use bioelectronic medicine to ameliorate harmful immune responses in the inner ear and auditory brainstem to treat refractory conditions. We will illustrate how current knowledge from bioelectronic medicine can be applied to AN stimulation to resolve inflammation associated with implantation and disease. Further, we suggest the necessary steps to get discoveries in this emerging field from bench to bedside. Our vision is a future for AN stimulation that includes additional protocols as well as advances in devices to target and engage neural-immune circuitry for therapeutic benefits.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Zixu Guo
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Katy Garrity
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
37
|
Elkattawy HA, Mahmoud SM, Hassan AES, Behiry A, Ebrahim HA, Ibrahim AM, Zaghamir DEF, El-Sherbiny M, El-Sayed SF. Vagal Stimulation Ameliorates Non-Alcoholic Fatty Liver Disease in Rats. Biomedicines 2023; 11:3255. [PMID: 38137476 PMCID: PMC10741668 DOI: 10.3390/biomedicines11123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The harmful consequences of non-alcoholic fatty liver disease (NAFLD) are posing an increasing threat to public health as the incidence of diabetes and obesity increases globally. A non-invasive treatment with a range of autonomic and metabolic benefits is transcutaneous vagus nerve stimulation (tVNS). AIM OF THE STUDY To investigate the possible preventive impacts of VNS against adult rats' NAFLD caused by a high-fat diet (HFD) and to clarify the underlying mechanisms. METHODS A total of thirty-two adult male rats were split into two groups: the HFD-induced NAFLD group (n = 24) and the control normal group (n = 8). The obesogenic diet was maintained for 12 weeks to induce hepatic steatosis. The HFD-induced NAFLD group (n = 24) was separated into three groups: the group without treatment (n = 8), the group with sham stimulation (n = 8), and the group with VNS treatment (n = 8). VNS was delivered for 30 min per day for 6 weeks after the establishment of NAFLD using a digital TENS device. The subsequent assessments included hepatic triglyceride, cholesterol content, serum lipid profile, and liver function testing. In this context, inflammatory biomarkers (TNF-α, IL-6) and hepatic oxidative stress (MDA, SOD, and GPx) were also assessed. To clarify the possible mechanisms behind the protective benefits of VNS, additional histological inspection and immunohistochemistry analysis of TNF-α and Caspase-3 were performed. RESULTS In the NAFLD-affected obese rats, VNS markedly decreased the rats' body mass index (BMI) and abdominal circumference (AC). Liver function markers (albumin, ALT, and AST) and the serum lipid profile-which included a notable decrease in the amounts of hepatic triglycerides and cholesterol-were both markedly improved. Additionally, oxidative stress and inflammatory indicators showed a considerable decline with VNS. Notably, the liver tissues examined by histopathologists revealed that there is evidence of the protective impact of VNS on the oxidative and inflammatory states linked to HFD-induced NAFLD while maintaining the architectural and functional condition of the liver. CONCLUSIONS Our findings suggest that VNS may represent a promising therapeutic candidate for managing NAFLD induced by obesity. It can be considered to be an effective adjuvant physiological intervention for the obese population with NAFLD to spare the liver against obesity-induced deleterious injury.
Collapse
Affiliation(s)
- Hany A. Elkattawy
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11579, Saudi Arabia;
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
| | - Samar Mortada Mahmoud
- Department of Human Anatomy and Embryology, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt;
| | - Ahmed El-Sayed Hassan
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
- Department of Basic Medical Sciences, College of Medicine, Sulaiman Al-Rajhi University, Bukayriah 51941, Saudi Arabia
| | - Ahmed Behiry
- Department of Tropical Medicine and Endemic Diseases, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt;
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.M.I.); (D.E.F.Z.)
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Donia Elsaid Fathi Zaghamir
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.M.I.); (D.E.F.Z.)
- Department of Pediatric Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11579, Saudi Arabia;
| | - Sherein F. El-Sayed
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
| |
Collapse
|
38
|
Bonaz B. Non-invasive vagus nerve stimulation: the future of inflammatory bowel disease treatment? Bioelectron Med 2023; 9:26. [PMID: 38017496 PMCID: PMC10685668 DOI: 10.1186/s42234-023-00129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The vagus nerve regulates inflammation and cytokine release through the inflammatory reflex. Recent pilot clinical trials using implantable bioelectronic devices have demonstrated the efficacy of vagus nerve stimulation (VNS) in adult patients with inflammatory bowel diseases (IBD) as an alternative to drug treatments. However, the use of non-invasive VNS should be of interest in adults with IBD and even more in pediatric IBD. In this issue of Bioelectronic Medicine, Sahn et al. report that non-invasive transcutaneous auricular VNS attenuated signs and symptoms in a pediatric cohort with mild to moderate IBD thus opening new therapeutic avenues in the management of pediatric but also adult IBD patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
39
|
Alam MJ, Chen JDZ. Non-invasive neuromodulation: an emerging intervention for visceral pain in gastrointestinal disorders. Bioelectron Med 2023; 9:27. [PMID: 37990288 PMCID: PMC10664460 DOI: 10.1186/s42234-023-00130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Gastrointestinal (GI) disorders, which extend from the esophagus to the anus, are the most common diseases of the GI tract. Among these disorders, pain, encompassing both abdominal and visceral pain, is a predominant feature, affecting the patients' quality of life and imposing a substantial financial burden on society. Pain signals originating from the gut intricately shape brain dynamics. In response, the brain sends appropriate descending signals to respond to pain through neuronal inhibition. However, due to the heterogeneous nature of the disease and its limited pathophysiological understanding, treatment options are minimal and often controversial. Consequently, many patients with GI disorders use complementary and alternative therapies such as neuromodulation to treat visceral pain. Neuromodulation intervenes in the central, peripheral, or autonomic nervous system by alternating or modulating nerve activity using electrical, electromagnetic, chemical, or optogenetic methodologies. Here, we review a few emerging noninvasive neuromodulation approaches with promising potential for alleviating pain associated with functional dyspepsia, gastroparesis, irritable bowel syndrome, inflammatory bowel disease, and non-cardiac chest pain. Moreover, we address critical aspects, including the efficacy, safety, and feasibility of these noninvasive neuromodulation methods, elucidate their mechanisms of action, and outline future research directions. In conclusion, the emerging field of noninvasive neuromodulation appears as a viable alternative therapeutic avenue for effectively managing visceral pain in GI disorders.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
40
|
Yang D, Almanzar N, Chiu IM. The role of cellular and molecular neuroimmune crosstalk in gut immunity. Cell Mol Immunol 2023; 20:1259-1269. [PMID: 37336989 PMCID: PMC10616093 DOI: 10.1038/s41423-023-01054-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
The gastrointestinal tract is densely innervated by the peripheral nervous system and populated by the immune system. These two systems critically coordinate the sensations of and adaptations to dietary, microbial, and damaging stimuli from the external and internal microenvironment during tissue homeostasis and inflammation. The brain receives and integrates ascending sensory signals from the gut and transduces descending signals back to the gut via autonomic neurons. Neurons regulate intestinal immune responses through the action of local axon reflexes or through neuronal circuits via the gut-brain axis. This neuroimmune crosstalk is critical for gut homeostatic maintenance and disease resolution. In this review, we discuss the roles of distinct types of gut-innervating neurons in the modulation of intestinal mucosal immunity. We will focus on the molecular mechanisms governing how different immune cells respond to neural signals in host defense and inflammation. We also discuss the therapeutic potential of strategies targeting neuroimmune crosstalk for intestinal diseases.
Collapse
Affiliation(s)
- Daping Yang
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Nicole Almanzar
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Landgraaf RG, Bloem MN, Fumagalli M, Benninga MA, de Lorijn F, Nieuwdorp M. Acupuncture as multi-targeted therapy for the multifactorial disease obesity: a complex neuro-endocrine-immune interplay. Front Endocrinol (Lausanne) 2023; 14:1236370. [PMID: 37795371 PMCID: PMC10545882 DOI: 10.3389/fendo.2023.1236370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The prevalence of obesity has reached pandemic dimensions. It is associated with multiple comorbidities and is becoming a clinical and public health threat. Obesity is a multifactorial disease with a complex pathophysiology and interplay of various systems. A strong interplay exists between the neuro-endocrine system, the immune system with systemic chronic low-grade inflammation, and microbiome dysbiosis that can lead to the development of obesity, which in turn can exacerbate each of these factors, hence creating a vicious cycle. The conventional treatment with lifestyle modifications such as diet, physical exercise, pharmacotherapy, and bariatric surgery does not always result in sufficient weight control thus paving the way for other strategies. As one such strategy, acupuncture is increasingly used worldwide to treat obesity. This narrative review outlines the evidence for this neuro-endocrine-immune interplay in the pathophysiology of obesity. Furthermore, the existing experimental and clinical evidence of acupuncture as a multi-targeted therapy for obesity is explained and future research perspectives are discussed.
Collapse
Affiliation(s)
- Raymond Guy Landgraaf
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
- Sinomedica Gui Sheng Tang, Scientific Department, Lugano, Switzerland
| | - Michelle Nicté Bloem
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Massimo Fumagalli
- Sinomedica Gui Sheng Tang, Scientific Department, Lugano, Switzerland
| | - Marc Alexander Benninga
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Fleur de Lorijn
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
42
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
43
|
Ghosh S, Sinha JK, Ghosh S, Sharma H, Bhaskar R, Narayanan KB. A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management. Brain Sci 2023; 13:1305. [PMID: 37759906 PMCID: PMC10527076 DOI: 10.3390/brainsci13091305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Epilepsy is a complex neurological disorder affecting millions worldwide, with a substantial number of patients facing drug-resistant epilepsy. This comprehensive review explores innovative therapies for epilepsy management, focusing on their principles, clinical evidence, and potential applications. Traditional antiseizure medications (ASMs) form the cornerstone of epilepsy treatment, but their limitations necessitate alternative approaches. The review delves into cutting-edge therapies such as responsive neurostimulation (RNS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), highlighting their mechanisms of action and promising clinical outcomes. Additionally, the potential of gene therapies and optogenetics in epilepsy research is discussed, revealing groundbreaking findings that shed light on seizure mechanisms. Insights into cannabidiol (CBD) and the ketogenic diet as adjunctive therapies further broaden the spectrum of epilepsy management. Challenges in achieving seizure control with traditional therapies, including treatment resistance and individual variability, are addressed. The importance of staying updated with emerging trends in epilepsy management is emphasized, along with the hope for improved therapeutic options. Future research directions, such as combining therapies, AI applications, and non-invasive optogenetics, hold promise for personalized and effective epilepsy treatment. As the field advances, collaboration among researchers of natural and synthetic biochemistry, clinicians from different streams and various forms of medicine, and patients will drive progress toward better seizure control and a higher quality of life for individuals living with epilepsy.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- ICMR—National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| | | | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
44
|
Petsakou A, Liu Y, Liu Y, Comjean A, Hu Y, Perrimon N. Epithelial Ca 2+ waves triggered by enteric neurons heal the gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553227. [PMID: 37645990 PMCID: PMC10461974 DOI: 10.1101/2023.08.14.553227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the etiology of chronic disorders such as inflammatory bowel diseases and cancer. We used the Drosophila midgut to investigate this question and discovered that during regeneration a subpopulation of cholinergic enteric neurons triggers Ca2+ currents among enterocytes to promote return of the epithelium to homeostasis. Specifically, we found that down-regulation of the cholinergic enzyme Acetylcholinesterase in the epithelium enables acetylcholine from defined enteric neurons, referred as ARCENs, to activate nicotinic receptors in enterocytes found near ARCEN-innervations. This activation triggers high Ca2+ influx that spreads in the epithelium through Inx2/Inx7 gap junctions promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki activation and increase of inflammatory cytokines together with hyperplasia, reminiscent of inflammatory bowel diseases. Altogether, we found that during gut regeneration the conserved cholinergic pathway facilitates epithelial Ca2+ waves that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric-dependent intestinal regeneration which advance the current understanding of how a tissue returns to its homeostatic state after injury and could ultimately help existing therapeutics.
Collapse
Affiliation(s)
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Ying Liu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Aram Comjean
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, USA
- Howard Hughes Medical Institute, Boston, USA
| |
Collapse
|
45
|
Hey GE, Vedam-Mai V, Beke M, Amaris M, Ramirez-Zamora A. The Interface between Inflammatory Bowel Disease, Neuroinflammation, and Neurological Disorders. Semin Neurol 2023; 43:572-582. [PMID: 37562450 DOI: 10.1055/s-0043-1771467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a complex, chronic inflammatory condition affecting the gastrointestinal tract. IBD has been associated with a variety of neurologic manifestations including peripheral nerve involvement, increased risk of thrombotic, demyelinating and events. Furthermore, an evolving association between IBD and neurodegenerative disorders has been recognized, and early data suggests an increased risk of these disorders in patients diagnosed with IBD. The relationship between intestinal inflammatory disease and neuroinflammation is complex, but the bidirectional interaction between the brain-gut-microbiome axis is likely to play an important role in the pathogenesis of these disorders. Identification of common mechanisms and pathways will be key to developing potential therapies. In this review, we discuss the evolving interface between IBD and neurological conditions, with a focus on clinical, mechanistic, and potentially therapeutic implications.
Collapse
Affiliation(s)
- Grace E Hey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Vinata Vedam-Mai
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Matthew Beke
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida
| | - Manuel Amaris
- Department of Gastroenterology, University of Florida, Gainesville, Florida
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
46
|
Fang YT, Lin YT, Tseng WL, Tseng P, Hua GL, Chao YJ, Wu YJ. Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Front Aging Neurosci 2023; 15:1173987. [PMID: 37484689 PMCID: PMC10358778 DOI: 10.3389/fnagi.2023.1173987] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Vagus nerve stimulation (VNS) is a technology that provides electrical stimulation to the cervical vagus nerve and can be applied in the treatment of a wide variety of neuropsychiatric and systemic diseases. VNS exerts its effect by stimulating vagal afferent and efferent fibers, which project upward to the brainstem nuclei and the relayed circuits and downward to the internal organs to influence the autonomic, neuroendocrine, and neuroimmunology systems. The neuroimmunomodulation effect of VNS is mediated through the cholinergic anti-inflammatory pathway that regulates immune cells and decreases pro-inflammatory cytokines. Traditional and non-invasive VNS have Food and Drug Administration (FDA)-approved indications for patients with drug-refractory epilepsy, treatment-refractory major depressive disorders, and headaches. The number of clinical trials and translational studies that explore the therapeutic potentials and mechanisms of VNS is increasing. In this review, we first introduced the anatomical and physiological bases of the vagus nerve and the immunomodulating functions of VNS. We covered studies that investigated the mechanisms of VNS and its therapeutic implications for a spectrum of brain disorders and systemic diseases in the context of neuroimmunomodulation.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ye-Ting Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Lung Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Philip Tseng
- Cross College Elite Program, National Cheng Kung University, Tainan, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Gia-Linh Hua
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jui Chao
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jen Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
47
|
Abe C, Katayama C, Bazek M, Nakamura Y, Ohbayashi K, Horii K, Fujimoto C, Tanida M, Iwasaki Y, Inoue T, Nin F, Morita H. Repeated activation of C1 neurons in medulla oblongata decreases anti-inflammatory effect via the hypofunction of the adrenal gland adrenergic response. Brain Behav Immun 2023; 111:138-150. [PMID: 37037362 DOI: 10.1016/j.bbi.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
The immune system is known to be controlled by the autonomic nervous system including sympathetic and parasympathetic (vagus) nerves. C1 neurons in the medulla oblongata, which participate in the control of the autonomic nervous system, are responders to stressors and regulate the immune system. Short-term activation of C1 neurons suppresses inflammation, while the effect of a long-term activation of these neurons on the inflammatory reflex is unclear. We, herein, demonstrate that the coactivation of both the splenic sympathetic nerves and the adrenal gland adrenergic response are indispensable for the prognosis of acute lung injury. The chemogenetic activation of C1 neurons increased plasma catecholamine including adrenaline and noradrenaline levels. The deletion of catecholaminergic cells using local injections of viral vector in the adrenal gland abolished the protective effect against acute lung injury when the C1 neurons were stimulated by either chemogenetic or optogenetic tools. Furthermore, repeated activation of C1 neurons using chemogenetic tool inhibited the adrenal response without affecting the plasma noradrenaline levels, eliminated the protective effect against acute lung injury. This was rescued by the isoprenaline administration. We concluded that the maintenance of an adrenergic response via C1 neurons in the adrenal gland is a prerequisite for the delivery of an effective anti-inflammatory response.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Chikako Katayama
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Murat Bazek
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Kazuhiro Horii
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Ishikawa, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fumiaki Nin
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
48
|
Xie Y, Tao S, Pan B, Yang W, Shao W, Fang X, Han D, Li J, Zhang Y, Chen R, Li W, Xu Y, Kan H. Cholinergic anti-inflammatory pathway mediates diesel exhaust PM 2.5-induced pulmonary and systemic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131951. [PMID: 37392642 DOI: 10.1016/j.jhazmat.2023.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Previous research has indicated that the cholinergic anti-inflammatory pathway (CAP) can regulate the duration and intensity of inflammatory responses. A wide range of research has demonstrated that PM2.5 exposure may induce various negative health effects via pulmonary and systemic inflammations. To study the potential role of the CAP in mediating PM2.5-induced effects, mice were treated with vagus nerve electrical stimulation (VNS) to activate the CAP before diesel exhaust PM2.5 (DEP) instillation. Analysis of pulmonary and systemic inflammations in mice demonstrated that VNS significantly reduced the inflammatory responses triggered by DEP. Meanwhile, inhibition of the CAP by vagotomy aggravated DEP-induced pulmonary inflammation. The flow cytometry results showed that DEP influenced the CAP by altering the Th cell balance and macrophage polarization in spleen, and in vitro cell co-culture experiments indicated that this DEP-induced change on macrophage polarization may act via the splenic CD4+ T cells. To further confirm the effect of alpha7 nicotinic acetylcholine receptor (α7nAChR) in this pathway, mice were then treated with α7nAChR inhibitor (α-BGT) or agonist (PNU282987). Our results demonstrated that specific activation of α7nAChR with PNU282987 effectively alleviated DEP-induced pulmonary inflammation, while specific inhibition of α7nAChR with α-BGT exacerbated the inflammatory markers. The present study suggests that PM2.5 have an impact on the CAP, and CAP may play a critical function in mediating PM2.5 exposure-induced inflammatory response. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Yuanting Xie
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Shimin Tao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Bin Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinyi Fang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Dongyang Han
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jingyu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Fallahi MS, Azadnajafabad S, Maroufi SF, Pour-Rashidi A, Khorasanizadeh M, Sattari SA, Faramarzi S, Slavin KV. Application of Vagus Nerve Stimulation in Spinal Cord Injury Rehabilitation. World Neurosurg 2023; 174:11-24. [PMID: 36858292 DOI: 10.1016/j.wneu.2023.02.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Spinal cord injury (SCI) is a prevalent devastating condition causing significant morbidity and mortality, especially in developing countries. The pathophysiology of SCI involves ischemia, neuroinflammation, cell death, and scar formation. Due to the lack of definitive therapy for SCI, interventions mainly focus on rehabilitation to reduce deterioration and improve the patient's quality of life. Currently, rehabilitative exercises and neuromodulation methods such as functional electrical stimulation, epidural electrical stimulation, and transcutaneous electrical nerve stimulation are being tested in patients with SCI. Other spinal stimulation techniques are being developed and tested in animal models. However, often these methods require complex surgical procedures and solely focus on motor function. Vagus nerve stimulation (VNS) is currently used in patients with epilepsy, depression, and migraine and is being investigated for its application in other disorders. In animal models of SCI, VNS significantly improved locomotor function by ameliorating inflammation and improving plasticity, suggesting its use in human subjects. SCI patients also suffer from nonmotor complications, including pain, gastrointestinal dysfunction, cardiovascular disorders, and chronic conditions such as obesity and diabetes. VNS has shown promising results in alleviating these conditions in non-SCI patients, which makes it a possible therapeutic option in SCI patients.
Collapse
Affiliation(s)
- Mohammad Sadegh Fallahi
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Azadnajafabad
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Farzad Maroufi
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Neurosurgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Pour-Rashidi
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - MirHojjat Khorasanizadeh
- Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York, New York, USA
| | - Shahab Aldin Sattari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sina Faramarzi
- School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
50
|
Nayok SB, Sreeraj VS, Shivakumar V, Venkatasubramanian G. A Primer on Interoception and its Importance in Psychiatry. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:252-261. [PMID: 37119217 PMCID: PMC10157017 DOI: 10.9758/cpn.2023.21.2.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 05/01/2023]
Abstract
Interoception is the perception of signals from inside the body. It plays a significant role in the nervous, cardiovascular, respiratory, gastrointestinal, genitourinary, and endocrine systems. It is also closely related to the autonomic nervous system and inflammatory pathways and plays a significant role in our optimal functioning. Recently, interoception has gained more attention in neuropsychiatric research. Anatomical and physiological aspects of interoception like relevant brain areas, the role of the vagus nerve, and the autonomic nervous system are gradually being understood. Different facets of interoception like interoceptive attention, detection, magnitude, discrimination, accuracy, awareness, and appraisal have been proposed and their assessments and importance are being evaluated. Further, interoception is often dysregulated or abnormal in psychiatric disorders. It has been implicated in the psychopathology, etiopathogenesis, clinical features and treatment of mood, anxiety, psychotic, personality and addiction-related disorders. This narrative review attempts to provide a nuanced understanding of the pathway(s), components, functions, assessments, and problems of interoception and will help us to detect its disturbances and evaluate its impact on psychiatric disorders, leading to a better perspective and management. This will also advance interoception-related research.
Collapse
Affiliation(s)
- Swarna Buddha Nayok
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Vanteemar S. Sreeraj
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Ganesan Venkatasubramanian
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|