1
|
Verdonk F, Lambert P, Gakuba C, Nelson AC, Lescot T, Garnier F, Constantin JM, Saurel D, Lasocki S, Rineau E, Diemunsch P, Dreyfuss L, Tavernier B, Bezu L, Josserand J, Mebazaa A, Coroir M, Nouette-Gaulain K, Macouillard G, Glasman P, Lemesle D, Minville V, Cuvillon P, Gaudilliere B, Quesnel C, Abdel-Ahad P, Sharshar T, Molliex S, Gaillard R, Mantz J. Preoperative ketamine administration for prevention of postoperative neurocognitive disorders after major orthopedic surgery in elderly patients: A multicenter randomized blinded placebo-controlled trial. Anaesth Crit Care Pain Med 2024; 43:101387. [PMID: 38710325 DOI: 10.1016/j.accpm.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Preventive anesthetic impact on the high rates of postoperative neurocognitive disorders in elderly patients is debated. The Prevention of postOperative Cognitive dysfunction by Ketamine (POCK) study aimed to assess the effect of ketamine on this condition. METHODS This is a multicenter, randomized, double-blind, interventional study. Patients ≥60 years undergoing major orthopedic surgery were randomly assigned in a 1:1 ratio to receive preoperative ketamine 0.5 mg/kg as an intravenous bolus (n = 152) or placebo (n = 149) in random blocks stratified according to the study site, preoperative cognitive status and age. The primary outcome was the proportion of objective delayed neurocognitive recovery (dNR) defined as a decline of one or more neuropsychological assessment standard deviations on postoperative day 7. Secondary outcomes included a three-month incidence of objective postoperative neurocognitive disorder (POND), as well as delirium, anxiety, and symptoms of depression seven days and three months after surgery. RESULTS Among 301 patients included, 292 (97%) completed the trial. Objective dNR occurred in 50 (38.8%) patients in the ketamine group and 54 (40.9%) patients in the placebo group (OR [95% CI] 0.92 [0.56; 1.51], p = 0.73) on postoperative day 7. Incidence of objective POND three months after surgery did not differ significantly between the two groups nor did incidence of delirium, anxiety, apathy, and fatigue. Symptoms of depression were less frequent in the ketamine group three months after surgery (OR [95% CI] 0.34 [0.13-0.86]). CONCLUSIONS A single preoperative bolus of intravenous ketamine does not prevent the occurrence of dNR or POND in elderly patients scheduled for major orthopedic surgery. (Clinicaltrials.gov NCT02892916).
Collapse
Affiliation(s)
- Franck Verdonk
- Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine and Hôpital Tenon, Assistance Publique-Hôpitaux de Paris. Sorbonne Université, GRC 29, DMU DREAM, Assistance Publique-Hôpitaux de Paris, Paris, and UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université-Inserm, Paris, 75012, France.
| | - Pierre Lambert
- Department of Anaesthesiology and Critical Care Medicine, Hôpital Nord, Saint Etienne, France
| | - Clément Gakuba
- Normandie Univ, UNICAEN, CHU de Caen, Service d'Anesthésie-Réanimation chirurgicale, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" and Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Anais Charles Nelson
- INSERM, Centre d'Investigation Clinique 1418 Épidémiologie Clinique, Paris, France and Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Unité de Recherche Clinique, Paris, France
| | - Thomas Lescot
- Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine and Hôpital Tenon, Assistance Publique-Hôpitaux de Paris. Sorbonne Université, GRC 29, DMU DREAM, Assistance Publique-Hôpitaux de Paris, Paris, and UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université-Inserm, Paris, 75012, France
| | - Fanny Garnier
- Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Michel Constantin
- Department of Perioperative Medicine, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Danielle Saurel
- Department of Perioperative Medicine, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Sigismond Lasocki
- Department of Anesthesiology and Intensive Care, University Hospital of Angers, Angers, France
| | - Emmanuel Rineau
- Department of Anesthesiology and Intensive Care, University Hospital of Angers, Angers, France
| | - Pierre Diemunsch
- Department of Anesthesiology and Intensive Care, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Lucas Dreyfuss
- Department of Anesthesiology and Intensive Care, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Benoît Tavernier
- Department of Anesthesiology and Intensive Care Medicine, Lille University Hospital and Université de Lille, ULR 2694 - METRICS, Lille, France
| | - Lucillia Bezu
- Department of Anesthesiology, Gustave Roussy Cancer Campus, Villejuif, France and Department of Anesthesiology and Intensive Care, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Alexandre Mebazaa
- Department of Anesthesiology, Burn and Critical Care, University Hospitals Saint-Louis-Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marine Coroir
- Department of Anesthesiology, Burn and Critical Care, University Hospitals Saint-Louis-Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Karine Nouette-Gaulain
- CHU Bordeaux, Service d'Anesthésie Réanimation Pellegrin, Hôpital Pellegrin, Bordeaux, France
| | - Gerard Macouillard
- CHU Bordeaux, Service d'Anesthésie Réanimation Pellegrin, Hôpital Pellegrin, Bordeaux, France
| | - Pauline Glasman
- Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département d'Anesthésie Réanimation, Paris, France
| | - Denis Lemesle
- Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département d'Anesthésie Réanimation, Paris, France
| | - Vincent Minville
- Department of Anesthesiology and Intensive Care, Toulouse University Hospital, Toulouse, France
| | - Philippe Cuvillon
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Nimes, France
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Quesnel
- Department of Anesthesiology and Intensive Care, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Pierre Abdel-Ahad
- GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France
| | - Tarek Sharshar
- Neuro-Anesthesiology and Intensive Care Medicine, Groupe Hospitalier Universitaire (GHU) Paris Psychiatrie et Neurosciences, Université de Paris, Paris, France
| | - Serge Molliex
- Department of Anaesthesiology and Critical Care Medicine, Hôpital Nord, and Sainbiose INSERM Unit 1059, Jean Monnet University, Saint Etienne, France
| | - Raphael Gaillard
- GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris 15, Paris, France
| | - Jean Mantz
- Department of Anesthesiology and Intensive Care, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
2
|
Brenna CTA, Goldstein BI, Zarate CA, Orser BA. Repurposing General Anesthetic Drugs to Treat Depression: A New Frontier for Anesthesiologists in Neuropsychiatric Care. Anesthesiology 2024; 141:222-237. [PMID: 38856663 DOI: 10.1097/aln.0000000000005037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During the last 100 years, the role of anesthesiologists in psychiatry has focused primarily on facilitating electroconvulsive therapy and mitigating postoperative delirium and other perioperative neurocognitive disorders. The discovery of the rapid and sustained antidepressant properties of ketamine, and early results suggesting that other general anesthetic drugs (including nitrous oxide, propofol, and isoflurane) have antidepressant properties, has positioned anesthesiologists at a new frontier in the treatment of neuropsychiatric disorders. Moreover, shared interest in understanding the biologic underpinnings of anesthetic drugs as psychotropic agents is eroding traditional academic boundaries between anesthesiology and psychiatry. This article presents a brief overview of anesthetic drugs as novel antidepressants and identifies promising future candidates for the treatment of depression. The authors issue a call to action and outline strategies to foster collaborations between anesthesiologists and psychiatrists as they work toward the common goals of repurposing anesthetic drugs as antidepressants and addressing mood disorders in surgical patients.
Collapse
Affiliation(s)
- Connor T A Brenna
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry and Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Beverley A Orser
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
3
|
Fuchs C, ‘t Hoen PAC, Müller AR, Ehrhart F, Van Karnebeek CDM. Drug repurposing in Rett and Rett-like syndromes: a promising yet underrated opportunity? Front Med (Lausanne) 2024; 11:1425038. [PMID: 39135718 PMCID: PMC11317438 DOI: 10.3389/fmed.2024.1425038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5 deficiency disorder (CDD) and FOXG1-syndrome] represent rare yet profoundly impactful neurodevelopmental disorders (NDDs). The severity and complexity of symptoms associated with these disorders, including cognitive impairment, motor dysfunction, seizures and other neurological features significantly affect the quality of life of patients and families. Despite ongoing research efforts to identify potential therapeutic targets and develop novel treatments, current therapeutic options remain limited. Here the potential of drug repurposing (DR) as a promising avenue for addressing the unmet medical needs of individuals with RTT and related disorders is explored. Leveraging existing drugs for new therapeutic purposes, DR presents an attractive strategy, particularly suited for neurological disorders given the complexities of the central nervous system (CNS) and the challenges in blood-brain barrier penetration. The current landscape of DR efforts in these syndromes is thoroughly examined, with partiuclar focus on shared molecular pathways and potential common drug targets across these conditions.
Collapse
Affiliation(s)
| | - Peter A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annelieke R. Müller
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics – BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Clara D. M. Van Karnebeek
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Iorgu AM, Vasilescu AN, Pfeiffer N, Spanagel R, Mallien AS, Inta D, Gass P. Psilocybin does not induce the vulnerability marker HSP70 in neurons susceptible to Olney's lesions. Eur Arch Psychiatry Clin Neurosci 2024; 274:1013-1019. [PMID: 37934233 PMCID: PMC11127870 DOI: 10.1007/s00406-023-01699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
S-ketamine, a N-methyl-D-aspartate receptor (NMDAR) antagonist, and psilocybin, a 5-hydroxy-tryptamine (serotonin) 2A receptor (5-HT2AR) agonist, are reported as effective rapid-acting antidepressants. Both compounds increase glutamate signalling and evoke cortical hyperexcitation. S-ketamine induces neurotoxicity especially in the retrosplenial cortex (Olney's lesions). Whether psilocybin produces similar neurotoxic effects has so far not been investigated. We performed an immunohistochemical whole-brain mapping for heat shock protein 70 (HSP70) in rats treated with psilocybin, S-ketamine, and MK-801. In contrast to S-ketamine- and MK-801-treated animals, we did not detect any HSP70-positive neurons in retrosplenial cortex of rats treated with psilocybin. Our results suggest that psilocybin might be safer for clinical use compared to S-ketamine regarding neuronal damage.
Collapse
Affiliation(s)
- Ana-Maria Iorgu
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anne Stephanie Mallien
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Dragos Inta
- Department for Community Health, Faculty of Natural Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| |
Collapse
|
5
|
Li J, Temizer R, Chen YW, Aoki C. Ketamine ameliorates activity-based anorexia of adolescent female mice through changes in GluN2B-containing NMDA receptors at postsynaptic cytoplasmic locations of pyramidal neurons and interneurons of medial prefrontal cortex. Brain Struct Funct 2024; 229:323-348. [PMID: 38170266 DOI: 10.1007/s00429-023-02740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Anorexia nervosa (AN) is a mental illness with high rates of mortality and relapse, and no approved pharmacotherapy. Using the activity-based anorexia (ABA) model of AN, we previously showed that a single sub-anesthetic intraperitoneal injection of ketamine (30 mg/kg-KET, but not 3 mg/kg-KET), has an immediate and long-lasting effect of reducing anorexia-like behavior among adolescent female mice. We also showed previously that excitatory outflow from medial prefrontal cortex (mPFC) engages hunger-evoked hyperactivity, leading to the ABA condition of severe weight loss. Ketamine is known to target GluN2B-containing NMDARs (NR2B). Might synaptic plasticity involving NR2B in mPFC contribute to ketamine's ameliorative effects? We addressed this question through electron microscopic immunocytochemical quantification of GluN2B at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (IN) in mPFC layer 1 of animals that underwent recovery from a second ABA induction (ABA2), 22 days after ketamine injection during the first ABA induction. The 30 mg/kg-KET evoked synaptic plasticity that differed for PN and IN, with changes revolving the cytoplasmic reserve pool of NR2B more than the postsynaptic membrane pool. Those individuals that suppressed hunger-evoked wheel running the most and increased food consumption during recovery from ABA2 the most showed the greatest increase of NR2B at PN and IN excitatory synapses. We hypothesize that 30 mg/kg-KET promotes long-lasting changes in the reserve cytoplasmic pool of NR2B that enables activity-dependent rapid strengthening of mPFC circuits underlying the more adaptive behavior of suppressed running and enhanced food consumption, in turn supporting better weight restoration.
Collapse
Affiliation(s)
- Jennifer Li
- Center for Neural Science, New York University, New York, NY, USA
| | - Rose Temizer
- Center for Neural Science, New York University, New York, NY, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York, NY, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Kotoula V, Evans JW, Punturieri CE, Zarate CA. Review: The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression. FRONTIERS IN NEUROIMAGING 2023; 2:1110258. [PMID: 37554642 PMCID: PMC10406217 DOI: 10.3389/fnimg.2023.1110258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/12/2023] [Indexed: 08/10/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that can be used to examine neural responses with and without the use of a functional task. Indeed, fMRI has been used in clinical trials and pharmacological research studies. In mental health, it has been used to identify brain areas linked to specific symptoms but also has the potential to help identify possible treatment targets. Despite fMRI's many advantages, such findings are rarely the primary outcome measure in clinical trials or research studies. This article reviews fMRI studies in depression that sought to assess the efficacy and mechanism of action of compounds with antidepressant effects. Our search results focused on selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed treatments for depression and ketamine, a fast-acting antidepressant treatment. Normalization of amygdala hyperactivity in response to negative emotional stimuli was found to underlie successful treatment response to SSRIs as well as ketamine, indicating a potential common pathway for both conventional and fast-acting antidepressants. Ketamine's rapid antidepressant effects make it a particularly useful compound for studying depression with fMRI; its effects on brain activity and connectivity trended toward normalizing the increases and decreases in brain activity and connectivity associated with depression. These findings highlight the considerable promise of fMRI as a tool for identifying treatment targets in depression. However, additional studies with improved methodology and study design are needed before fMRI findings can be translated into meaningful clinical trial outcomes.
Collapse
|
8
|
Zięba A, Matosiuk D, Kaczor AA. The Role of Genetics in the Development and Pharmacotherapy of Depression and Its Impact on Drug Discovery. Int J Mol Sci 2023; 24:2946. [PMID: 36769269 PMCID: PMC9917784 DOI: 10.3390/ijms24032946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Complex disorders, such as depression, remain a mystery for scientists. Although genetic factors are considered important for the prediction of one's vulnerability, it is hard to estimate the exact risk for a patient to develop depression, based only on one category of vulnerability criteria. Genetic factors also regulate drug metabolism, and when they are identified in a specific combination, may result in increased drug resistance. A proper understanding of the genetic basis of depression assists in the development of novel promising medications and effective disorder management schemes. This review aims to analyze the recent literature focusing on the correlation between specific genes and the occurrence of depression. Moreover, certain aspects targeting a high drug resistance identified among patients suffering from major depressive disorder were highlighted in this manuscript. An expected direction of future drug discovery campaigns was also discussed.
Collapse
Affiliation(s)
- Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
9
|
Temizer R, Chen YW, Aoki C. Individual differences in the positive outcome from adolescent ketamine treatment in a female mouse model of anorexia nervosa involve drebrin A at excitatory synapses of the medial prefrontal cortex. Synapse 2023; 77:e22253. [PMID: 36121749 PMCID: PMC9691557 DOI: 10.1002/syn.22253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 01/29/2023]
Abstract
Anorexia nervosa (AN) is a mental illness with the highest rates of mortality and relapse, and no approved pharmacological treatment. Using an animal model of AN, called activity-based anorexia (ABA), we showed earlier that a single intraperitoneal injection of ketamine at a dose of 30 mg/kg (30mgKET), but not 3 mg/kg (3mgKET), has a long-lasting effect upon adolescent females of ameliorating anorexia-like symptoms through the following changes: enhanced food consumption and body weight; reduced running and anxiety-like behavior. However, there were also individual differences in the drug's efficacy. We hypothesized that individual differences in ketamine's ameliorative effects involve drebrin A, an F-actin-binding protein known to be required for the activity-dependent trafficking of NMDA receptors (NMDARs). We tested this hypothesis by electron microscopic quantifications of drebrin A immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) in deep layer 1 of prefrontal cortex (PFC) of these mice. Results reveal that (1) the areal density of excitatory synapses on GABA-IN is greater for the 30mgKET group than the 3mgKET group; (2) the proportion of drebrin A+ excitatory synapses is greater for both PN and GABA-IN of 30mgKET than 3mgKET group. Correlation analyses with behavioral measurements revealed that (3) 30mgKET's protection is associated with reduced levels of drebrin A in the cytoplasm of GABA-IN and higher levels at extrasynaptic membranous sites of PN and GABA-IN; (5) altogether pointing to 30mgKET-induced homeostatic plasticity that engages drebrin A at excitatory synapses of both PN and GABA-IN.
Collapse
Affiliation(s)
- Rose Temizer
- Center for Neural Science, New York University, New York City, New York, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York City, New York, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York City, New York, USA
| |
Collapse
|
10
|
Tully JL, Dahlén AD, Haggarty CJ, Schiöth HB, Brooks S. Ketamine treatment for refractory anxiety: A systematic review. Br J Clin Pharmacol 2022; 88:4412-4426. [PMID: 35510346 PMCID: PMC9540337 DOI: 10.1111/bcp.15374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
There is a growing interest in the psychiatric properties of the dissociative anaesthetic ketamine, as single doses have been shown to have fast-acting mood-enhancing and anxiolytic effects, which persist for up to a week after the main psychoactive symptoms have diminished. Therefore, ketamine poses potential beneficial effects in patients with refractory anxiety disorders, where other conventional anxiolytics have been ineffective. Ketamine is a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) glutamate receptor, which underlies its induction of pain relief and anaesthesia. However, the role of NMDA receptors in anxiety reduction is still relatively unknown. To fill this paucity in the literature, this systematic review assesses the evidence that ketamine significantly reduces refractory anxiety and discusses to what extent this may be mediated by NMDA receptor antagonism and other receptors. We highlight the temporary nature of the anxiolytic effects and discuss the high discrepancy among the study designs regarding many fundamental factors such as administration routes, complementary treatments and other treatments.
Collapse
Affiliation(s)
- Jamie L. Tully
- College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Amelia D. Dahlén
- Department of Surgical SciencesUniversity of UppsalaUppsalaSweden
| | - Connor J. Haggarty
- Human Behavioral Pharmacology Lab, Biological Sciences DivisionUniversity of ChicagoUSA
| | - Helgi B. Schiöth
- Department of Surgical SciencesUniversity of UppsalaUppsalaSweden
| | - Samantha Brooks
- Faculty of HealthLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
11
|
Vasilescu AN, Pfeiffer N, Terraneo F, Riva MA, Lang UE, Inta D, Gass P. Region-Specific Enhancement of c-fos Expression by Combined Treatment With NMDA Receptor Agonists and Antagonists With Antidepressant Potential. Int J Neuropsychopharmacol 2022; 25:946-950. [PMID: 35974297 PMCID: PMC9670745 DOI: 10.1093/ijnp/pyac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
Rapastinel, formerly Glyx-13, is a novel positive allosteric modulator of the N-methyl-D-aspartate-receptor (NMDAR) that counteracts psychotomimetic actions of NMDAR antagonists. We set out to evaluate the effect of rapastinel alone or in combination with the global and GluN2B subunit-specific NMDAR antagonists MK-801 and Ro25-6981, respectively, on neuronal activation in relevant regions using c-fos brain mapping. Whereas rapastinel alone did not trigger significant c-fos expression beyond the prelimbic cortex, it strongly increased the c-fos expression induced by MK-801 in hippocampal, cingulate, and retrosplenial areas. Similar results were obtained when rapastinel was replaced by D-cycloserine. Our results reveal new interactions at network level between NMDAR modulators with possible implications regarding their therapeutic effects.
Collapse
Affiliation(s)
- Andrei-Nicolae Vasilescu
- Correspondence: Andrei-Nicolae Vasilescu, MD, Central Institute of Mental Health Mannheim, Heidelberg University, Germany ()
| | - Natascha Pfeiffer
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Mannheim Faculty, Heidelberg University, Mannheim, Germany
| | - Federica Terraneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy,Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | | | | |
Collapse
|
12
|
Nicotinic receptors promote susceptibility to social stress in female mice linked with neuroadaptations within VTA dopamine neurons. Neuropsychopharmacology 2022; 47:1587-1596. [PMID: 35459925 PMCID: PMC9283477 DOI: 10.1038/s41386-022-01314-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
There are about twice as many women as men who experience depression during their lifetime. Although life circumstances and especially exposure to stressful situations constitute a major risk factor to develop depression, the underlying mechanisms have yet to be unraveled. We employed the chronic social defeat procedure to elicit depressive-like symptoms in females and ketamine to validate the model. We performed ex-vivo patch clamp recordings to assess cellular adaptations and used pharmacological agents to dissect these deregulations. Chronic social defeat exposure triggers a hyperactivity of VTA putative dopamine (DA) neurons in females susceptible to stress but not resilient ones. This hyperactivity was fully reversed by a single administration of ketamine. In virally-identified brain circuits of both susceptible and resilient females, we found a hypercholinergic tone to the VTA arising from the laterodorsal tegmentum. Application of puffs of nicotine revealed a decreased sensitivity of DA neurons in resilient mice when compared to naive or susceptible ones. The in vivo acute administration of the positive allosteric modulator for α7 nicotinic acetylcholine receptors (nAChRs) not only increased susceptibility to stress by enhancing activity of VTA DA neurons, but also triggered a switch in phenotype from resilient to susceptible. Our data unravel dysregulations of VTA DA neurons activity exclusively in females exhibiting depressive-like symptoms and identify VTA nAChRs as key molecular substrates that exacerbate susceptibility to stress.
Collapse
|
13
|
Kim JJ, Sapio MR, Vazquez FA, Maric D, Loydpierson AJ, Ma W, Zarate CA, Iadarola MJ, Mannes AJ. Transcriptional Activation, Deactivation and Rebound Patterns in Cortex, Hippocampus and Amygdala in Response to Ketamine Infusion in Rats. Front Mol Neurosci 2022; 15:892345. [PMID: 35706427 PMCID: PMC9190438 DOI: 10.3389/fnmol.2022.892345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, is a recently revitalized treatment for pain and depression, yet its actions at the molecular level remain incompletely defined. In this molecular-pharmacological investigation in the rat, we used short- and longer-term infusions of high dose ketamine to stimulate neuronal transcription processes. We hypothesized that a progressively stronger modulation of neuronal gene networks would occur over time in cortical and limbic pathways. A continuous intravenous administration paradigm for ketamine was developed in rat consisting of short (1 h) and long duration (10 h, and 10 h + 24 h recovery) infusions of anesthetic concentrations to activate or inhibit gene transcription in a pharmacokinetically controlled fashion. Transcription was measured by RNA-Seq in three brain regions: frontal cortex, hippocampus, and amygdala. Cellular level gene localization was performed with multiplex fluorescent in situ hybridization. Induction of a shared transcriptional regulatory network occurred within 1 h in all three brain regions consisting of (a) genes involved in stimulus-transcription factor coupling that are induced during altered synaptic activity (immediate early genes, IEGs, such as c-Fos, 9–12 significant genes per brain region, p < 0.01 per gene) and (b) the Nrf2 oxidative stress-antioxidant response pathway downstream from glutamate signaling (Nuclear Factor Erythroid-Derived 2-Like 2) containing 12–25 increasing genes (p < 0.01) per brain region. By 10 h of infusion, the acute results were further reinforced and consisted of more and stronger gene alterations reflecting a sustained and accentuated ketamine modulation of regional excitation and plasticity. At the cellular level, in situ hybridization localized up-regulation of the plasticity-associated gene Bdnf, and the transcription factors Nr4a1 and Fos, in cortical layers III and V. After 24 h recovery, we observed overshoot of transcriptional processes rather than a smooth return to homeostasis suggesting an oscillation of plasticity occurs during the transition to a new phase of neuronal regulation. These data elucidate critical molecular regulatory actions during and downstream of ketamine administration that may contribute to the unique drug actions of this anesthetic agent. These molecular investigations point to pathways linked to therapeutically useful attributes of ketamine.
Collapse
Affiliation(s)
- Jenny J. Kim
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Matthew R. Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Fernando A. Vazquez
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Amelia J. Loydpierson
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Wenting Ma
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michael J. Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Michael J. Iadarola, ,
| | - Andrew J. Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Sotille R, Singh H, Weisman A, Vida T. Unraveling the Mysteries of Mental Illness With Psilocybin. Cureus 2022; 14:e25414. [PMID: 35769681 PMCID: PMC9233936 DOI: 10.7759/cureus.25414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Current medications have not been effective in reducing the prevalence of mental illness worldwide. The prevalence of illnesses such as treatment-resistant depression has increased despite the widespread use of a broad set of psychopharmaceuticals. Transcranial magnetic stimulation and ketamine therapy are making great strides in improving treatment-resistant depression outcomes but they have limitations. New psychotherapeutics are required that specifically target the underlying cellular pathologies leading to neuronal atrophy. This neuronal atrophy model is supplanting the long-held neurotransmitter deficit hypothesis to explain mental illness. Interest in psychedelics as therapeutic molecules to treat mental illness is experiencing a 21st-century reawakening that is on the cusp of a transformation. Psilocybin is a pro-drug, found in various naturally occurring mushrooms, that is dephosphorylated to produce psilocin, a classic tryptamine psychedelic functional as a 5-hydroxytryptamine 2A receptor agonist. We have focused this review to include studies in the last two years that suggest psilocybin promotes neuronal plasticity, which may lead to changes in brain network connectivity. Recent advancements in clinical trials using pure psilocybin in therapy suggest that it may effectively relieve the symptoms of depression in patients diagnosed with major depressive disorder and treatment-resistant depression. Sophisticated cellular and molecular experiments at the systems level have produced evidence that demonstrates psilocybin promotes neuritogenesis in the mouse brain - a mechanism that may address the root cause of depression at the cellular level. Finally, studies with psilocybin therapy for major depressive disorder suggest that this ancient molecule can promote functionally connected intrinsic networks in the human brain, resulting in durable improvements in the severity of depressive symptoms. Although further research is necessary, the prospect of using psilocybin for the treatment of mental illness is an enticing possibility.
Collapse
Affiliation(s)
- Robert Sotille
- Medical Education, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, USA
| | - Herpreet Singh
- Medical Education, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, USA
| | - Anne Weisman
- Medical Education, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, USA
| | - Thomas Vida
- Medical Education, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, USA
| |
Collapse
|
15
|
Marcus DJ, Bruchas MR. Where ketamine and dopamine collide. eLife 2021; 10:70148. [PMID: 34137373 PMCID: PMC8211445 DOI: 10.7554/elife.70148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Ketamine strengthens connections between two brain regions that are involved in the production and regulation of dopamine, which may explain how the drug can alleviate depression.
Collapse
Affiliation(s)
- David J Marcus
- Department of Anesthesiology and Pain Medicine and Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, United States
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, Center for Neurobiology of Addiction, Pain, and Emotion, and Department of Pharmacology, University of Washington, Seattle, United States
| |
Collapse
|