1
|
Luo S, Wang Y, Hisatsune T. P2Y1 receptor in Alzheimer's disease. Neural Regen Res 2025; 20:440-453. [PMID: 38819047 PMCID: PMC11317937 DOI: 10.4103/nrr.nrr-d-23-02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer's disease treatments in the last decades. However, existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic, necessitating the exploration of alternative therapeutic strategies. Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer's disease patients, with dysregulated astrocytic purinergic receptors, particularly the P2Y1 receptor, all of which constitute the pathophysiology of Alzheimer's disease. These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer's disease. This review delves into recent insights into the association between P2Y1 receptor and Alzheimer's disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer's disease by mitigating neuroinflammation, thus offering promising avenues for developing drugs for Alzheimer's disease and potentially contributing to the development of more effective treatments.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
2
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2024:10.1007/s12035-024-04333-y. [PMID: 39012443 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
3
|
Nunes ACL, Carmo M, Behrenswerth A, Canas PM, Agostinho P, Cunha RA. Adenosine A 2A Receptor Blockade Provides More Effective Benefits at the Onset Rather than after Overt Neurodegeneration in a Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:4903. [PMID: 38732120 PMCID: PMC11084368 DOI: 10.3390/ijms25094903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.
Collapse
Affiliation(s)
- Ana Carla L. Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Marta Carmo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Andrea Behrenswerth
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
4
|
Imrie G, Gray MB, Raghuraman V, Farhy-Tselnicker I. Gene Expression at the Tripartite Synapse: Bridging the Gap Between Neurons and Astrocytes. ADVANCES IN NEUROBIOLOGY 2024; 39:95-136. [PMID: 39190073 DOI: 10.1007/978-3-031-64839-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.
Collapse
Affiliation(s)
- Gillian Imrie
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Madison B Gray
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vishnuvasan Raghuraman
- Department of Biology, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Isabella Farhy-Tselnicker
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Wendlandt M, Kürten AJ, Beiersdorfer A, Schubert C, Samad-Yazdtchi K, Sauer J, Pinto MC, Schulz K, Friese MA, Gee CE, Hirnet D, Lohr C. A 2A adenosine receptor-driven cAMP signaling in olfactory bulb astrocytes is unaffected in experimental autoimmune encephalomyelitis. Front Immunol 2023; 14:1273837. [PMID: 38077336 PMCID: PMC10701430 DOI: 10.3389/fimmu.2023.1273837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.
Collapse
Affiliation(s)
- Marina Wendlandt
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Alina J. Kürten
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | | | - Charlotte Schubert
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jessica Sauer
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - M. Carolina Pinto
- Institute of Synaptic Physiology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine E. Gee
- Institute of Synaptic Physiology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Karati D, Mukherjee S, Roy S. Molecular and Structural Insight into Adenosine A 2A Receptor in Neurodegenerative Disorders: A Significant Target for Efficient Treatment Approach. Mol Neurobiol 2023; 60:5987-6000. [PMID: 37391647 DOI: 10.1007/s12035-023-03441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/10/2023] [Indexed: 07/02/2023]
Abstract
All biological tissues and bodily fluids include the autacoid adenosine. The P1 class of purinergic receptors includes adenosine receptors. Four distinct G-protein-coupled receptors on the cellular membrane mediate the effects of adenosine, whose cytoplasmic content is regulated by producing/degrading enzymes and nucleoside transporters. A2A receptor has received a great deal of attention in recent years because it has a wide range of potential therapeutic uses. A2B and, more significantly, A2A receptors regulate numerous physiological mechanisms in the central nervous system (CNS). The inferior targetability of A2B receptors towards adenosine points that they might portray a promising medicinal target since they are triggered only under pharmacological circumstances (when adenosine levels rise up to micromolar concentrations). The accessibility of specific ligands for A2B receptors would permit the exploration of such a theory. A2A receptors mediate both potentially neurotoxic and neuroprotective actions. Hence, it is debatable to what extent they play a role in neurodegenerative illnesses. However, A2A receptor blockers have demonstrated clear antiparkinsonian consequences, and a significant attraction exists in the role of A2A receptors in other neurodegenerative disorders. Amyloid peptide extracellular accumulation and tau hyperphosphorylation are the pathogenic components of AD that lead to neuronal cell death, cognitive impairment, and memory loss. Interestingly, in vitro and in vivo research has shown that A2A adenosine receptor antagonists may block each of these clinical symptoms, offering a crucial new approach to combat a condition for which, regrettably, only symptomatic medications are currently available. At least two requirements must be met to determine whether such receptors are a target for diseases of the CNS: a complete understanding of the mechanisms governing A2A-dependent processes and the availability of ligands that can distinguish between the various receptor populations. This review concisely summarises the biological effects mediated by A2A adenosine receptors in neurodegenerative disorders and discusses the chemical characteristics of A2A adenosine receptor antagonists undergoing clinical trials. Selective A2A receptor blocker against neurodegenerative disorders.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
7
|
Bosetto Fiebrantz AK, Felski Leite L, Dal Pisol Schwab E, Sartori Bonini J, da Silva WC. On the participation of adenosinergic receptors in the reconsolidation of spatial long-term memory in male rats. Learn Mem 2023; 30:260-270. [PMID: 37802547 PMCID: PMC10561635 DOI: 10.1101/lm.053785.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023]
Abstract
To date, there is insufficient evidence to explain the role of adenosinergic receptors in the reconsolidation of long-term spatial memory. In this work, the role of the adenosinergic receptor family (A1, A2A, A2B, and A3) in this process has been elucidated. It was demonstrated that when infused bilaterally into the hippocampal CA1 region immediately after an early nonreinforced test session performed 24 h posttraining in the Morris water maze task, adenosine can cause anterograde amnesia for recent and late long-term spatial memory. This effect on spatial memory reconsolidation was blocked by A1 or A3 receptor antagonists and mimicked by A1 plus A3 receptor agonists, showing that this effect occurs through A1 and A3 receptors simultaneously. The A3 receptor alone participates only in the reconsolidation of late long-term spatial memory. When the memory to be reconsolidated was delayed (reactivation 5 d posttraining), the amnesic effect of adenosine became transient and did not occur in a test performed 5 d after the reactivation of the mnemonic trace. Finally, it has been shown that the amnesic effect of adenosine on spatial memory reconsolidation depends on the occurrence of protein degradation and that the amnesic effect of inhibition of protein synthesis on spatial memory reconsolidation is dependent on the activation of A3 receptors.
Collapse
Affiliation(s)
- Anne Karine Bosetto Fiebrantz
- Laboratório de Neuropsicofarmacologia, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brasil
| | - Luana Felski Leite
- Laboratório de Neuropsicofarmacologia, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
| | - Eduarda Dal Pisol Schwab
- Laboratório de Neuropsicofarmacologia, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
| | - Juliana Sartori Bonini
- Laboratório de Neurociências e Comportamento, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
| | - Weber Cláudio da Silva
- Laboratório de Neuropsicofarmacologia, Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná 85040-167, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brasil
| |
Collapse
|
8
|
Dredla BK, Del Brutto OH, Castillo PR. Sleep and Perivascular Spaces. Curr Neurol Neurosci Rep 2023; 23:607-615. [PMID: 37572227 DOI: 10.1007/s11910-023-01293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE OF REVIEW The glymphatic system is hypothesized to act as the brain's filtration system to remove toxic solutes that accumulate throughout the day. Perivascular spaces (PVSs) play a fundamental role in the ability of the glymphatic system to function, and sleep influences the effectiveness of this system. This article reviews the complexity of the interplay between sleep, the glymphatic system, and PVS. RECENT FINDINGS New imaging techniques have illuminated the structure of PVS and their associations with differing disease states. Research has shown that sleep may play a key role in the function of PVS and the influence of adenosine, astrocyte, and aquaporin-4 channel in the function of the glymphatic system. Emerging data suggest that differing pathological states such as neuroinflammatory conditions, neurodegenerative diseases, and cognitive dysfunction may be associated with underlying glymphatic system dysfunction, and sleep disorders could be a potential intervention target.
Collapse
Affiliation(s)
- Brynn K Dredla
- Sleep Disorders Center, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Oscar H Del Brutto
- School of Medicine and Research Center, Universidad Espíritu Santo-Ecuador, Samborondón, Ecuador.
| | - Pablo R Castillo
- Sleep Disorders Center, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
9
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
10
|
Oliveros A, Poleschuk M, Cole PD, Boison D, Jang MH. Chemobrain: An accelerated aging process linking adenosine A 2A receptor signaling in cancer survivors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:267-305. [PMID: 37741694 PMCID: PMC10947554 DOI: 10.1016/bs.irn.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Chemotherapy has a significant positive impact in cancer treatment outcomes, reducing recurrence and mortality. However, many cancer surviving children and adults suffer from aberrant chemotherapy neurotoxic effects on learning, memory, attention, executive functioning, and processing speed. This chemotherapy-induced cognitive impairment (CICI) is referred to as "chemobrain" or "chemofog". While the underlying mechanisms mediating CICI are still unclear, there is strong evidence that chemotherapy accelerates the biological aging process, manifesting as effects which include telomere shortening, epigenetic dysregulation, oxidative stress, mitochondrial defects, impaired neurogenesis, and neuroinflammation, all of which are known to contribute to increased anxiety and neurocognitive decline. Despite the increased prevalence of CICI, there exists a lack of mechanistic understanding by which chemotherapy detrimentally affects cognition in cancer survivors. Moreover, there are no approved therapeutic interventions for this condition. To address this gap in knowledge, this review attempts to identify how adenosine signaling, particularly through the adenosine A2A receptor, can be an essential tool to attenuate accelerated aging phenotypes. Importantly, the adenosine A2A receptor uniquely stands at the crossroads of cancer treatment and improved cognition, given that it is widely known to control tumor induced immunosuppression in the tumor microenvironment, while also posited to be an essential regulator of cognition in neurodegenerative disease. Consequently, we propose that the adenosine A2A receptor may provide a multifaceted therapeutic strategy to enhance anticancer activity, while combating chemotherapy induced cognitive deficits, both which are essential to provide novel therapeutic interventions against accelerated aging in cancer survivors.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Michael Poleschuk
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter D Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| |
Collapse
|
11
|
Zhao Y, Ning YL, Zhou YG. A 2AR and traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:225-265. [PMID: 37741693 DOI: 10.1016/bs.irn.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
12
|
Ferré S, Köfalvi A, Ciruela F, Justinova Z, Pistis M. Targeting corticostriatal transmission for the treatment of cannabinoid use disorder. Trends Pharmacol Sci 2023; 44:495-506. [PMID: 37331914 PMCID: PMC10524660 DOI: 10.1016/j.tips.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
It is generally assumed that the rewarding effects of cannabinoids are mediated by cannabinoid CB1 receptors (CB1Rs) the activation of which disinhibits dopaminergic neurons in the ventral tegmental area (VTA). However, this mechanism cannot fully explain novel results indicating that dopaminergic neurons also mediate the aversive effects of cannabinoids in rodents, and previous results showing that preferentially presynaptic adenosine A2A receptor (A2AR) antagonists counteract self-administration of Δ-9-tetrahydrocannabinol (THC) in nonhuman primates (NHPs). Based on recent experiments in rodents and imaging studies in humans, we propose that the activation of frontal corticostriatal glutamatergic transmission constitutes an additional and necessary mechanism. Here, we review evidence supporting the involvement of cortical astrocytic CB1Rs in the activation of corticostriatal neurons and that A2AR receptor heteromers localized in striatal glutamatergic terminals mediate the counteracting effects of the presynaptic A2AR antagonists, constituting potential targets for the treatment of cannabinoid use disorder (CUD).
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Zuzana Justinova
- Division of Pharmacology, Physiology, and Biological Chemistry (PPBC), National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
13
|
Merighi S, Travagli A, Nigro M, Pasquini S, Cappello M, Contri C, Varani K, Vincenzi F, Borea PA, Gessi S. Caffeine for Prevention of Alzheimer's Disease: Is the A 2A Adenosine Receptor Its Target? Biomolecules 2023; 13:967. [PMID: 37371547 DOI: 10.3390/biom13060967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent kind of dementia with roughly 135 million cases expected in the world by 2050. Unfortunately, current medications for the treatment of AD can only relieve symptoms but they do not act as disease-modifying agents that can stop the course of AD. Caffeine is one of the most widely used drugs in the world today, and a number of clinical studies suggest that drinking coffee may be good for health, especially in the fight against neurodegenerative conditions such as AD. Experimental works conducted "in vivo" and "in vitro" provide intriguing evidence that caffeine exerts its neuroprotective effects by antagonistically binding to A2A receptors (A2ARs), a subset of GPCRs that are triggered by the endogenous nucleoside adenosine. This review provides a summary of the scientific data supporting the critical role that A2ARs play in memory loss and cognitive decline, as well as the evidence supporting the protective benefits against neurodegeneration that may be attained by caffeine's antagonistic action on these receptors. They are a novel and fascinating target for regulating and enhancing synaptic activity, achieving symptomatic and potentially disease-modifying effects, and protecting against neurodegeneration.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Travagli
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Nigro
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Contri
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | | | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Garcia CP, Licht-Murava A, Orr AG. Effects of adenosine A 2A receptors on cognitive function in health and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:121-154. [PMID: 37741689 DOI: 10.1016/bs.irn.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine A2A receptors have been studied extensively in the context of motor function and movement disorders such as Parkinson's disease. In addition to these roles, A2A receptors have also been increasingly implicated in cognitive function and cognitive impairments in diverse conditions, including Alzheimer's disease, schizophrenia, acute brain injury, and stress. We review the roles of A2A receptors in cognitive processes in health and disease, focusing primarily on the effects of reducing or enhancing A2A expression levels or activities in animal models. Studies reveal that A2A receptors in neurons and astrocytes modulate multiple aspects of cognitive function, including memory and motivation. Converging evidence also indicates that A2A receptor levels and activities are aberrantly increased in aging, acute brain injury, and chronic disorders, and these increases contribute to neurocognitive impairments. Therapeutically targeting A2A receptors with selective modulators may alleviate cognitive deficits in diverse neurological and neuropsychiatric conditions. Further research on the exact neural mechanisms of these effects as well as the efficacy of selective A2A modulators on cognitive alterations in humans are important areas for future investigation.
Collapse
Affiliation(s)
- Cinthia P Garcia
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States; Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, United States
| | - Avital Licht-Murava
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
15
|
Lee SH, Mak A, Verheijen MHG. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front Cell Neurosci 2023; 17:1159756. [PMID: 37051110 PMCID: PMC10083367 DOI: 10.3389/fncel.2023.1159756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have proven themselves as one of the key in vivo techniques of modern neuroscience, allowing for unprecedented access to cellular manipulations in living animals. With respect to astrocyte research, DREADDs have become a popular method to examine the functional aspects of astrocyte activity, particularly G-protein coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) dynamics. With this method it has become possible to directly link the physiological aspects of astrocytic function to cognitive processes such as memory. As a result, a multitude of studies have explored the impact of DREADD activation in astrocytes on synaptic activity and memory. However, the emergence of varying results prompts us to reconsider the degree to which DREADDs expressed in astrocytes accurately mimic endogenous GPCR activity. Here we compare the major downstream signaling mechanisms, synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in hippocampal astrocytes of adult mice to those of endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Sophie H. Lee
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Research Master’s Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Mark Verheijen,
| |
Collapse
|
16
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
17
|
Dias L, Madeira D, Dias R, Tomé ÂR, Cunha RA, Agostinho P. Aβ 1-42 peptides blunt the adenosine A 2A receptor-mediated control of the interplay between P 2X 7 and P 2Y 1 receptors mediated calcium responses in astrocytes. Cell Mol Life Sci 2022; 79:457. [PMID: 35907034 PMCID: PMC11071907 DOI: 10.1007/s00018-022-04492-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 12/21/2022]
Abstract
The contribution of astrocytes to Alzheimer's disease (AD) is still ill defined. AD involves an abnormal accumulation of amyloid-β peptides (Aβ) and increased production of danger signals such as ATP. ATP can direct or indirectly, through its metabolism into adenosine, trigger adaptive astrocytic responses resulting from intracellular Ca2+ oscillations. AD also triggers an upregulation of astrocytic adenosine A2A receptors (A2AR), which blockade prevents memory dysfunction in AD. We now investigated how Aβ peptides affect ATP-mediated Ca2+ responses in astrocytes measured by fluorescence live-cell imaging and whether A2AR control astrocytic Ca2+ responses mediated by ATP receptors, mainly P2X7R and P2Y1R. In primary cultures of rat astrocytes exposed to Aβ1-42, ATP-evoked Ca2+ responses had a lower amplitude but a longer duration than in control astrocytes and involved P2X7R and P2Y1R, the former potentiating the later. Moreover, Aβ1-42 exposure increased protein levels of P2Y1R in astrocytes. A2AR antagonism with SCH58261 controlled in a protein kinase A-dependent manner both P2X7R- and P2Y1R-mediated Ca2+ responses in astrocytes. The interplay between these purinoceptors in astrocytes was blunted upon exposure to Aβ1-42. These findings uncover the ability of A2AR to regulate the inter-twinned P2X7R- and P2Y1R-mediated Ca2+ dynamics in astrocytes, which is disrupted in conditions of early AD.
Collapse
Affiliation(s)
- Liliana Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Daniela Madeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Rafael Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal.
| |
Collapse
|
18
|
Debom GN, Rubenich DS, Braganhol E. Adenosinergic Signaling as a Key Modulator of the Glioma Microenvironment and Reactive Astrocytes. Front Neurosci 2022; 15:648476. [PMID: 35069091 PMCID: PMC8766410 DOI: 10.3389/fnins.2021.648476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are numerous glial cells of the central nervous system (CNS) and play important roles in brain homeostasis. These cells can directly communicate with neurons by releasing gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, into the multipartite synapse. Moreover, astrocytes respond to tissue injury in the CNS environment. Recently, astrocytic heterogeneity and plasticity have been discussed by several authors, with studies proposing a spectrum of astrocytic activation characterized by A1/neurotoxic and A2/neuroprotective polarization extremes. The fundamental roles of astrocytes in communicating with other cells and sustaining homeostasis are regulated by purinergic signaling. In the CNS environment, the gliotransmitter ATP acts cooperatively with other glial signaling molecules, such as cytokines, which may impact CNS functions by facilitating/inhibiting neurotransmitter release. Adenosine (ADO), the main product of extracellular ATP metabolism, is an important homeostatic modulator and acts as a neuromodulator in synaptic transmission via P1 receptor sensitization. Furthermore, purinergic signaling is a key factor in the tumor microenvironment (TME), as damaged cells release ATP, leading to ADO accumulation in the TME through the ectonucleotidase cascade. Indeed, the enzyme CD73, which converts AMP to ADO, is overexpressed in glioblastoma cells; this upregulation is associated with tumor aggressiveness. Because of the crucial activity of CD73 in these cells, extracellular ADO accumulation in the TME contributes to sustaining glioblastoma immune escape while promoting A2-like activation. The present review describes the importance of ADO in modulating astrocyte polarization and simultaneously promoting tumor growth. We also discuss whether targeting of CD73 to block ADO production can be used as an alternative cancer therapy.
Collapse
Affiliation(s)
- Gabriela N Debom
- Programa de Pós-graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Dominique S Rubenich
- Programa de Pós-graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Elizandra Braganhol
- Programa de Pós-graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Instituto de Cardiologia do Rio Grande do Sul, Instituto de Cardiologia - Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| |
Collapse
|
19
|
Lopes CR, Amaral IM, Pereira MF, Lopes JP, Madeira D, Canas PM, Cunha RA, Agostinho P. Impact of blunting astrocyte activity on hippocampal synaptic plasticity in a mouse model of early Alzheimer's disease based on amyloid-β peptide exposure. J Neurochem 2022; 160:556-567. [PMID: 35043392 DOI: 10.1111/jnc.15575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
Abstract
Amyloid-β peptides (Aβ) accumulate in the brain since early Alzheimer's disease (AD) and dysregulate hippocampal synaptic plasticity, the neurophysiological basis of memory. Although the relationship between long-term potentiation (LTP) and memory processes is well established, there is also evidence that long-term depression (LTD) may be crucial for learning and memory. Alterations in synaptic plasticity, namely in LTP, can be due to communication failures between astrocytes and neurons; however, little is known about astrocytes´ ability to control hippocampal LTD, particularly in AD-like conditions. We now aimed to test the involvement of astrocytes in changes of hippocampal LTP and LTD triggered by Aβ1-42 , taking advantage of L-α-aminoadipate (L-AA), a gliotoxin that blunts astrocytic function. The effects of Aβ1-42 exposure was tested in two different experimental paradigms: ex vivo (hippocampal slices superfusion) and in vivo (intracerebroventricular injection), which were previously validated to impair memory and hippocampal synaptic plasticity, two features of early AD. Blunting astrocytic function with L-AA reduced LTP and LTD amplitude in hippocampal slices from control mice but the effect on LTD was less evident, suggesting that astrocytes have a greater influence on LTP than on LTD under non-pathological conditions. However, under AD conditions, blunting astrocytes did not consistently alter the reduction of LTP magnitude and reverted the LTD-to-LTP shift caused by both ex vivo and in vivo Aβ1-42 exposure. This shows that astrocytes were responsible for the hippocampal LTD-to-LTP shift observed in early AD conditions, reinforcing the interest of strategies targeting astrocytes to restore memory and synaptic plasticity deficits present in early AD.
Collapse
Affiliation(s)
- Cátia R Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Inês M Amaral
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | | | - João P Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Daniela Madeira
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| |
Collapse
|
20
|
Liu Y, Jiang H, Qin X, Tian M, Zhang H. PET imaging of reactive astrocytes in neurological disorders. Eur J Nucl Med Mol Imaging 2021; 49:1275-1287. [PMID: 34873637 PMCID: PMC8921128 DOI: 10.1007/s00259-021-05640-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
The reactive astrocytes manifest molecular, structural, and functional remodeling in injury, infection, or diseases of the CNS, which play a critical role in the pathological mechanism of neurological diseases. A growing need exists for dependable approach to better characterize the activation of astrocyte in vivo. As an advanced molecular imaging technology, positron emission tomography (PET) has the potential for visualizing biological activities at the cellular levels. In the review, we summarized the PET visualization strategies for reactive astrocytes and discussed the applications of astrocyte PET imaging in neurological diseases. Future studies are needed to pay more attention to the development of specific imaging agents for astrocytes and further improve our exploration of reactive astrocytes in various diseases.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
22
|
A 2A Adenosine Receptor as a Potential Biomarker and a Possible Therapeutic Target in Alzheimer's Disease. Cells 2021; 10:cells10092344. [PMID: 34571993 PMCID: PMC8469578 DOI: 10.3390/cells10092344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative pathologies. Its incidence is in dramatic growth in Western societies and there is a need of both biomarkers to support the clinical diagnosis and drugs for the treatment of AD. The diagnostic criteria of AD are based on clinical data. However, it is necessary to develop biomarkers considering the neuropathology of AD. The A2A receptor, a G-protein coupled member of the P1 family of adenosine receptors, has different functions crucial for neurodegeneration. Its activation in the hippocampal region regulates synaptic plasticity and in particular glutamate release, NMDA receptor activation and calcium influx. Additionally, it exerts effects in neuroinflammation, regulating the secretion of pro-inflammatory cytokines. In AD patients, its expression is increased in the hippocampus/entorhinal cortex more than in the frontal cortex, a phenomenon not observed in age-matched control brains, indicating an association with AD pathology. It is upregulated in peripheral blood cells of patients affected by AD, thus reflecting its increase at central neuronal level. This review offers an overview on the main AD biomarkers and the potential role of A2A adenosine receptor as a new marker and therapeutic target.
Collapse
|
23
|
Wang HQ, Song KY, Feng JZ, Huang SY, Guo XM, Zhang L, Zhang G, Huo YC, Zhang RR, Ma Y, Hu QZ, Qin XY. Caffeine Inhibits Activation of the NLRP3 Inflammasome via Autophagy to Attenuate Microglia-Mediated Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Mol Neurosci 2021; 72:97-112. [PMID: 34478049 DOI: 10.1007/s12031-021-01894-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
The activation of microglia is an important cause of central nervous system (CNS) inflammatory cell infiltration and inflammatory demyelination in experimental autoimmune encephalomyelitis (EAE). Furthermore, the proinflammatory response induced by the NLR family pyrin domain containing 3 (NLRP3) inflammasome can be amplified in microglia after NLRP3 inflammasome activation. Autophagy is closely related to the inflammatory response. Caffeine exerts anti-inflammatory and autophagy-stimulating effects, but the specific mechanism remains unclear. This study examined the mechanism underlying the anti-inflammatory effect of caffeine on EAE. In this study, C57BL/6 mice were immunized to induce EAE and treated with caffeine to observe its effect on prognosis. The effects of caffeine on autophagy and inflammation were also analysed in mouse primary microglia (PM) and the BV2 cell line. The data demonstrated that caffeine reduced the clinical score, the infiltration of inflammatory cells, the demyelination level, and the activation of microglia in EAE mice. Furthermore, caffeine increased the LC3-II/LC3-I levels and decreased the NLRP3 and P62 levels in EAE mice, whereas the autophagy inhibitor 3-methylamine (3-MA) blocked these effects. In vitro, caffeine promoted autophagy by suppressing the mechanistic target of rapamycin (mTOR) pathway and inhibited activation of the NLRP3 inflammasome. However, autophagy-related gene 5 (ATG5)-specific siRNA abolished the anti-inflammatory effect of caffeine treatment in PM and BV2 cells. Taken together, these data suggest that caffeine exerts a newly discovered effect on EAE by reducing NLRP3 inflammasome activation via the induction of autophagy in microglia.
Collapse
Affiliation(s)
- Hui-Qi Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Kai-Yi Song
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jin-Zhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Si-Yuan Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiu-Ming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Gang Zhang
- Cerebravascular Disease Department. Number 98, The First People's Hospital of Zunyi, (The third affiliated hospital of Zunyi Medical University), Fenghuang Road, Zunyi, Guizhou Province, 563000, China
| | - Ying-Chao Huo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Rong-Rong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qing-Zhe Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xin-Yue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|