1
|
Motzkin JC, Basbaum AI, Crowther AJ. Neuroanatomy of the nociceptive system: From nociceptors to brain networks. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:1-39. [PMID: 39580210 DOI: 10.1016/bs.irn.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
This chapter reviews the neuroanatomy of the nociceptive system and its functional organization. We describe three main compartments of the nervous system that underlie normal nociception and the resulting pain percept: Peripheral, Spinal Cord, and Brain. We focus on how ascending nociceptive processing streams traverse these anatomical compartments, culminating in the multidimensional experience of pain. We also describe neuropathic pain conditions, in which nociceptive processing is abnormal, not only because of the primary effects of a lesion or disease affecting peripheral nerves or the central nervous system (CNS), but also due to secondary effects on ascending pathways and brain networks. We discuss how the anatomical components (circuits/networks) reorganize under various etiologies of neuropathic pain and how these changes can give rise to pathological pain states.
Collapse
Affiliation(s)
- Julian C Motzkin
- Department of Neurology and Department Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States.
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Andrew J Crowther
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Li X, Qiu LY, Shi XJ, Zhu YP, He YL, Kuang HM. Abnormal Interhemispheric Functional Connectivity in Acute Pericoronitis: A Resting-State MRI Study. J Craniofac Surg 2024; 35:2099-2104. [PMID: 39171899 DOI: 10.1097/scs.0000000000010532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE Acute pericoronitis (AP) is a prevalent cause of odontogenic toothache which can significantly impact brain function. Previous research has predominantly concentrated on localized brain activity. However, the synergistic changes between brain hemispheres induced by toothache and resulting abnormal functional connectivity across the brain have not been comprehensively studied. METHODS A total of 34 patients with AP and 34 healthy individuals, matched for age, sex, and education were recruited for this study. All participants underwent resting-state functional magnetic resonance imaging (rs-MRI) scans. The voxel mirror homotopic connectivity (VMHC) method was used to identify intergroup differences. Brain regions exhibiting statistically significant differences were selected as regions of interest for further functional connectivity analysis. The partial correlation method was utilized to assess the correlation between abnormal VMHC values in different regions and clinical parameters, with age and sex included as covariates. RESULTS Patients with AP exhibited reduced VMHC values in the thalamus and elevated VMHC values in the inferior frontal gyrus compared with healthy controls. Subsequent functional connectivity analyses revealed extensive changes in functional networks, predominantly affecting the default, frontoparietal, cerebellar, and pain networks. CONCLUSION Changes in functional patterns across these brain networks offer novel insights into the neurophysiological mechanisms underlying pain information processing.
Collapse
Affiliation(s)
- Xing Li
- Department of Dentistry, Nanchang People's Hospital (Third Hospital of Nanchang)
| | - Luo-Yao Qiu
- Department of Dentistry, Nanchang People's Hospital (Third Hospital of Nanchang)
| | - Xue-Jiao Shi
- Department of Dentistry, Nanchang People's Hospital (Third Hospital of Nanchang)
| | - Yu-Ping Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Lin He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong-Mei Kuang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Kummer K, Sheets PL. Targeting Prefrontal Cortex Dysfunction in Pain. J Pharmacol Exp Ther 2024; 389:268-276. [PMID: 38702195 PMCID: PMC11125798 DOI: 10.1124/jpet.123.002046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
The prefrontal cortex (PFC) has justifiably become a significant focus of chronic pain research. Collectively, decades of rodent and human research have provided strong rationale for studying the dysfunction of the PFC as a contributing factor in the development and persistence of chronic pain and as a key supraspinal mechanism for pain-induced comorbidities such as anxiety, depression, and cognitive decline. Chronic pain alters the structure, chemistry, and connectivity of PFC in both humans and rodents. In this review, we broadly summarize the complexities of reported changes within both rodent and human PFC caused by pain and offer insight into potential pharmacological and nonpharmacological approaches for targeting PFC to treat chronic pain and pain-associated comorbidities. SIGNIFICANCE STATEMENT: Chronic pain is a significant unresolved medical problem causing detrimental changes to physiological, psychological, and behavioral aspects of life. Drawbacks of currently approved pain therapeutics include incomplete efficacy and potential for abuse producing a critical need for novel approaches to treat pain and comorbid disorders. This review provides insight into how manipulation of prefrontal cortex circuits could address this unmet need of more efficacious and safer pain therapeutics.
Collapse
Affiliation(s)
- Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Patrick L Sheets
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Pires MP, McBenedict B, Ahmed IE, Yau RCC, Fong YB, Goh KS, Lim YS, Mohamed SA, Ngu O, Devan JN, Hauwanga WN, Lima Pessôa B. Exploring the Thalamus as a Target for Neuropathic Pain Management: An Integrative Review. Cureus 2024; 16:e60130. [PMID: 38864037 PMCID: PMC11165437 DOI: 10.7759/cureus.60130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 06/13/2024] Open
Abstract
Neuropathic pain (NP), resulting from damage to the somatosensory system, is characterized by either spontaneous or evoked pain. In the context of NP, wherein aberrant signaling pathways contribute to the perception of pain, the thalamus emerges as a key player. This structure is integral to the pain network that includes connections to the dorsal horn of the spinal cord, highlighting its role in the affective-motivational aspects of pain perception. Given its significant involvement, the thalamus is targeted in advanced treatments such as thalamotomy and deep brain stimulation (DBS) when traditional therapies fail, emphasizing the need to understand its function in NP to improve management strategies. This review aimed to provide an overview of the role of the thalamus in the transmission of nociceptive information in NP by discussing the existing evidence, including the effectiveness and safety of current techniques in the management and treatment of NP. This is an integrative review involving the qualitative analysis of scientific articles published in PubMed/MEDLINE, Embase, Scopus, and Web of Science. A total of 687 articles were identified, and after selection, 15 articles were included in this study. All studies reviewed demonstrated varying degrees of effectiveness of DBS and thalamotomy in alleviating painful symptoms, although the relief was often temporary. Many studies noted a reduction in pain perception at the conclusion of treatment compared to pre-treatment levels, with this decrease maintained throughout patient follow-ups. However, adverse events associated with these treatments were also reported. In conclusion, there are some benefits, albeit temporary, to using thalamotomy and DBS to alleviate the painful symptoms of NP. Both procedures are considered advanced forms of surgical intervention that aim to modulate pain pathways in the brain, providing significant relief for patients suffering from chronic pain resistant to conventional treatment. Despite limitations, these surgical interventions offer renewed hope for patients facing disabling chronic pain and can provide a significant improvement in quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Yan Bin Fong
- Surgery, Universiti Putra Malaysia, Serdang, MYS
| | - Kang Suen Goh
- Internal Medicine, Monash University Malaysia, Subang Jaya, MYS
| | - Yee Siew Lim
- Surgery, International Medical University, Seremban, MYS
| | - Suber Abdi Mohamed
- Medicine, Jiangsu University, Zhenjiang Jiangbin Hospital, Zhenjiang, CHN
| | - Owen Ngu
- Medicine, University of Malaya, Kuala Lumpur, MYS
| | - Jeshua N Devan
- Surgery, Asian Institute of Medicine, Science and Technology University, Bedong, MYS
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | |
Collapse
|
5
|
Reyes N, Huang JJ, Choudhury A, Pondelis N, Locatelli EV, Felix ER, Pattany PM, Galor A, Moulton EA. Botulinum toxin A decreases neural activity in pain-related brain regions in individuals with chronic ocular pain and photophobia. Front Neurosci 2023; 17:1202341. [PMID: 37404468 PMCID: PMC10315909 DOI: 10.3389/fnins.2023.1202341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction To examine the effect of botulinum toxin A (BoNT-A) on neural mechanisms underlying pain and photophobia using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular pain. Methods Twelve subjects with chronic ocular pain and light sensitivity were recruited from the Miami Veterans Affairs eye clinic. Inclusion criteria were: (1) chronic ocular pain; (2) presence of ocular pain over 1 week recall; and (3) presence of photophobia. All individuals underwent an ocular surface examination to capture tear parameters before and 4-6 weeks after BoNT-A injections. Using an event-related fMRI design, subjects were presented with light stimuli during two fMRI scans, once before and 4-6 weeks after BoNT-A injection. Light evoked unpleasantness ratings were reported by subjects after each scan. Whole brain blood oxygen level dependent (BOLD) responses to light stimuli were analyzed. Results At baseline, all subjects reported unpleasantness with light stimulation (average: 70.8 ± 32.0). Four to six weeks after BoNT-A injection, unpleasantness scores decreased (48.1 ± 33.6), but the change was not significant. On an individual level, 50% of subjects had decreased unpleasantness ratings in response to light stimulation compared to baseline ("responders," n = 6), while 50% had equivalent (n = 3) or increased (n = 3) unpleasantness ("non-responders"). At baseline, several differences were noted between responders and non-responders; responders had higher baseline unpleasantness ratings to light, higher symptoms of depression, and more frequent use of antidepressants and anxiolytics, compared to non-responders. Group analysis at baseline displayed light-evoked BOLD responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral anterior insula, paracingulate gyrus, midcingulate cortex (MCC), bilateral frontal pole, bilateral cerebellar hemispheric lobule VI, vermis, bilateral cerebellar crus I and II, and visual cortices. BoNT-A injections significantly decreased light evoked BOLD responses in bilateral S1, S2 cortices, cerebellar hemispheric lobule VI, cerebellar crus I, and left cerebellar crus II. BoNT-A responders displayed activation of the spinal trigeminal nucleus at baseline where non-responders did not. Discussion BoNT-A injections modulate light-evoked activation of pain-related brain systems and photophobia symptoms in some individuals with chronic ocular pain. These effects are associated with decreased activation in areas responsible for processing the sensory-discriminative, affective, dimensions, and motor responses to pain.
Collapse
Affiliation(s)
- Nicholas Reyes
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Jaxon J. Huang
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Anjalee Choudhury
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Nicholas Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elyana V. Locatelli
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Elizabeth R. Felix
- Research Service, Miami Veterans Administration Medical Center, Miami, FL, United States
- Physical Medicine and Rehabilitation, University of Miami, Miami, FL, United States
| | - Pradip M. Pattany
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Anat Galor
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Eric A. Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Chaikla R, Sremakaew M, Kothan S, Saekho S, Wantanajittikul K, Uthaikhup S. Effects of manual therapy combined with therapeutic exercise versus routine physical therapy on brain biomarkers in patients with chronic non-specific neck pain in Thailand: a study protocol for a single-blinded randomised controlled trial. BMJ Open 2023; 13:e072624. [PMID: 37094892 PMCID: PMC10151953 DOI: 10.1136/bmjopen-2023-072624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
INTRODUCTION Structural brain alterations in pain-related areas have been demonstrated in patients with non-specific neck pain. While manual therapy combined with therapeutic exercise is an effective management for neck pain, its underlying mechanisms are poorly understood. The primary objective of this trial is to investigate the effects of manual therapy combined with therapeutic exercise on grey matter volume and thickness in patients with chronic non-specific neck pain. The secondary objectives are to assess changes in white matter integrity, neurochemical biomarkers, clinical features of neck pain, cervical range of motion and cervical muscle strength. METHODS AND ANALYSIS This study is a single-blinded, randomised controlled trial. Fifty-two participants with chronic non-specific neck pain will be recruited into the study. Participants will be randomly allocated to either an intervention or control group (1:1 ratio). Participants in the intervention group will receive manual therapy combined with therapeutic exercise for 10 weeks (two visits per week). The control group will receive routine physical therapy. Primary outcomes are whole-brain and regional grey matter volume and thickness. Secondary outcomes are white matter integrity (fractional anisotropy and mean diffusivity), neurochemical biomarkers (N-acetylaspartate, creatine, glutamate/glutamine, myoinositol and choline), clinical features (neck pain intensity, duration, neck disability and psychological symptoms), cervical range of motion and cervical muscle strength. All outcome measures will be taken at baseline and postintervention. ETHICS AND DISSEMINATION Ethical approval of this study has been granted by Faculty of Associated Medical Science, Chiang Mai University. The results of this trial will be disseminated through a peer-reviewed publication. TRIAL REGISTRATION NUMBER NCT05568394.
Collapse
Affiliation(s)
- Rungtawan Chaikla
- Department of Physical Therapy, Chiang Mai University, Chiang Mai, Thailand
| | - Munlika Sremakaew
- Department of Physical Therapy, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Suwit Saekho
- Department of Radiologic Technology, Chiang Mai University, Chiang Mai, Thailand
| | | | - S Uthaikhup
- Department of Physical Therapy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Kang B, Zhao C, Ma J, Wang H, Gu X, Xu H, Zhong S, Gao C, Xu X, A X, Xie J, Du M, Shen J, Xiao L. Electroacupuncture alleviates pain after total knee arthroplasty through regulating neuroplasticity: A resting-state functional magnetic resonance imaging study. Brain Behav 2023; 13:e2913. [PMID: 36749304 PMCID: PMC10013951 DOI: 10.1002/brb3.2913] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION We aimed to evaluate the efficacy of electroacupuncture in relieving acute pain after total knee arthroplasty (TKA) and related mechanism. METHODS In this randomized, single-blind, and sham-acupuncture controlled study. Forty patients with postoperative acute pain were recruited and randomly divided electroacupuncture group (n = 20) and sham-acupuncture group (n = 20) from November 2020 to October 2021. All patients received electroacupuncture or sham-acupuncture for 5 days after TKA. Their brain regions were scanned with resting-state functional magnetic resonance imaging before and after intervention. Pain was scaled. Another 40 matched healthy controls underwent scanning once. The amplitude of low-frequency fluctuation (ALFF) values was compared. Pearson's correlation analysis was utilized to explore the correlation of ALFF with clinical variables in patients after intervention. RESULTS Compared with the HCs, patients with acute pain following TKA had significantly decreased ALFF value in right middle frontal gyrus, right supplementary motor area, bilateral precuneus, right calcarine fissure and surrounding cortex, and left triangular part of inferior frontal gyrus (false discovery rate corrected p < .05). Patients had higher ALFF value in bilateral precuneus, right cuneus, right angular gyrus, bilateral middle occipital gyrus, and left middle temporal gyrus after electroacupuncture (AlphaSim corrected p < .01). Correlation analysis revealed that the change (postoperative day 7 to postoperative day 3) of ALFF in bilateral precuneus were negatively correlated with the change of NRS scores (r = -0.706; p = .002; 95% CI = -0.890 to -0.323) in EA group. CONCLUSIONS The functional activities of related brain regions decreased in patients with acute pain after TKA. The enhancement of the functional activity of precuneus may be the neurobiological mechanism of electroacupuncture in treating pain following TKA.
Collapse
Affiliation(s)
- Bingxin Kang
- Department of Rehabilitation centersThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouChina
| | - Chi Zhao
- Acupuncture Tuina InstituteHenan University of Chinese MedicineZhengzhouChina
| | - Jie Ma
- Center of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haiqi Wang
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Xiaoli Gu
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Hui Xu
- Acupuncture Tuina InstituteHenan University of Chinese MedicineZhengzhouChina
| | - Sheng Zhong
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Chenxin Gao
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Xirui Xu
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Xinyu A
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Jun Xie
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
| | - Mengmeng Du
- Department of Rehabilitation centersThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouChina
- Depart of Peripheral vascularThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouChina
| | - Jun Shen
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
- Arthritis Institute of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lianbo Xiao
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrative Chinese and Western MedicineShanghaiChina
- Arthritis Institute of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
8
|
Mechanisms behind the Development of Chronic Low Back Pain and Its Neurodegenerative Features. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010084. [PMID: 36676033 PMCID: PMC9862392 DOI: 10.3390/life13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Chronic back pain is complex and there is no guarantee that treating its potential causes will cause the pain to go away. Therefore, rather than attempting to "cure" chronic pain, many clinicians, caregivers and researchers aim to help educate patients about their pain and try to help them live a better quality of life despite their condition. A systematic review has demonstrated that patient education has a large effect on pain and pain related disability when done in conjunction with treatments. Therefore, understanding and updating our current state of knowledge of the pathophysiology of back pain is important in educating patients as well as guiding the development of novel therapeutics. Growing evidence suggests that back pain causes morphological changes in the central nervous system and that these changes have significant overlap with those seen in common neurodegenerative disorders. These similarities in mechanisms may explain the associations between chronic low back pain and cognitive decline and brain fog. The neurodegenerative underpinnings of chronic low back pain demonstrate a new layer of understanding for this condition, which may help inspire new strategies in pain education and management, as well as potentially improve current treatment.
Collapse
|
9
|
Salihu AT, Hill KD, Jaberzadeh S. Neural mechanisms underlying state mental fatigue: a systematic review and activation likelihood estimation meta-analysis. Rev Neurosci 2022; 33:889-917. [PMID: 35700454 DOI: 10.1515/revneuro-2022-0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
Sustained performance of cognitive tasks could lead to the development of state mental fatigue characterized by subjective sensation of mental weariness and decrease in cognitive performance. In addition to the occupational hazards associated with mental fatigue, it can also affect physical performance reducing endurance, balance, and sport-specific technical skills. Similarly, mental fatigue is a common symptom in certain chronic health conditions such as multiple sclerosis affecting quality of life of the patients. Despite its widely acknowledged negative impact, the neural mechanisms underlining this phenomenon are still not fully understood. We conducted a systematic review and activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies investigating the effect of mental fatigue due to time-on-task (TOT) on brain activity to elucidate the possible underlying mechanisms. Studies were included if they examined change in brain activity induced by experimental mental fatigue (TOT effect) or investigated the relationship between brain activity and subjective mental fatigue due to TOT. A total of 33 studies met the review's inclusion criteria, 13 of which were included in meta-analyses. Results of the meta-analyses revealed a decrease in activity with TOT in brain areas that constitute the cognitive control network. Additionally, an increased activity with TOT, as well as negative relationship with subjective mental fatigue was found in parts of the default mode network of the brain. The changes in cognitive control and the default mode networks of the brain due to state mental fatigue observed in this study were discussed in relation to the existing theories of mental fatigue.
Collapse
Affiliation(s)
- Abubakar Tijjani Salihu
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Keith D Hill
- Rehabilitation, Ageing and Independent Living (RAIL) Research Centre, School of Primary and Allied Health Care, Monash University, Frankston, Australia
| | - Shapour Jaberzadeh
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Fontanillas P, Kless A, Bothmer J, Tung JY. Genome-wide association study of pain sensitivity assessed by questionnaire and the cold pressor test. Pain 2022; 163:1763-1776. [PMID: 34924555 PMCID: PMC9393798 DOI: 10.1097/j.pain.0000000000002568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT We deployed an online pain sensitivity questionnaire (PSQ) and an at-home version of the cold pressor test (CPT) in a large genotyped cohort. We performed genome-wide association studies on the PSQ score (25,321 participants) and CPT duration (6853). We identified one new genome-wide significant locus associated with the PSQ score, which was located in the TSSC1 (also known as EIPR1 ) gene (rs58194899, OR = 0.950 [0.933-0.967], P -value = 1.9 × 10 -8 ). Although high pain sensitivity measured by both PSQ and CPT was associated with individual history of chronic and acute pains, genetic correlation analyses surprisingly suggested an opposite direction: PSQ score was inversely genetically correlated with neck and shoulder pain ( rg = -0.71), rheumatoid arthritis (-0.68), and osteoarthritis (-0.38), and with known risk factors, such as the length of working week (-0.65), smoking (-0.36), or extreme BMI (-0.23). Gene-based analysis followed by pathway analysis showed that genome-wide association studies results were enriched for genes expressed in the brain and involved in neuronal development and glutamatergic synapse signaling pathways. Finally, we confirmed that females with red hair were more sensitive to pain and found that genetic variation in the MC1R gene was associated with an increase in self-perceived pain sensitivity as assessed by the PSQ.
Collapse
Affiliation(s)
| | - Achim Kless
- Grünenthal Innovation, Grünenthal GmbH, Aachen, Germany. Kless is now with the Neuroscience Genetics, Eli Lilly and Company, United Kingdom
| | | | - John Bothmer
- Grünenthal Innovation, Grünenthal GmbH, Aachen, Germany. Kless is now with the Neuroscience Genetics, Eli Lilly and Company, United Kingdom
| | | |
Collapse
|
11
|
Zhao R, Su Q, Song Y, Yang Q, Wang S, Zhang J, Qin W, Yu C, Liang M. Brain-activation-based individual identification reveals individually unique activation patterns elicited by pain and touch. Neuroimage 2022; 260:119436. [PMID: 35788043 DOI: 10.1016/j.neuroimage.2022.119436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
Pain is subjective and perceived differently in different people. However, individual differences in pain-elicited brain activations are largely overlooked and often discarded as noises. Here, we used a brain-activation-based individual identification procedure to investigate the uniqueness of the activation patterns within the whole brain or brain regions elicited by nociceptive (laser) and tactile (electrical) stimuli in each of 62 healthy participants. Specifically, brain activation patterns were used as "fingerprints" to identify each individual participant within and across sensory modalities, and individual identification accuracy was calculated to measure each individual's identifiability. We found that individual participants could be successfully identified using their brain activation patterns elicited by nociceptive stimuli, tactile stimuli, or even across modalities. However, different participants had different identifiability; importantly, the within-pain, but not within-touch or cross-modality, individual identifiability obtained from three brain regions (i.e., the left superior frontal gyrus, the middle temporal gyrus and the insular gyrus) were inversely correlated with the scores of Pain Vigilance and Awareness Questionnaire (i.e., how a person is alerted to pain) across participants. These results suggest that each individual has a unique pattern of brain responses to nociceptive stimuli which contains both modality-nonspecific and pain-specific information and may be associated with pain-related behaviors shaped by his/her own personal experiences and highlight the importance of a transition from group-level to individual-level characterization of brain activity in neuroimaging studies.
Collapse
Affiliation(s)
- Rui Zhao
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China; Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - YingChao Song
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - QingQing Yang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China; Department of Radiology, Zhejiang University School of Medicine First Affiliated Hospital, Zhejiang 310009, China
| | - Sijia Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Juan Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Chae Y, Park HJ, Lee IS. Pain modalities in the body and brain: Current knowledge and future perspectives. Neurosci Biobehav Rev 2022; 139:104744. [PMID: 35716877 DOI: 10.1016/j.neubiorev.2022.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Development and validation of pain biomarkers has become a major issue in pain research. Recent advances in multimodal data acquisition have allowed researchers to gather multivariate and multilevel whole-body measurements in patients with pain conditions, and data analysis techniques such as machine learning have led to novel findings in neural biomarkers for pain. Most studies have focused on the development of a biomarker to predict the severity of pain with high precision and high specificity, however, a similar approach to discriminate different modalities of pain is lacking. Identification of more accurate and specific pain biomarkers will require an in-depth understanding of the modality specificity of pain. In this review, we summarize early and recent findings on the modality specificity of pain in the brain, with a focus on distinct neural activity patterns between chronic clinical and acute experimental pain, direct, social, and vicarious pain, and somatic and visceral pain. We also suggest future directions to improve our current strategy of pain management using our knowledge of modality-specific aspects of pain.
Collapse
Affiliation(s)
- Younbyoung Chae
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
13
|
Nüssel M, Zhao Y, Knorr C, Regensburger M, Stadlbauer A, Buchfelder M, Del Vecchio A, Kinfe T. Deep Brain Stimulation, Stereotactic Radiosurgery and High-Intensity Focused Ultrasound Targeting the Limbic Pain Matrix: A Comprehensive Review. Pain Ther 2022; 11:459-476. [PMID: 35471626 PMCID: PMC9098763 DOI: 10.1007/s40122-022-00381-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022] Open
Abstract
Chronic pain (CP) represents a socio-economic burden for affected patients along with therapeutic challenges for currently available therapies. When conventional therapies fail, modulation of the affective pain matrix using reversible deep brain stimulation (DBS) or targeted irreversible thalamotomy by stereotactic radiosurgery (SRS) and magnetic resonance (MR)-guided focused ultrasound (MRgFUS) appear to be considerable treatment options. We performed a literature search for clinical trials targeting the affective pain circuits (thalamus, anterior cingulate cortex [ACC], ventral striatum [VS]/internal capsule [IC]). PubMed, Ovid, MEDLINE and Scopus were searched (1990-2021) using the terms "chronic pain", "deep brain stimulation", "stereotactic radiosurgery", "radioneuromodulation", "MR-guided focused ultrasound", "affective pain modulation", "pain attention". In patients with CP treated with DBS, SRS or MRgFUS the somatosensory thalamus and periventricular/periaquaeductal grey was the target of choice in most treated subjects, while affective pain transmission was targeted in a considerably lower number (DBS, SRS) consisting of the following nodi of the limbic pain matrix: the anterior cingulate cortex; centromedian-parafascicularis of the thalamus, pars posterior of the central lateral nucleus and internal capsule/ventral striatum. Although DBS, SRS and MRgFUS promoted a meaningful and sustained pain relief, an effective, evidence-based comparative analysis is biased by heterogeneity of the observation period varying between 3 months and 5 years with different stimulation patterns (monopolar/bipolar contact configuration; frequency 10-130 Hz; intensity 0.8-5 V; amplitude 90-330 μs), source and occurrence of lesioning (radiation versus ultrasound) and chronic pain ethology (poststroke pain, plexus injury, facial pain, phantom limb pain, back pain). The advancement of neurotherapeutics (MRgFUS) and novel DBS targets (ACC, IC/VS), along with established and effective stereotactic therapies (DBS-SRS), increases therapeutic options to impact CP by modulating affective, pain-attentional neural transmission. Differences in trial concept, outcome measures, targets and applied technique promote conflicting findings and limited evidence. Hence, we advocate to raise awareness of the potential therapeutic usefulness of each approach covering their advantages and disadvantages, including such parameters as invasiveness, risk-benefit ratio, reversibility and responsiveness.
Collapse
Affiliation(s)
- Martin Nüssel
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Yining Zhao
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Constantin Knorr
- Medical Faculty, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Molecular Neurology, Department of Neurology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Stadlbauer
- Institute of Medical Radiology, University Clinic St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
14
|
Zhang YN, Xing XX, Chen L, Dong X, Pan HT, Hua XY, Wang K. Brain Functional Alteration at Different Stages of Neuropathic Pain With Allodynia and Emotional Disorders. Front Neurol 2022; 13:843815. [PMID: 35585842 PMCID: PMC9108233 DOI: 10.3389/fneur.2022.843815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NeuP), a challenging medical condition, has been suggested by neuroimaging studies to be associated with abnormalities of neural activities in some brain regions. However, aberrancies in brain functional alterations underlying the sensory-discriminative abnormalities and negative emotions in the setting of NeuP remain unexplored. Here, we aimed to investigate the functional alterations in neural activity relevant to pain as well as pain-related depressive-like and anxiety-like behaviors in NeuP by combining amplitude of low frequency fluctuation (ALFF) and degree centrality (DC) analyses methods based on resting-state functional magnetic resonance imaging (rs-fMRI). A rat model of NeuP was established via chronic constriction injury (CCI) of the sciatic nerve. Results revealed that the robust mechanical allodynia occurred early and persisted throughout the entire observational period. Depressive and anxiety-like behaviors did not appear until 4 weeks after injury. When the maximum allodynia was apparent early, CCI rats exhibited decreased ALFF and DC values in the left somatosensory and nucleus accumbens shell (ACbSh), respectively, as compared with sham rats. Both values were significantly positively correlated with mechanical withdrawal thresholds (MWT). At 4 weeks post-CCI, negative emotional states were apparent and CCI rats were noted to exhibit increased ALFF values in the left somatosensory and medial prefrontal cortex (mPFC) as well as increased DC values in the right motor cortex, as compared with sham rats. At 4 weeks post-CCI, ALFF values in the left somatosensory cortex and DC values in the right motor cortex were noted to negatively correlate with MWT and exhibition of anxiety-like behavior on an open-field test (OFT); values were found to positively correlate with the exhibition of depressive-like behavior on forced swimming test (FST). The mPFC ALFF values were found to negatively correlate with the exhibition of anxiety-like behavior on OFT and positively correlate with the exhibition of depressive-like behavior on FST. Our findings detail characteristic alterations of neural activity patterns induced by chronic NeuP and underscore the important role of the left somatosensory cortex, as well as its related networks, in the mediation of subsequent emotional dysregulation due to NeuP.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Liu Chen
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Dong
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao-Tian Pan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China,Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Xu-Yun Hua
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Ke Wang
| |
Collapse
|
15
|
Image Features of Resting-State Functional Magnetic Resonance Imaging in Evaluating Poor Emotion and Sleep Quality in Patients with Chronic Pain under Artificial Intelligence Algorithm. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5002754. [PMID: 35069042 PMCID: PMC8752300 DOI: 10.1155/2022/5002754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/27/2023]
Abstract
The balanced iterative reducing and clustering using hierarchies (BIRCH) method was adopted to optimize the results of the resting-state functional magnetic resonance imaging (RS-fMRI) to analyze the changes in the brain function of patients with chronic pain accompanied by poor emotion or abnormal sleep quality in this study, so as to provide data support for the prevention and treatment of clinical chronic pain with poor emotion or sleep quality. 159 patients with chronic pain who visited the hospital were selected as the research objects, and they were grouped according to the presence or absence of abnormalities in emotion and sleep. The patients without poor emotion and sleep quality were set as the control group (60 cases), and the patients with the above symptoms were defined in the observation group (90 cases). The brain function was detected by RS-fMRI technology based on the BIRCH algorithm. The results showed that the rand index (RI), adjustment of RI (ARI), and Fowlkes–Mallows index (FMI) results in the k-means, flow cytometry (FCM), and BIRCH algorithms were 0.82, 0.71, and 0.88, respectively. The scores of Hamilton Depression Scale (HAHD), Hamilton Anxiety Scale (HAMA), and Pittsburgh Sleep Quality Index (PSQI) were 7.26 ± 3.95, 7.94 ± 3.15, and 8.03 ± 4.67 in the observation group and 4.03 ± 1.95, 5.13 ± 2.35, and 4.43 ± 2.07 in the control group; the higher proportion of RS-fMRI was with abnormal brain signal connections. A score of 7 or more meant that the number of brain abnormalities was more than 90% and that of less than 7 was less than 40%, showing a statistically obvious difference in contrast (P < 0.05). Therefore, the BIRCH clustering algorithm showed reliable value in the optimization of RS-fMRI images, and RS-fMRI showed high application value in evaluating the emotion and sleep quality of patients with chronic pain.
Collapse
|
16
|
Broessner G, Ellerbrock I, Menz MM, Frank F, Verius M, Gaser C, May A. Repetitive T1 Imaging Influences Gray Matter Volume Estimations in Structural Brain Imaging. Front Neurol 2021; 12:755749. [PMID: 34777226 PMCID: PMC8581175 DOI: 10.3389/fneur.2021.755749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Voxel-based morphometry (VBM) is a widely used tool for studying structural patterns of brain plasticity, brain development and disease. The source of the T1-signal changes is not understood. Most of these changes are discussed to represent loss or possibly gain of brain gray matter and recent publications speculate also about non-structural changes affecting T1-signal. We investigated the potential of pain stimulation to ultra-short-term alter gray matter signal changes in pain relevant brain regions in healthy volunteers using a longitudinal design. Immediately following regional nociceptive input, we detected significant gray matter volume (GMV) changes in central pain processing areas, i.e. anterior cingulate and insula cortex. However, similar results were observed in a control group using the identical time intervals but without nociceptive painful input. These GMV changes could be reproduced in almost 100 scanning sessions enrolling 72 healthy individuals comprising repetitive magnetization-prepared rapid gradient-echo (MPRAGE) sequences. These data suggest that short-term longitudinal repetitive MPRAGE may produce significant GMV changes without any intervention. Future studies investigating brain plasticity should focus and specifically report a consistent timing at which time-point during the experiment the T1-weighted scan is conducted. There is a necessity of a control group for longitudinal imaging studies.
Collapse
Affiliation(s)
- Gregor Broessner
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Ellerbrock
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Frank
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Verius
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Gaser
- Departments of Neurology and Psychiatry, Jena University Hospital, Jena, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|