1
|
Martinez ME, Karaczyn A, Wu Z, Bennett CA, Matoin KL, Daigle HM, Hernandez A. Transgenerational epigenetic self-memory of Dio3 dosage is associated with Meg3 methylation and altered growth trajectories and neonatal hormones. Epigenetics 2024; 19:2376948. [PMID: 38991122 PMCID: PMC11244338 DOI: 10.1080/15592294.2024.2376948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Intergenerational and transgenerational epigenetic effects resulting from conditions in previous generations can contribute to environmental adaptation as well as disease susceptibility. Previous studies in rodent and human models have shown that abnormal developmental exposure to thyroid hormone affects endocrine function and thyroid hormone sensitivity in later generations. Since the imprinted type 3 deiodinase gene (Dio3) regulates sensitivity to thyroid hormones, we hypothesize its epigenetic regulation is altered in descendants of thyroid hormone overexposed individuals. Using DIO3-deficient mice as a model of developmental thyrotoxicosis, we investigated Dio3 total and allelic expression and growth and endocrine phenotypes in descendants. We observed that male and female developmental overexposure to thyroid hormone altered total and allelic Dio3 expression in genetically intact descendants in a tissue-specific manner. This was associated with abnormal growth and neonatal levels of thyroid hormone and leptin. Descendant mice also exhibited molecular abnormalities in the Dlk1-Dio3 imprinted domain, including increased methylation in Meg3 and altered foetal brain expression of other genes of the Dlk1-Dio3 imprinted domain. These molecular abnormalities were also observed in the tissues and germ line of DIO3-deficient ancestors originally overexposed to thyroid hormone in utero. Our results provide a novel paradigm of epigenetic self-memory by which Dio3 gene dosage in a given individual, and its dependent developmental exposure to thyroid hormone, influences its own expression in future generations. This mechanism of epigenetic self-correction of Dio3 expression in each generation may be instrumental in descendants for their adaptive programming of developmental growth and adult endocrine function.
Collapse
Affiliation(s)
- M. Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Aldona Karaczyn
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Zhaofei Wu
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Christian A. Bennett
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Kassey L. Matoin
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Heather M. Daigle
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Graceffo E, Opitz R, Megges M, Krude H, Schuelke M. RNA Sequencing Reveals a Strong Predominance of THRA Splicing Isoform 2 in the Developing and Adult Human Brain. Int J Mol Sci 2024; 25:9883. [PMID: 39337374 PMCID: PMC11432079 DOI: 10.3390/ijms25189883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Thyroid hormone receptor alpha (THRα) is a nuclear hormone receptor that binds triiodothyronine (T3) and acts as an important transcription factor in development, metabolism, and reproduction. In mammals, THRα has two major splicing isoforms, THRα1 and THRα2. The better-characterized isoform, THRα1, is a transcriptional stimulator of genes involved in cell metabolism and growth. The less-well-characterized isoform, THRα2, lacks the ligand-binding domain (LBD) and is thought to act as an inhibitor of THRα1 activity. The ratio of THRα1 to THRα2 splicing isoforms is therefore critical for transcriptional regulation in different tissues and during development. However, the expression patterns of both isoforms have not been studied in healthy human tissues or in the developing brain. Given the lack of commercially available isoform-specific antibodies, we addressed this question by analyzing four bulk RNA-sequencing datasets and two scRNA-sequencing datasets to determine the RNA expression levels of human THRA1 and THRA2 transcripts in healthy adult tissues and in the developing brain. We demonstrate how 10X Chromium scRNA-seq datasets can be used to perform splicing-sensitive analyses of isoforms that differ at the 3'-end. In all datasets, we found a strong predominance of THRA2 transcripts at all examined stages of human brain development and in the central nervous system of healthy human adults.
Collapse
Affiliation(s)
- Eugenio Graceffo
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neuropediatrics, 13353 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Robert Opitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, 13353 Berlin, Germany; (R.O.); (H.K.)
| | - Matthias Megges
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Pediatric Endocrinology, 13353 Berlin, Germany;
| | - Heiko Krude
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, 13353 Berlin, Germany; (R.O.); (H.K.)
| | - Markus Schuelke
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neuropediatrics, 13353 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neurocure Clinical Research Center, 10117 Berlin, Germany
| |
Collapse
|
3
|
Liu Y, Ng L, Liu H, Heuer H, Forrest D. Cone photoreceptor differentiation regulated by thyroid hormone transporter MCT8 in the retinal pigment epithelium. Proc Natl Acad Sci U S A 2024; 121:e2402560121. [PMID: 39018199 PMCID: PMC11287251 DOI: 10.1073/pnas.2402560121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
The key role of a thyroid hormone receptor in determining the maturation and diversity of cone photoreceptors reflects a profound influence of endocrine signaling on the cells that mediate color vision. However, the route by which hormone reaches cones remains enigmatic as cones reside in the retinal photoreceptor layer, shielded by the blood-retina barrier. Using genetic approaches, we report that cone differentiation is regulated by a membrane transporter for thyroid hormone, MCT8 (SLC16A2), in the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier. Mct8-deficient mice display hypothyroid-like cone gene expression and compromised electroretinogram responses. Mammalian color vision is typically facilitated by cone types that detect medium-long (M) and short (S) wavelengths of light but Mct8-deficient mice have a partial shift of M to S cone identity, resembling the phenotype of thyroid hormone receptor deficiency. RPE-specific ablation of Mct8 results in similar shifts in cone identity and hypothyroid-like gene expression whereas reexpression of MCT8 in the RPE in Mct8-deficient mice partly restores M cone identity, consistent with paracrine-like control of thyroid hormone signaling by the RPE. Our findings suggest that in addition to transport of essential solutes and homeostatic support for photoreceptors, the RPE regulates the thyroid hormone signal that promotes cone-mediated vision.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen45147, Germany
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
4
|
Valcárcel-Hernández V, Mayerl S, Guadaño-Ferraz A, Remaud S. Thyroid hormone action in adult neurogliogenic niches: the known and unknown. Front Endocrinol (Lausanne) 2024; 15:1347802. [PMID: 38516412 PMCID: PMC10954857 DOI: 10.3389/fendo.2024.1347802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.
Collapse
Affiliation(s)
- Victor Valcárcel-Hernández
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
5
|
Alcaide Martin A, Mayerl S. Local Thyroid Hormone Action in Brain Development. Int J Mol Sci 2023; 24:12352. [PMID: 37569727 PMCID: PMC10418487 DOI: 10.3390/ijms241512352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Proper brain development essentially depends on the timed availability of sufficient amounts of thyroid hormone (TH). This, in turn, necessitates a tightly regulated expression of TH signaling components such as TH transporters, deiodinases, and TH receptors in a brain region- and cell-specific manner from early developmental stages onwards. Abnormal TH levels during critical stages, as well as mutations in TH signaling components that alter the global and/or local thyroidal state, result in detrimental consequences for brain development and neurological functions that involve alterations in central neurotransmitter systems. Thus, the question as to how TH signaling is implicated in the development and maturation of different neurotransmitter and neuromodulator systems has gained increasing attention. In this review, we first summarize the current knowledge on the regulation of TH signaling components during brain development. We then present recent advances in our understanding on how altered TH signaling compromises the development of cortical glutamatergic neurons, inhibitory GABAergic interneurons, cholinergic and dopaminergic neurons. Thereby, we highlight novel mechanistic insights and point out open questions in this evolving research field.
Collapse
Affiliation(s)
| | - Steffen Mayerl
- Department of Endocrinology Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
6
|
Martinez ME, Wu Z, Hernandez A. Paternal developmental thyrotoxicosis disrupts neonatal leptin leading to increased adiposity and altered physiology of the melanocortin system. Front Endocrinol (Lausanne) 2023; 14:1210414. [PMID: 37560296 PMCID: PMC10407661 DOI: 10.3389/fendo.2023.1210414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background The genetic code does not fully explain individual variability and inheritance of susceptibility to endocrine conditions, suggesting the contribution of epigenetic factors acting across generations. Methods We used a mouse model of developmental thyrotoxicosis (Dio3-/- mouse) to analyze endocrine outcomes in the adult offspring of Dio3-/- males using standard methods for body composition, and baseline and fasting hormonal and gene expression determinations in serum and tissues of relevance to the control of energy balance. Results Compared to controls, adult females with an exposed father (EF females) exhibited higher body weight and fat mass, but not lean mass, a phenotype that was much milder in EF males. After fasting, both EF females and males exhibited a more pronounced decrease in body weight than controls. EF females also showed markedly elevated serum leptin, increased white adipose tissue mRNA expression of leptin and mesoderm-specific transcript but decreased expression of type 2 deiodinase. EF females exhibited decreased serum ghrelin, which showed more pronounced post-fasting changes in EF females than in control females. EF female hypothalami also revealed significant decreases in the expression of pro-opiomelanocortin, agouti-related peptide, neuropeptide Y and melanocortin receptor 4. These markers also showed larger changes in response to fasting in EF females than in control females. Adult EF females showed no abnormalities in serum thyroid hormones, but pituitary expression of thyrotropin-releasing hormone receptor 1 and thyroid gland expression of thyroid-stimulating hormone receptor, thyroid peroxidase and iodotyrosine deiodinase were increased at baseline and showed differential regulation after fasting, with no increase in Trhr1 expression and more pronounced reductions in Tshr, Tpo and Iyd. In EF males, these abnormalities were generally milder. In addition, postnatal day 14 (P14) serum leptin was markedly reduced in EF pups. Discussion A paternal excess of thyroid hormone during development modifies the endocrine programming and energy balance in the offspring in a sexually dimorphic manner, with baseline and dynamic range alterations in the leptin-melanocortin system and thyroid gland, and consequences for adiposity phenotypes. We conclude that thyroid hormone overexposure may have important implications for the non-genetic, inherited etiology of endocrine and metabolic pathologies.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Zhaofei Wu
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Han Z, Chen L, Peng H, Zheng H, Lin Y, Peng F, Fan Y, Xie X, Yang S, Wang Z, Yuan L, Wei X, Chen H. The role of thyroid hormone in the renal immune microenvironment. Int Immunopharmacol 2023; 119:110172. [PMID: 37086678 DOI: 10.1016/j.intimp.2023.110172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Thyroid hormones are essential for proper kidney growth and development. The kidney is not only the organ of thyroid hormone metabolism but also the target organ of thyroid hormone. Kidney disease is a common type of kidney damage, mainly including different types of acute kidney injury, chronic kidney disease, diabetic nephropathy, lupus nephritis, and renal cell carcinoma. The kidney is often damaged by an immune response directed against its antigens or a systemic immune response. A variety of immune cells in the innate and adaptive immune systems, including neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes, is essential for maintaining immune homeostasis and preventing autoimmune kidney disease. Recent studies have found that thyroid hormone plays an indispensable role in the immune microenvironment of various kidney diseases. Thyroid hormones regulate the activity of neutrophils, and dendritic cells express triiodothyronine receptors. Compared to hypothyroidism, hyperthyroidism has a greater effect on neutrophils. Furthermore, in adaptive immune systems, thyroid hormone may activate T lymphocytes through several underlying mechanisms, such as mediating NF-κB, protein kinase C signalling pathways, and β-adrenergic receptors, leading to increased T lymphocyte activation. The present review discusses the effects of thyroid hormone metabolism regulation in the immune microenvironment on the function of various immune cells, especially neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes. Although there are not enough data at this stage to conclude the clinical relevance of these findings, thyroid hormone metabolism may influence autoimmune kidney disease by regulating the renal immune microenvironment.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyao Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuli Xie
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Simin Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuyan Wei
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | | |
Collapse
|
8
|
Valcárcel-Hernández V, Guillén-Yunta M, Scanlan TS, Bárez-López S, Guadaño-Ferraz A. Maternal Administration of the CNS-Selective Sobetirome Prodrug Sob-AM2 Exerts Thyromimetic Effects in Murine MCT8-Deficient Fetuses. Thyroid 2023; 33:632-640. [PMID: 36792926 PMCID: PMC10171952 DOI: 10.1089/thy.2022.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background: Monocarboxylate transporter 8 (MCT8) deficiency is a rare X-linked disease where patients exhibit peripheral hyperthyroidism and cerebral hypothyroidism, which results in severe neurological impairments. These brain defects arise from a lack of thyroid hormones (TH) during critical stages of human brain development. Treatment options for MCT8-deficient patients are limited and none have been able to prevent or ameliorate effectively the neurological impairments. This study explored the effects of the TH agonist sobetirome and its CNS-selective amide prodrug, Sob-AM2, in the treatment of pregnant dams carrying fetuses lacking Mct8 and deiodinase type 2 (Mct8/Dio2 KO), as a murine model for MCT8 deficiency. Methods: Pregnant dams carrying Mct8/Dio2 KO fetuses were treated with 1 mg of sobetirome/kg body weight/day, or 0.3 mg of Sob-AM2/kg body weight/day for 7 days, starting at embryonic day 12.5 (E12.5). As controls, pregnant dams carrying wild-type and pregnant dams carrying Mct8/Dio2 KO fetuses were treated with daily subcutaneous injections of vehicle. Dams TH levels were measured by enzyme-linked immunosorbent assay (ELISA). Samples were extracted at E18.5 and the effect of treatments on the expression of triiodothyronine (T3)-dependent genes was measured in the placenta, fetal liver, and fetal cerebral cortex by real-time polymerase chain reaction. Results: Maternal sobetirome treatment led to spontaneous abortions. Sob-AM2 treatment, however, was able to cross the placental as well as the brain barriers and exert thyromimetic effects in Mct8/Dio2 KO fetal tissues. Sob-AM2 treatment did not affect the expression of the T3-target genes analyzed in the placenta, but it mediated thyromimetic effects in the fetal liver by increasing the expression of Dio1 and Dio3 genes. Interestingly, Sob-AM2 treatment increased the expression of several T3-dependent genes in the brain such as Hr, Shh, Dio3, Kcnj10, Klf9, and Faah in Mct8/Dio2 KO fetuses. Conclusions: Maternal administration of Sob-AM2 can cross the placental barrier and access the fetal tissues, including the brain, in the absence of MCT8, to exert thyromimetic actions by modulating the expression of T3-dependent genes. Therefore, Sob-AM2 has the potential to address the cerebral hypothyroidism characteristic of MCT8 deficiency from fetal stages and to prevent neurodevelopmental alterations in the MCT8-deficient fetal brain.
Collapse
Affiliation(s)
- Víctor Valcárcel-Hernández
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marina Guillén-Yunta
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Thomas S Scanlan
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Soledad Bárez-López
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
9
|
Martinez ME, Pinz I, Preda M, Norton CR, Gridley T, Hernandez A. DIO3 protects against thyrotoxicosis-derived cranio-encephalic and cardiac congenital abnormalities. JCI Insight 2022; 7:e161214. [PMID: 36166296 PMCID: PMC9675556 DOI: 10.1172/jci.insight.161214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Maternal hyperthyroidism is associated with an increased incidence of congenital abnormalities at birth, but it is not clear which of these defects arise from a transient developmental excess of thyroid hormone and which depend on pregnancy stage, antithyroid drug choice, or unwanted subsequent fetal hypothyroidism. To address this issue, we studied a mouse model of comprehensive developmental thyrotoxicosis secondary to a lack of type 3 deiodinase (DIO3). Dio3-/- mice exhibited reduced neonatal viability on most genetic backgrounds and perinatal lethality on a C57BL/6 background. Dio3-/- mice exhibited severe growth retardation during the neonatal period and cartilage loss. Mice surviving after birth manifested brain and cranial dysmorphisms, severe hydrocephalus, choanal atresia, and cleft palate. These abnormalities were noticeable in C57BL/6J Dio3-/- mice at fetal stages, in addition to a thyrotoxic heart with septal defects and thin ventricular walls. Our findings stress the protecting role of DIO3 during development and support the hypothesis that human congenital abnormalities associated with hyperthyroidism during pregnancy are caused by transient thyrotoxicosis before clinical intervention. Our results also suggest thyroid hormone involvement in the etiology of idiopathic pathologies including cleft palate, choanal atresia, Chiari malformations, Kaschin-Beck disease, and Temple and other cranio-encephalic and heart syndromes.
Collapse
Affiliation(s)
- M. Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Ilka Pinz
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Marilena Preda
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Christine R. Norton
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Thomas Gridley
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Martinez ME, Stohn JP, Mutina EM, Whitten RJ, Hernandez A. Thyroid hormone elicits intergenerational epigenetic effects on adult social behavior and fetal brain expression of autism susceptibility genes. Front Neurosci 2022; 16:1055116. [PMID: 36419462 PMCID: PMC9676973 DOI: 10.3389/fnins.2022.1055116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic mutations identified in genome-wide association studies can only explain a small percentage of the cases of complex, highly heritable human conditions, including neurological and neurodevelopmental disorders. This suggests that intergenerational epigenetic effects, possibly triggered by environmental circumstances, may contribute to their etiology. We previously described altered DNA methylation signatures in the sperm of mice that experienced developmental overexposure to thyroid hormones as a result of a genetic defect in hormone clearance (DIO3 deficiency). Here we studied fetal brain gene expression and adult social behavior in genetically normal F2 generation descendants of overexposed mice. The brain of F2 generation E13.5 fetuses exhibited abnormal expression of genes associated with autism in humans, including Auts2, Disc1, Ldlr, Per2, Shank3, Oxtr, Igf1, Foxg1, Cd38, Grid2, Nrxn3, and Reln. These abnormal gene expression profiles differed depending on the sex of the exposed ancestor. In the three-chamber social box test, adult F2 generation males manifested significantly decreased interest in social interaction and social novelty, as revealed by decrease total time, distance traveled and time immobile in the area of interaction with novel strangers. F1 generation mice, compared to appropriate controls also exhibited altered profiles in fetal brain gene expression, although these profiles were substantially different to those in the F2 generation. Likewise adult F1 generation mice showed some abnormalities in social behavior that were sexually dimorphic and milder than those in F2 generation mice. Our results indicate that developmental overexposure to thyroid hormone causes intergenerational epigenetic effects impacting social behavior and the expression of autism-related genes during early brain development. Our results open the possibility that altered thyroid hormone states, by eliciting changes in the epigenetic information of the germ line, contribute to the susceptibility and the missing-but heriTables-etiology of complex neurodevelopmental conditions characterized by social deficits, including autism and schizophrenia.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Julia Patrizia Stohn
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Elizabeth M. Mutina
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Rayne J. Whitten
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
Mild Endurance Exercise during Fasting Increases Gastrocnemius Muscle and Prefrontal Cortex Thyroid Hormone Levels through Differential BHB and BCAA-Mediated BDNF-mTOR Signaling in Rats. Nutrients 2022; 14:nu14061166. [PMID: 35334826 PMCID: PMC8952016 DOI: 10.3390/nu14061166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0° inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction.
Collapse
|