1
|
Qu W, Wu X, Wu W, Wang Y, Sun Y, Deng L, Walker M, Chen C, Dai H, Han Q, Ding Y, Xia Y, Smith G, Li R, Liu NK, Xu XM. Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury. Neural Regen Res 2025; 20:1467-1482. [PMID: 39075913 PMCID: PMC11624882 DOI: 10.4103/nrr.nrr-d-23-01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
Collapse
Affiliation(s)
- Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yan Sun
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying Ding
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yongzhi Xia
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Guest JD, Santamaria AJ, Solano JP, de Rivero Vaccari JP, Dietrich WD, Pearse DD, Khan A, Levi AD. Challenges in advancing Schwann cell transplantation for spinal cord injury repair. Cytotherapy 2025; 27:36-50. [PMID: 39387736 DOI: 10.1016/j.jcyt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AIMS In this article we aimed to provide an expert synthesis of the current status of Schwann cell (SC)therapeutics and potential steps to increase their clinical utility. METHODS We provide an expert synthesis based on preclinical, clinical and manufacturing experience. RESULTS Schwann cells (SCs) are essential for peripheral nerve regeneration and are of interest in supporting axonal repair after spinal cord injury (SCI). SCs can be isolated and cultivated in tissue culture from adult nerve biopsies or generated from precursors and neural progenitors using specific differentiation protocols leading to expanded quantities. In culture, they undergo dedifferentiation to a state similar to "repair" SCs. The known repertoire of SC functions is increasing beyond axon maintenance, myelination, and axonal regeneration to include immunologic regulation and the release of potentially therapeutic extracellular vesicles. Recently, autologous human SC cultures purified under cGMP conditions have been tested in both nerve repair and subacute and chronic SCI clinical trials. Although the effects of SCs to support nerve regeneration are indisputable, their efficacy for clinical SCI has been limited according to the outcomes examined. CONCLUSIONS This review discusses the current limitations of transplanted SCs within the damaged spinal cord environment. Limitations include limited post-transplant cell survival, the inability of SCs to migrate within astrocytic parenchyma, and restricted axonal regeneration out of SC-rich graft regions. We describe steps to amplify the survival and integration of transplanted SCs and to expand the repertoire of uses of SCs, including SC-derived extracellular vesicles. The relative merits of transplanting autologous versus allogeneic SCs and the role that endogenous SCs play in spinal cord repair are described. Finally, we briefly describe the issues requiring solutions to scale up SC manufacturing for commercial use.
Collapse
Affiliation(s)
- James D Guest
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P Solano
- Pediatric Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P de Rivero Vaccari
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William D Dietrich
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aisha Khan
- The Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
4
|
Du X, Zhang S, Khabbaz A, Cohen KL, Zhang Y, Chakraborty S, Smith GM, Wang H, Yadav AP, Liu N, Deng L. Regeneration of Propriospinal Axons in Rat Transected Spinal Cord Injury through a Growth-Promoting Pathway Constructed by Schwann Cells Overexpressing GDNF. Cells 2024; 13:1160. [PMID: 38995011 PMCID: PMC11240522 DOI: 10.3390/cells13131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210005, China
| | - Shengqi Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China;
| | - Aytak Khabbaz
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kristen Lynn Cohen
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yihong Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Samhita Chakraborty
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George M. Smith
- Shriners Hospitals Pediatric Research Center, School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China;
| | - Amol P. Yadav
- Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Naikui Liu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lingxiao Deng
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Wang Y, Xiong Z, Qiao Y, Zhang Q, Zhou G, Zhou C, Ma X, Jiang X, Yu W. Acetyl-11-keto-beta-boswellic acid modulates macrophage polarization and Schwann cell migration to accelerate spinal cord injury repair in rats. CNS Neurosci Ther 2024; 30:e14642. [PMID: 38430464 PMCID: PMC10908365 DOI: 10.1111/cns.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Inhibiting secondary inflammatory damage caused by glial cells and creating a stable microenvironment is one of the main strategies to investigate drugs for the treatment of spinal cord injury. Acetyl-11-keto-beta-boswellic acid (AKBA) is the active component of the natural drug boswellia, which has anti-inflammatory and antioxidant effects and offers a possible therapeutic option for spinal cord injury. METHODS In this study, a spinal cord injury model was established by crushing spinal cord, respectively, to detect the M1 macrophage inflammatory markers: iNOS, TNF-α, IL-1β, and the M2 macrophage markers CD206, ARG-1, IL-10, and the detection of antioxidant enzymes and MDA. In vitro, macrophages were cultured to verify the main mechanism of the macrophage switch from Nrf2/HO-1 to M2 type by flow cytometry, immunofluorescence, and other techniques. Macrophage and Schwann cell co-culture validated the migration mechanism of Schwann cells promoted by AKBA. RESULTS AKBA significantly enhanced the antioxidant enzyme activities of CAT, GSH-Px, T-AOC, and SOD, reduced MDA content, and reduced oxidative damage caused by spinal cord injury via the Nrf2/HO-1 signaling pathway; AKBA mediates Nrf2/HO-1/IL-10, converts macrophages from M1 to M2 type, reduces inflammation, and promotes Schwann cell migration, thereby accelerating the repair of spinal cord injury in rats. CONCLUSIONS Our work demonstrates that AKBA can attenuate oxidative stress as well as the secondary inflammatory injury caused by macrophages after SCI, promote Schwann cell migration to the injury site, and thus accelerate the repair of the injured spinal cord.
Collapse
Affiliation(s)
- Yao Wang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Zongliang Xiong
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Yuncong Qiao
- School of Life SciencesNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Qiyuan Zhang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Guanghu Zhou
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chong Zhou
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xianglin Ma
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xiaowen Jiang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Wenhui Yu
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and TreatmentNortheast Agricultural UniversityHarbinHeilongjiangChina
- Institute of Chinese Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| |
Collapse
|
6
|
Ghosh M, Pearse DD. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int J Mol Sci 2023; 24:17317. [PMID: 38139147 PMCID: PMC10743801 DOI: 10.3390/ijms242417317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles released by cells into their extracellular milieu. Within these nanovesicles reside a multitude of bioactive molecules, which orchestrate essential biological processes, including cell differentiation, proliferation, and survival, in the recipient cells. These bioactive properties of exosomes render them a promising choice for therapeutic use in the realm of tissue regeneration and repair. Exosomes possess notable positive attributes, including a high bioavailability, inherent safety, and stability, as well as the capacity to be functionalized so that drugs or biological agents can be encapsulated within them or to have their surface modified with ligands and receptors to imbue them with selective cell or tissue targeting. Remarkably, their small size and capacity for receptor-mediated transcytosis enable exosomes to cross the blood-brain barrier (BBB) and access the central nervous system (CNS). Unlike cell-based therapies, exosomes present fewer ethical constraints in their collection and direct use as a therapeutic approach in the human body. These advantageous qualities underscore the vast potential of exosomes as a treatment option for neurological injuries and diseases, setting them apart from other cell-based biological agents. Considering the therapeutic potential of exosomes, the current review seeks to specifically examine an area of investigation that encompasses the development of Schwann cell (SC)-derived exosomal vesicles (SCEVs) as an approach to spinal cord injury (SCI) protection and repair. SCs, the myelinating glia of the peripheral nervous system, have a long history of demonstrated benefit in repair of the injured spinal cord and peripheral nerves when transplanted, including their recent advancement to clinical investigations for feasibility and safety in humans. This review delves into the potential of utilizing SCEVs as a therapy for SCI, explores promising engineering strategies to customize SCEVs for specific actions, and examines how SCEVs may offer unique clinical advantages over SC transplantation for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
8
|
Garcia E, Buzoianu-Anguiano V, Silva-Garcia R, Esparza-Salazar F, Arriero-Cabañero A, Escandon A, Doncel-Pérez E, Ibarra A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. Int J Mol Sci 2023; 24:13946. [PMID: 37762251 PMCID: PMC10531377 DOI: 10.3390/ijms241813946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury is a traumatic lesion that causes a catastrophic condition in patients, resulting in neuronal deficit and loss of motor and sensory function. That loss is caused by secondary injury events following mechanical damage, which results in cell death. One of the most important events is inflammation, which activates molecules like proinflammatory cytokines (IL-1β, IFN-γ, and TNF-α) that provoke a toxic environment, inhibiting axonal growth and exacerbating CNS damage. As there is no effective treatment, one of the developed therapies is neuroprotection of the tissue to preserve healthy tissue. Among the strategies that have been developed are the use of cell therapy, the use of peptides, and molecules or supplements that have been shown to favor an anti-inflammatory environment that helps to preserve tissue and cells at the site of injury, thus favoring axonal growth and improved locomotor function. In this review, we will explain some of these strategies used in different animal models of spinal cord injury, their activity as modulators of the immune system, and the benefits they have shown.
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Vinnitsa Buzoianu-Anguiano
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Raúl Silva-Garcia
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City 06720, Mexico;
| | - Felipe Esparza-Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Alejandro Arriero-Cabañero
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Adela Escandon
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Ernesto Doncel-Pérez
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| |
Collapse
|
9
|
León-Andrino A, Noriega DC, Lapuente JP, Pérez-Valdecantos D, Caballero-García A, Herrero AJ, Córdova A. Biological Approach in the Treatment of External Popliteal Sciatic Nerve (Epsn) Neurological Injury: Review. J Clin Med 2022; 11:2804. [PMID: 35628928 PMCID: PMC9144828 DOI: 10.3390/jcm11102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
The external popliteal sciatic nerve (EPSN) is the nerve of the lower extremity most frequently affected by compressive etiology. Its superficial and sinuous anatomical course is closely related to other rigid anatomical structures and has an important dynamic neural component. Therefore, this circumstance means that this nerve is exposed to multiple causes of compressive etiology. Despite this fact, there are few publications with extensive case studies dealing with treatment. In this review, we propose to carry out a narrative review of the neuropathy of the EPSN, including an anatomical reminder, its clinical presentation and diagnosis, as well as its surgical and biological approach. The most novel aspect we propose is the review of the possible role of biological factors in the reversal of this situation.
Collapse
Affiliation(s)
- Alejandro León-Andrino
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
| | - David C. Noriega
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Juan P. Lapuente
- SCO (Scientific Chief Officer) Laboratorio de Biología Molecular y Celular R4T, University Hospital of Fuenlabrada, 28942 Fuenlabrada, Spain;
| | - Daniel Pérez-Valdecantos
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Azael J. Herrero
- Department of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Alfredo Córdova
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| |
Collapse
|