1
|
Chen DY, Di X, Karunakaran KD, Sun H, Pal S, Biswal BB. Delayed cerebrovascular reactivity in individuals with spinal cord injury in the right inferior parietal lobe: a breath-hold functional near-infrared spectroscopy study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.03.24307819. [PMID: 38883754 PMCID: PMC11177928 DOI: 10.1101/2024.06.03.24307819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cerebrovascular reactivity (CVR) reflects the ability of blood vessels to dilate or constrict in response to a vasoactive stimulus, and allows researchers to assess the brain's vascular health. Individuals with spinal cord injury (SCI) are at an increased risk for autonomic dysfunction in addition to cognitive impairments, which have been linked to a decline in CVR; however, there is currently a lack of brain-imaging studies that investigate how CVR is altered after SCI. In this study, we used a breath-holding hypercapnic stimulus and functional near-infrared spectroscopy (fNIRS) to investigate CVR alterations in individuals with SCI (n = 20, 14M, 6F, mean age = 46.3 ± 10.2 years) as compared to age- and sex-matched able-bodied (AB) controls (n = 25, 19M, 6F, mean age = 43.2 ± 12.28 years). CVR was evaluated by its amplitude and delay components separately by using principal component analysis and cross-correlation analysis, respectively. We observed significantly delayed CVR in the right inferior parietal lobe in individuals with SCI compared to AB controls (linear mixed-effects model, fixed-effects estimate = 6.565, Satterthwaite's t-test, t = 2.663, p = 0.008), while the amplitude of CVR was not significantly different. The average CVR delay in the SCI group in the right inferior parietal lobe was 14.21 s (sd: 6.60 s), and for the AB group, the average delay in the right inferior parietal lobe was 7.08 s (sd: 7.39 s). CVR delays were also associated with the duration since injury in individuals with SCI, in which a longer duration since injury was associated with a shortened delay in CVR in the right inferior parietal region (Pearson's r-correlation, r = -0.59, p = 0.04). This study shows that fNIRS can be used to quantify changes in CVR in individuals with SCI, and may be further used in rehabilitative settings to monitor the cerebrovascular health of individuals with SCI.
Collapse
Affiliation(s)
- Donna Y. Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, US
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
| | | | - Hai Sun
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, US
| | - Saikat Pal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
- Electrical and Computer Engineering Department, New Jersey Institute of Technology, Newark, NJ, US
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, US
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
| |
Collapse
|
2
|
Ivanova MV, Pappas I. Understanding recovery of language after stroke: insights from neurovascular MRI studies. FRONTIERS IN LANGUAGE SCIENCES 2023; 2:1163547. [PMID: 38162928 PMCID: PMC10757818 DOI: 10.3389/flang.2023.1163547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Stroke causes a disruption in blood flow to the brain that can lead to profound language impairments. Understanding the mechanisms of language recovery after stroke is crucial for the prognosis and effective rehabilitation of people with aphasia. While the role of injured brain structures and disruptions in functional connectivity have been extensively explored, the relationship between neurovascular measures and language recovery in both early and later stages has not received sufficient attention in the field. Fully functioning healthy brain tissue requires oxygen and nutrients to be delivered promptly via its blood supply. Persistent decreases in blood flow after a stroke to the remaining non-lesioned tissue have been shown to contribute to poor language recovery. The goal of the current paper is to critically examine stroke studies looking at the relationship between different neurovascular measures and language deficits and mechanisms of language recovery via changes in neurovascular metrics. Measures of perfusion or cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide complementary approaches to understanding neurovascular mechanisms post stroke by capturing both cerebral metabolic demands and mechanical vascular properties. While CBF measures indicate the amount of blood delivered to a certain region and serve as a proxy for metabolic demands of that area, CVR indices reflect the ability of the vasculature to recruit blood flow in response to a shortage of oxygen, such as when one is holding their breath. Increases in CBF during recovery beyond the site of the lesion have been shown to promote language gains. Similarly, CVR changes, when collateral vessels are recruited to help reorganize the flow of blood in hypoperfused regions, have been related to functional recovery post stroke. In the current review, we highlight the main findings in the literature investigating neurovascular changes in stroke recovery with a particular emphasis on how language abilities can be affected by changes in CBF and CVR. We conclude by summarizing existing methodological challenges and knowledge gaps that need to be addressed in future work in this area, outlining a promising avenue of research.
Collapse
Affiliation(s)
- Maria V. Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Ioannis Pappas
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|