1
|
Pascoe MM, Wollet AR, De La Cruz Minyety J, Vera E, Miller H, Celiku O, Leeper H, Fernandez K, Reyes J, Young D, Acquaye-Mallory A, Adegbesan K, Boris L, Burton E, Chambers CP, Choi A, Grajkowska E, Kunst T, Levine J, Panzer M, Penas-Prado M, Pillai V, Polskin L, Wu J, Gilbert MR, Mendoza T, King AL, Shuboni-Mulligan D, Armstrong TS. Assessing sleep in primary brain tumor patients using smart wearables and patient-reported data: Feasibility and interim analysis of an observational study. Neurooncol Pract 2024; 11:640-651. [PMID: 39279778 PMCID: PMC11398942 DOI: 10.1093/nop/npae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Background Sleep-wake disturbances are common and disabling in primary brain tumor (PBT) patients but studies exploring longitudinal data are limited. This study investigates the feasibility and relationship between longitudinal patient-reported outcomes (PROs) and physiologic data collected via smart wearables. Methods Fifty-four PBT patients ≥ 18 years wore Fitbit smart-wearable devices for 4 weeks, which captured physiologic sleep measures (eg, total sleep time, wake after sleep onset [WASO]). They completed PROs (sleep hygiene index, PROMIS sleep-related impairment [SRI] and Sleep Disturbance [SD], Morningness-Eveningness Questionnaire [MEQ]) at baseline and 4 weeks. Smart wearable use feasibility (enrollment/attrition, data missingness), clinical characteristics, test consistency, PROs severity, and relationships between PROs and physiologic sleep measures were assessed. Results The majority (72%) wore their Fitbit for the entire study duration with 89% missing < 3 days, no participant withdrawals, and 100% PRO completion. PROMIS SRI/SD and MEQ were all consistent/reliable (Cronbach's alpha 0.74-0.92). Chronotype breakdown showed 39% morning, 56% intermediate, and only 6% evening types. Moderate-severe SD and SRI were reported in 13% and 17% at baseline, and with significant improvement in SD at 4 weeks (P = .014). Fitbit-recorded measures showed a correlation at week 4 between WASO and SD (r = 0.35, P = .009) but not with SRI (r = 0.24, P = .08). Conclusions Collecting sleep data with Fitbits is feasible, PROs are consistent/reliable, > 10% of participants had SD and SRI that improved with smart wearable use, and SD was associated with WASO. The skewed chronotype distribution, risk and impact of sleep fragmentation mechanisms warrant further investigation. Trial Registration NCT04 669 574.
Collapse
Affiliation(s)
- Maeve M Pascoe
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alex R Wollet
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Elizabeth Vera
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hope Miller
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Orieta Celiku
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Heather Leeper
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kelly Fernandez
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Jennifer Reyes
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Demarrius Young
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alvina Acquaye-Mallory
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kendra Adegbesan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa Boris
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Eric Burton
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Claudia P Chambers
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Anna Choi
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ewa Grajkowska
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tricia Kunst
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Jason Levine
- Center for Cancer Research Office of Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marissa Panzer
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Marta Penas-Prado
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Valentina Pillai
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Lily Polskin
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Jing Wu
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tito Mendoza
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amanda L King
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dorela Shuboni-Mulligan
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Terri S Armstrong
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Tahara Y, Ding J, Ito A, Shibata S. Sweetened caffeine drinking revealed behavioral rhythm independent of the central circadian clock in male mice. NPJ Sci Food 2024; 8:51. [PMID: 39160163 PMCID: PMC11333706 DOI: 10.1038/s41538-024-00295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Caffeine consumption is associated with the evening chronotype, and caffeine administration in mice results in prolonged period of the circadian rhythm in locomotor activity. However, as caffeine is bitter, sweetened caffeine is preferred by humans and mice; yet, its impact on the circadian clock has not been explored. In this study, mice were provided with freely available sweetened caffeine to investigate its effects on behavioral rhythms and peripheral clocks. Mice that freely consumed sweetened caffeine shifted from nocturnal to diurnal activity rhythms. In addition to the light-dark entrained behavioral rhythm component, some animals exhibited free-running period longer than 24-h. Intraperitoneal administration of caffeine at the beginning of the light phase also acutely induced diurnal behavior. The behavioral rhythms with long period (26-30 h) due to sweetened caffeine were observed even in mice housed under constant light or with a lesioned central circadian clock located in the suprachiasmatic nucleus of the hypothalamus; however, the rhythmicity was unstable. PER2::LUCIFERASE rhythms in peripheral tissues, such as the kidney, as measured via in vivo whole-body imaging during caffeine consumption, showed reduced amplitude and desynchronized phases among individuals. These results indicate that consumption of sweetened caffeine induces diurnal and long-period behavioral rhythms irrespective of the central clock, causing desynchronization of the clock in the body.
Collapse
Affiliation(s)
- Yu Tahara
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan.
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan.
| | - Jingwei Ding
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan
| | - Akito Ito
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan
| | - Shigenobu Shibata
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan
| |
Collapse
|
3
|
Walsh RFL, Maddox MA, Smith LT, Liu RT, Alloy LB. Social and circadian rhythm dysregulation and suicide: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 158:105560. [PMID: 38272337 PMCID: PMC10982958 DOI: 10.1016/j.neubiorev.2024.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
This systematic review of 52 studies provides a quantitative synthesis of the empirical literature on social and circadian rhythm correlates of suicidal thoughts and behaviors (STB). Small-to-medium pooled effect sizes were observed for associations between evening chronotype and STB and suicidal ideation (SI), although the pooled effect size diminished when accounting for publication bias. Three studies employed longitudinal designs and suggested eveningness was predictive of future STB, with a small-to-medium effect size. Social rhythm irregularity was also a significant correlate of STB with pooled effect sizes in the medium range. Overall circadian rhythm disruption was not associated with STB, although certain circadian rhythm metrics, including mean daytime activity, circadian rhythm sleep-wake disorder diagnosis, and actigraphy-assessed amplitude were associated with STB. Pooled effect sizes for these indices were in the medium to large range. There is a need for additional longitudinal research on actigraphy-based circadian parameters and objective markers of circadian phase (i.e., dim-light melatonin onset) to gain a clearer understanding of associations of endogenous circadian function and STB beyond that which can be captured via self-report.
Collapse
Affiliation(s)
- Rachel F L Walsh
- Department of Psychology and Neuroscience, Temple University, USA.
| | | | - Logan T Smith
- Department of Psychology and Neuroscience, Temple University, USA
| | - Richard T Liu
- Department of Psychiatry, Massachusetts General Hospital, USA; Department of Psychiatry, Harvard Medical School, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, USA
| | - Lauren B Alloy
- Department of Psychology and Neuroscience, Temple University, USA
| |
Collapse
|
4
|
Grenfell KL, Jacobs PJ, Bennett NC, Hart DW. The role of ambient temperature and light as cues in the control of circadian rhythms of Damaraland mole-rat. Chronobiol Int 2024; 41:356-368. [PMID: 38444071 DOI: 10.1080/07420528.2024.2325649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Light is considered the primary entrainer for mammalian biological rhythms, including locomotor activity (LA). However, mammals experience different environmental and light conditions, which include those predominantly devoid of light stimuli, such as those experienced in subterranean environments. In this study, we investigated what environmental cue (light or ambient temperature (Ta)) is the strongest modulator of circadian rhythms, by using LA as a proxy, in mammals that experience a lifestyle devoid of light stimuli. To address this question, this study exposed a subterranean African mole-rat species, the Damaraland mole-rat (Fukomys damarensis), to six light and Ta cycles in different combinations. Contrary to previous literature, when provided with a reliable light cue, Damaraland mole rats exhibited nocturnal, diurnal, or arrhythmic LA patterns under constant Ta. While under constant darkness and a 24-hour Ta cycle mimicking the burrow environment, all mole-rats were most active during the coolest 12-hour period. This finding suggests that in a subterranean environment, which receives no reliable photic cue, the limited heat dissipation and energy constraints during digging activity experienced by Damaraland mole-rats make Ta a reliable and consistent "time-keeping" variable. More so, when providing a reliable light cue (12 light: 12 dark) to Damaraland mole-rats under a 24-hour Ta cycle, this study presents the first evidence that cycles of Ta affect the LA rhythm of a subterranean mammal more strongly than cycles of light and darkness. Once again, Damaraland mole-rats were more active during the coolest 12-hour period regardless of whether this fell during the light or dark phase. However, conclusive differentiation of entrainment to Ta from that of masking was not achieved in this study, and as such, we have recommended future research avenues to do so.
Collapse
Affiliation(s)
- Kerryn L Grenfell
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Paul J Jacobs
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Daniel W Hart
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
5
|
Tamayo E, Mouland JW, Lucas RJ, Brown TM. Regulation of mouse exploratory behaviour by irradiance and cone-opponent signals. BMC Biol 2023; 21:178. [PMID: 37605163 PMCID: PMC10441731 DOI: 10.1186/s12915-023-01663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Animal survival depends on the ability to adjust behaviour according to environmental conditions. The circadian system plays a key role in this capability, with diel changes in the quantity (irradiance) and spectral content ('colour') of ambient illumination providing signals of time-of-day that regulate the timing of rest and activity. Light also exerts much more immediate effects on behaviour, however, that are equally important in shaping daily activity patterns. Hence, nocturnal mammals will actively avoid light and dramatically reduce their activity when light cannot be avoided. The sensory mechanisms underlying these acute effects of light are incompletely understood, particularly the importance of colour. RESULTS To define sensory mechanisms controlling mouse behaviour, we used photoreceptor-isolating stimuli and mice with altered cone spectral sensitivity (Opn1mwR), lacking melanopsin (Opn1mwR; Opn4-/-) or cone phototransduction (Cnga3-/-) in assays of light-avoidance and activity suppression. In addition to roles for melanopsin-dependent irradiance signals, we find a major influence of spectral content in both cases. Hence, remarkably, selective increases in S-cone irradiance (producing a blue-shift in spectrum replicating twilight) drive light-seeking behaviour and promote activity. These effects are opposed by signals from longer-wavelength sensitive cones, indicating a true spectrally-opponent mechanism. Using c-Fos-mapping and multielectrode electrophysiology, we further show these effects are associated with a selective cone-opponent modulation of neural activity in the key brain site implicated in acute effects of light on behaviour, the subparaventricular zone. CONCLUSIONS Collectively, these data reveal a mechanism whereby blue-shifts in the spectrum of environmental illumination, such as during twilight, promote mouse exploratory behaviour.
Collapse
Affiliation(s)
- E Tamayo
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - T M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|