Zhang P, Zhang W, Sun W, Xu J, Hu H, Wang L, Wong L. Identification of gene biomarkers for brain diseases via multi-network topological semantics extraction and graph convolutional network.
BMC Genomics 2024;
25:175. [PMID:
38350848 PMCID:
PMC10865627 DOI:
10.1186/s12864-024-09967-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND
Brain diseases pose a significant threat to human health, and various network-based methods have been proposed for identifying gene biomarkers associated with these diseases. However, the brain is a complex system, and extracting topological semantics from different brain networks is necessary yet challenging to identify pathogenic genes for brain diseases.
RESULTS
In this study, we present a multi-network representation learning framework called M-GBBD for the identification of gene biomarker in brain diseases. Specifically, we collected multi-omics data to construct eleven networks from different perspectives. M-GBBD extracts the spatial distributions of features from these networks and iteratively optimizes them using Kullback-Leibler divergence to fuse the networks into a common semantic space that represents the gene network for the brain. Subsequently, a graph consisting of both gene and large-scale disease proximity networks learns representations through graph convolution techniques and predicts whether a gene is associated which brain diseases while providing associated scores. Experimental results demonstrate that M-GBBD outperforms several baseline methods. Furthermore, our analysis supported by bioinformatics revealed CAMP as a significantly associated gene with Alzheimer's disease identified by M-GBBD.
CONCLUSION
Collectively, M-GBBD provides valuable insights into identifying gene biomarkers for brain diseases and serves as a promising framework for brain networks representation learning.
Collapse