1
|
Arulekar RS, Shinde S, Kumbhar VK. Effect of Progressive Balance Control Strategies on Chronic Ankle Instability in Middle-Aged Obese Women. Cureus 2024; 16:e62992. [PMID: 39050340 PMCID: PMC11268981 DOI: 10.7759/cureus.62992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Chronic ankle instability (CAI) is a disease characterized by persistent feelings of instability in the ankle joint and a propensity for recurrent ankle sprains. It is often caused by ligamentous laxity or neuromuscular deficits. Middle-aged obese females represent a demographic subset at increased risk for CAI due to factors such as reduced proprioception and increased loading on the ankle joint. The gaps in the current evidence suggest that more research is needed on middle-aged obese females, who are particularly vulnerable to CAI due to physiological changes associated with poor balance. OBJECTIVES This study aims to determine the effect of progressive balance control strategies on CAI in middle-aged obese women. METHOD In this experimental study, 72 patients with CAI in middle-aged women were selected randomly using a simple random sampling method. Females aged 35-45 with a body mass index (BMI) greater than 27 kg/m2 and a history of ankle sprains greater than one and having residual symptoms. The experimental group (Group B) received progressive balance control strategies, and the conventional group (Group A) received conventional balance exercises. Foot and ankle ability measure (FAAM) scale, push-and-release test (PART), single-leg stance test (SLST), evaluations, and star excursion balance test (SEBT) were used for pre- and posttreatment. RESULTS The experimental group post-intervention for static balance, dynamic balance, and postural control tests showed extremely significant improvement with a p-value of <0.0001. Between groups A and B, the dynamic balance was considered very significant, with a p-value of 0.0001. In the single-leg stance test, Group B's result was significantly greater than that of Group A's (63.4 + 16.1 and 63.4 + 16.1). PART results indicate that Group B is more significant than Group A (0.76 and 0.51, respectively). CONCLUSIONS The study concluded that progressive balance control strategy training is effective in middle-aged obese women with CAI.
Collapse
Affiliation(s)
- Rutuja S Arulekar
- Department of Musculoskeletal Sciences, Krishna College of Physiotherapy, Krishna Vishwa Vidyapeeth, Deemed to be University (KIMSDU), Karad, IND
| | - Sandeep Shinde
- Department of Musculoskeletal Sciences, Krishna College of Physiotherapy, Krishna Vishwa Vidyapeeth, Deemed to be University (KIMSDU), Karad, IND
| | - Vrushali K Kumbhar
- Department of Musculoskeletal Sciences, Krishna College of Physiotherapy, Krishna Vishwa Vidyapeeth, Deemed to be University (KIMSDU), Karad, IND
| |
Collapse
|
2
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Eddaoui O, Genois G, Nadeau C, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from hindlimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024; 602:1987-2017. [PMID: 38593215 PMCID: PMC11068482 DOI: 10.1113/jp286151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Bridges NR, Stickle M, Moxon KA. Transitioning from global to local computational strategies during brain-machine interface learning. Front Neurosci 2024; 18:1371107. [PMID: 38707591 PMCID: PMC11066153 DOI: 10.3389/fnins.2024.1371107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
When learning to use a brain-machine interface (BMI), the brain modulates neuronal activity patterns, exploring and exploiting the state space defined by their neural manifold. Neurons directly involved in BMI control (i.e., direct neurons) can display marked changes in their firing patterns during BMI learning. However, the extent of firing pattern changes in neurons not directly involved in BMI control (i.e., indirect neurons) remains unclear. To clarify this issue, we localized direct and indirect neurons to separate hemispheres in a task designed to bilaterally engage these hemispheres while animals learned to control the position of a platform with their neural signals. Animals that learned to control the platform and improve their performance in the task shifted from a global strategy, where both direct and indirect neurons modified their firing patterns, to a local strategy, where only direct neurons modified their firing rate, as animals became expert in the task. Animals that did not learn the BMI task did not shift from utilizing a global to a local strategy. These results provide important insights into what differentiates successful and unsuccessful BMI learning and the computational mechanisms adopted by the neurons.
Collapse
Affiliation(s)
- Nathaniel R. Bridges
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Matthew Stickle
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Karen A. Moxon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Martino G, Beck ON, Ting LH. Voluntary muscle coactivation in quiet standing elicits reciprocal rather than coactive agonist-antagonist control of reactive balance. J Neurophysiol 2023; 129:1378-1388. [PMID: 37162064 PMCID: PMC10259861 DOI: 10.1152/jn.00458.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
Muscle coactivation increases in challenging balance conditions as well as with advanced age and mobility impairments. Increased muscle coactivation can occur both in anticipation of (feedforward) and in reaction to (feedback) perturbations, however, the causal relationship between feedforward and feedback muscle coactivation remains elusive. Here, we hypothesized that feedforward muscle coactivation would increase both the body's initial mechanical resistance due to muscle intrinsic properties and the later feedback-mediated muscle coactivation in response to postural perturbations. Young adults voluntarily increased leg muscle coactivation using visual biofeedback before support-surface perturbations. In contrast to our hypothesis, feedforward muscle coactivation did not increase the body's initial intrinsic resistance to perturbations, nor did it increase feedback muscle coactivation. Rather, perturbations with feedforward muscle coactivation elicited a medium- to long-latency increase of feedback-mediated agonist activity but a decrease of feedback-mediated antagonist activity. This reciprocal rather than coactivation effect on ankle agonist and antagonist muscles enabled faster reactive ankle torque generation, reduced ankle dorsiflexion, and reduced center of mass (CoM) motion. We conclude that in young adults, voluntary feedforward muscle coactivation can be independently modulated with respect to feedback-mediated muscle coactivation. Furthermore, our findings suggest feedforward muscle coactivation may be useful for enabling quicker joint torque generation through reciprocal, rather than coactivated, agonist-antagonist feedback muscle activity. As such our results suggest that behavioral context is critical to whether muscle coactivation functions to increase agility versus stability.NEW & NOTEWORTHY Feedforward and feedback muscle coactivation are commonly observed in older and mobility impaired adults and are considered strategies to improve stability by increasing body stiffness prior to and in response to perturbations. In young adults, voluntary feedforward coactivation does not necessarily increase feedback coactivation in response to perturbations. Instead, feedforward coactivation enabled faster ankle torques through reciprocal agonist-antagonist muscle activity. As such, coactivation may promote either agility or stability depending on the behavioral context.
Collapse
Affiliation(s)
- Giovanni Martino
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Owen N Beck
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Disse GD, Nandakumar B, Pauzin FP, Blumenthal GH, Kong Z, Ditterich J, Moxon KA. Neural ensemble dynamics in trunk and hindlimb sensorimotor cortex encode for the control of postural stability. Cell Rep 2023; 42:112347. [PMID: 37027302 DOI: 10.1016/j.celrep.2023.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
The cortex has a disputed role in monitoring postural equilibrium and intervening in cases of major postural disturbances. Here, we investigate the patterns of neural activity in the cortex that underlie neural dynamics during unexpected perturbations. In both the primary sensory (S1) and motor (M1) cortices of the rat, unique neuronal classes differentially covary their responses to distinguish different characteristics of applied postural perturbations; however, there is substantial information gain in M1, demonstrating a role for higher-order computations in motor control. A dynamical systems model of M1 activity and forces generated by the limbs reveals that these neuronal classes contribute to a low-dimensional manifold comprised of separate subspaces enabled by congruent and incongruent neural firing patterns that define different computations depending on the postural responses. These results inform how the cortex engages in postural control, directing work aiming to understand postural instability after neurological disease.
Collapse
Affiliation(s)
- Gregory D Disse
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA; Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | | | - Francois P Pauzin
- Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Gary H Blumenthal
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Zhaodan Kong
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Jochen Ditterich
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA; Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Karen A Moxon
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA; Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Biomechanics and neural circuits for vestibular-induced fine postural control in larval zebrafish. Nat Commun 2023; 14:1217. [PMID: 36898983 PMCID: PMC10006170 DOI: 10.1038/s41467-023-36682-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
Land-walking vertebrates maintain a desirable posture by finely controlling muscles. It is unclear whether fish also finely control posture in the water. Here, we showed that larval zebrafish have fine posture control. When roll-tilted, fish recovered their upright posture using a reflex behavior, which was a slight body bend near the swim bladder. The vestibular-induced body bend produces a misalignment between gravity and buoyancy, generating a moment of force that recovers the upright posture. We identified the neural circuits for the reflex, including the vestibular nucleus (tangential nucleus) through reticulospinal neurons (neurons in the nucleus of the medial longitudinal fasciculus) to the spinal cord, and finally to the posterior hypaxial muscles, a special class of muscles near the swim bladder. These results suggest that fish maintain a dorsal-up posture by frequently performing the body bend reflex and demonstrate that the reticulospinal pathway plays a critical role in fine postural control.
Collapse
|
7
|
Zelenin PV, Lyalka VF, Deliagina TG. Changes in operation of postural networks in rabbits with postural functions recovered after lateral hemisection of the spinal cord. J Physiol 2023; 601:307-334. [PMID: 36463517 PMCID: PMC9840688 DOI: 10.1113/jp283458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Acute lateral hemisection of the spinal cord (LHS) severely impairs postural functions, which recover over time. Here, to reveal changes in the operation of postural networks underlying the recovery, male rabbits with recovered postural functions after LHS at T12 (R-rabbits) were used. After decerebration, we characterized the responses of individual spinal interneurons from L5 along with hindlimb EMG responses to stimulation causing postural limb reflexes (PLRs) that substantially contribute to postural corrections in intact animals. The data were compared with those obtained in our previous studies of rabbits with the intact spinal cord and rabbits after acute LHS. Although, in R-rabbits, the EMG responses to postural disturbances both ipsilateral and contralateral to the LHS (ipsi-LHS and co-LHS) were only slightly distorted, PLRs on the co-LHS side (unaffected by acute LHS) were distorted substantially and PLRs on the ipsi-LHS side (abolished by acute LHS) were close to control. Thus, in R-rabbits, plastic changes develop in postural networks both affected and unaffected by acute LHS. PLRs on the ipsi-LHS side recover mainly as a result of changes at brainstem-cerebellum-spinal levels, whereas the forebrain is substantially involved in the generation of PLRs on the co-LHS side. We found that, in areas of grey matter in which the activity of spinal neurons of the postural network was significantly decreased after acute LHS, it recovered to the control level, whereas, in areas unaffected by acute LHS, it was significantly changed. These changes underlie the recovery and distortion of PLRs on the ipsi-LHS and co-LHS sides, respectively. KEY POINTS: After lateral hemisection of the spinal cord (LHS), postural functions recover over time. The underlying changes in the operation of postural networks are unknown. We compared the responses of individual spinal neurons and hindlimb muscles to stimulation causing postural limb reflexes (PLRs) in recovered LHS-rabbits with those obtained in rabbits with the intact spinal cord and rabbits after acute LHS. We demonstrated that changes underlying the recovery of postural functions take place not only in postural networks that are severely impaired, but also in those that are almost unaffected by acute LHS. PLRs on the LHS side recover mainly as a result of changes at brainstem-cerebellum-spinal levels, whereas the forebrain is substantially involved in the generation of PLRs contralateral to the LHS.
Collapse
Affiliation(s)
- Pavel V. Zelenin
- Department of Neuroscience Karolinska Institute Stockholm Sweden
| | | | | |
Collapse
|
8
|
Santuz A, Laflamme OD, Akay T. The brain integrates proprioceptive information to ensure robust locomotion. J Physiol 2022; 600:5267-5294. [PMID: 36271747 DOI: 10.1113/jp283181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Robust locomotion relies on information from proprioceptors: sensory organs that communicate the position of body parts to the spinal cord and brain. Proprioceptive circuits in the spinal cord are known to coarsely regulate locomotion in the presence of perturbations. Yet, the regulatory importance of the brain in maintaining robust locomotion remains less clear. Here, through mouse genetic studies and in vivo electrophysiology, we examined the role of the brain in integrating proprioceptive information during perturbed locomotion. The systemic removal of proprioceptors left the mice in a constantly perturbed state, similar to that observed during mechanically perturbed locomotion in wild-type mice and characterised by longer and less accurate synergistic activation patterns. By contrast, after surgically interrupting the ascending proprioceptive projection to the brain through the dorsal column of the spinal cord, wild-type mice showed normal walking behaviour, yet lost the ability to respond to external perturbations. Our findings provide direct evidence of a pivotal role for ascending proprioceptive information in achieving robust, safe locomotion. KEY POINTS: Whether brain integration of proprioceptive feedback is crucial for coping with perturbed locomotion is not clear. We showed a crucial role of the brain for responding to external perturbations and ensure robust locomotion. We used mouse genetics to remove proprioceptors and a spinal lesion model to interrupt the flow of proprioceptive information to the brain through the dorsal column in wild-type animals. Using a custom-built treadmill, we administered sudden and random mechanical perturbations to mice during walking. External perturbations affected locomotion in wild-type mice similar to the absence of proprioceptors in genetically modified mice. Proprioceptive feedback from muscle spindles and Golgi tendon organs contributed to locomotor robustness. Wild-type mice lost the ability to respond to external perturbations after interruption of the ascending proprioceptive projection to the brainstem.
Collapse
Affiliation(s)
- Alessandro Santuz
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Olivier D Laflamme
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Bakalkin G. The left-right side-specific endocrine signaling in the effects of brain lesions: questioning of the neurological dogma. Cell Mol Life Sci 2022; 79:545. [PMID: 36219330 PMCID: PMC9553812 DOI: 10.1007/s00018-022-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Each cerebral hemisphere is functionally connected to the contralateral side of the body through the decussating neural tracts. The crossed neural pathways set a basis for contralateral effects of brain injury such hemiparesis and hemiplegia as it has been already noted by Hippocrates. Recent studies demonstrated that, in addition to neural mechanisms, the contralateral effects of brain lesions are mediated through the humoral pathway by neurohormones that produce either the left or right side-specific effects. The side-specific humoral signaling defines whether the left or right limbs are affected after a unilateral brain injury. The hormonal signals are released by the pituitary gland and may operate through their receptors that are lateralized in the spinal cord and involved in the side-specific control of symmetric neurocircuits innervating the left and right limbs. Identification of features and a proportion of neurological deficits transmitted by neurohormonal signals vs. those mediated by neural pathways is essential for better understanding of mechanisms of brain trauma and stroke and development of new therapies. In a biological context, the left-right side-specific neuroendocrine signaling may be fundamental for the control of the left- and right-sided processes in bilaterally symmetric animals.
Collapse
Affiliation(s)
- Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
10
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
11
|
Muñoz-Montecinos C, Romero A, Sepúlveda V, Vira MÁ, Fehrmann-Cartes K, Marcellini S, Aguilera F, Caprile T, Fuentes R. Turning the Curve Into Straight: Phenogenetics of the Spine Morphology and Coordinate Maintenance in the Zebrafish. Front Cell Dev Biol 2022; 9:801652. [PMID: 35155449 PMCID: PMC8826430 DOI: 10.3389/fcell.2021.801652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.
Collapse
Affiliation(s)
- Carlos Muñoz-Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Adrián Romero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Ángela Vira
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karen Fehrmann-Cartes
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Concepción, Chile
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
12
|
Lukoyanov N, Watanabe H, Carvalho LS, Kononenko O, Sarkisyan D, Zhang M, Andersen MS, Lukoyanova EA, Galatenko V, Tonevitsky A, Bazov I, Iakovleva T, Schouenborg J, Bakalkin G. Left-right side-specific endocrine signaling complements neural pathways to mediate acute asymmetric effects of brain injury. eLife 2021; 10:e65247. [PMID: 34372969 PMCID: PMC8354641 DOI: 10.7554/elife.65247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones β-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.
Collapse
Affiliation(s)
- Nikolay Lukoyanov
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Liliana S Carvalho
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Olga Kononenko
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Mengliang Zhang
- Neuronano Research Center, Department of Experimental Medical Science, Lund UniversityLundSweden
- Department of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | | | - Elena A Lukoyanova
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Alex Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of EconomicsMoscowRussian Federation
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Tatiana Iakovleva
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Lund UniversityLundSweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| |
Collapse
|
13
|
Sport-related concussion adopt a more conservative approach to straight path walking and turning during tandem gait. J Clin Transl Res 2021; 7:443-449. [PMID: 34667890 PMCID: PMC8520699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND It is currently unknown what specific neuronal deficits influence postural instability following SRC; however, the modulation of postural control relies heavily on the appropriate integration of sensory information from the visual, vestibular, and somatosensory system. It is possible symptom provocation of vestibular or ocular function is related to unsteady gait patterns during tandem gait. AIM The purpose of this study was to evaluate the differences in temporal and center of pressure (CoP) metrics during discrete events of instrumented tandem gait (iTG) among those with sport-related concussion (SRC) compared to healthy controls. Secondarily, this study attempted to evaluate the relationship between iTG CoP metrics and the Vestibular/Ocular Motor Screening (VOMS) Exam. MATERIALS AND METHODS 30 collegiate athletes with SRC and 30 healthy controls completed three single task (ST) iTG trials on an instrumented walkway and the VOMS. All individuals with SRC were assessed within 24-48 h post-injury while all controls were measured during pre-participation physicals. CoP metrics in the anteroposterior (AP) and mediolateral (ML) directions and time to completion were evaluated during the first, turn and second pass of iTG between groups. VOMS score was correlated to the CoP metrics across the discrete events. RESULTS Athletes with SRC took longer to complete tandem gait (P<0.001) along with the first pass, second pass but not the turn when compared to the control group. SRC had slower velocity in the AP direction during both the first (P<0.001) and second pass (P<0.001) with increased postural sway in the ML direction during the first pass (P=0.014). During the turn, athletes with SRC had postural sway in the ML direction (P=0.008). Finally, VOMS score was weakly negatively related to CoP velocity in the AP direction during first (r=-0.39) and second (r=-0.36) pass while being weakly positively related to postural sway during the turn (r=-0.30). CONCLUSIONS Athletes with SRC adopted a more conservative walking pattern and the presence of vestibular and/or ocular symptoms influence the ability to perform heel-to-toe walking. RELEVANCE FOR PATIENTS Individuals with SRC will walk slower during heel-to-toe walking and move more in the ML direction with great movement in the ML direction while en pointe turning. This may increase given the total amount of vestibular or vision symptoms following the SRC.
Collapse
|
14
|
Delayed and reduced intralimb muscular coupling during postural reactions in individuals with incomplete spinal cord injury. Gait Posture 2021; 88:84-93. [PMID: 34015546 DOI: 10.1016/j.gaitpost.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Postural strategies are enabled by rapid muscle activation sequences to prevent a fall. Intralimb muscular couplings underlie these postural strategies are likely impaired after incomplete spinal cord injury (iSCI), leading to inappropriate postural reactions and increased fall risk; yet, the nature of these changes is unknown. RESEARCH QUESTION Identify changes occurring in intralimb coupling following a perturbation in individuals with iSCI. METHODS Ten men with iSCI and eight age-matched controls (CTRL) stood on a force-platform that was randomly tilted forward or backward. Electromyographic (EMG) activity of the lower limb muscles was recorded, and coactivation or simultaneous facilitation/suppression between pairs of muscles was analyzed. Onset and duration of coupling latency, intralimb coupling delay, and amplitude ratios were measured in the distal (soleus [SOL]/tibialis anterior [TA]), proximal (biceps femoris [BF]/vastus lateralis [VL]), anterior (TA-VL), and posterior (SOL-BF) muscle couplings. RESULTS In forward tilt, the main coupling was TA-SOL co-contraction for both groups, but the latency was longer and the duration shorter in SCI participants. In backward tilt, the TA-VL co-activation was the main coupling in CTRL (88 %), although it was also expressed by 60 % of SCI participant with a delayed latency. The facilitation/suppression of TA-SOL was the main coupling in SCI group (80 % vs 63 % in CTRL). Delayed coupling latencies were more pronounced in individuals with cervical iSCI and were correlated with the strength of lower limbs. SIGNIFICANCE Similar muscular couplings are present in both groups but are delayed, which might contribute to postural reaction deficits in individuals with iSCI.
Collapse
|
15
|
Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021; 31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Collapse
Affiliation(s)
- Ming-Yue Wu
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Martin Carbo-Tano
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Kevin Fidelin
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| |
Collapse
|
16
|
Unger J, Chan K, Lee JW, Craven BC, Mansfield A, Alavinia M, Masani K, Musselman KE. The Effect of Perturbation-Based Balance Training and Conventional Intensive Balance Training on Reactive Stepping Ability in Individuals With Incomplete Spinal Cord Injury or Disease: A Randomized Clinical Trial. Front Neurol 2021; 12:620367. [PMID: 33603710 PMCID: PMC7884853 DOI: 10.3389/fneur.2021.620367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Impaired balance leads to falls in individuals with motor incomplete spinal cord injury or disease (iSCI/D). Reactive stepping is a strategy used to prevent falls and Perturbation-based Balance Training (PBT) can improve this ability. Objective: The objective of this study was to determine if PBT results in greater improvements in reactive stepping ability than frequency-matched Conventional Intensive Balance Training (CIBT) in adults with iSCI/D. Design: Randomized clinical trial. Setting: Tertiary SCI/D rehabilitation center. Participants: Twenty-one adults with chronic (>1 year) iSCI/D were randomized. Due to one drop out 20 participants completed the study. Methods: Participants were randomly allocated to complete either PBT or CIBT three times per week for 8 weeks. Both programs included challenging static and dynamic balance tasks, but the PBT group also experienced manual external balance perturbations. Main Outcome Measures: Assessments of reactive stepping ability using the Lean-and-Release test were completed at baseline, and after 4 and 8 weeks of training, and 3 and 6 months after training completion. A blinded assessor evaluated secondary outcomes. Results: Twenty-five participants were screened and 21 consented; one withdrew. Ten PBT and 10 CIBT participants were included in analyses. Across all participants there were improvements in reactive stepping ability (p = 0.049), with retention of improvements at follow up assessments. There were no differences in reactive stepping ability between groups [median (interquartile range): PBT 0.08 (0.68); CIBT 0.00 (0.22)]. One participant in the PBT group experienced a non-injurious fall during training. Conclusions: Balance training is beneficial for individuals with iSCI/D, but the addition of manual perturbations (i.e., PBT) did not prove advantageous for performance on a measure of reactive stepping ability. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT02960178.
Collapse
Affiliation(s)
- Janelle Unger
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,KITE at Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Katherine Chan
- KITE at Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Jae W Lee
- KITE at Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - B Catharine Craven
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,KITE at Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Avril Mansfield
- KITE at Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada.,Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Mohammad Alavinia
- KITE at Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Kei Masani
- KITE at Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kristin E Musselman
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,KITE at Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada.,Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Doperalski AE, Montgomery LR, Mondello SE, Howland DR. Anatomical Plasticity of Rostrally Terminating Axons as a Possible Bridging Substrate across a Spinal Injury. J Neurotrauma 2020; 37:877-888. [PMID: 31774025 DOI: 10.1089/neu.2018.6193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transfer of information across a spinal lesion is required for many aspects of recovery across diverse motor systems. Our understanding of axonal plasticity and which subpopulations of neurons may contribute to bridging substrates following injury, however, remains relatively incomplete. Most recently, attention has been directed to propriospinal neurons (PSNs), with research suggesting that they are capable of bridging a spinal lesion in rodents. In the current study, subpopulations of both long (C5) and short (T6, T8) PSNs-as well as a supraspinal system, the rubrospinal tract (RST)-were assessed following low thoracic (T9) hemisection in the cat using the retrograde tracer Fluoro-Gold. Acutely, within 2 weeks post-hemisection, the numbers of short and long PSNs, as well as contralateral RST neurons, with axons crossing the lesion were significantly decreased relative to uninjured controls. This decrease persisted bilaterally and was permanent in the long PSNs and the contralateral red nucleus (RN). However, by 16 weeks post-hemisection, the numbers of ipsilesional and contralesional short PSNs bridging the lesion were significantly increased. Further, the number of contralesional contributing short PSNs was significantly greater in injured animals than in uninjured animals. A significant increase over uninjured numbers also was seen in the ipsilateral (non-axotomized) RN. These findings suggest that a novel substrate of undamaged axons, which normally terminates rostral to the lesion, grows past a thoracic lesion after injury. This rostral population represents a major component of the bridging substrate seen and may represent an important anatomical target for evolving rehabilitation approaches as a substrate capable of contributing to functional recovery.
Collapse
Affiliation(s)
- Adele E Doperalski
- Department of Biology, American University, Washington DC.,Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida
| | - Lynnette R Montgomery
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky
| | - Sarah E Mondello
- Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida.,Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Dena R Howland
- Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
18
|
Grillner S, El Manira A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol Rev 2019; 100:271-320. [PMID: 31512990 DOI: 10.1152/physrev.00015.2019] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vertebrate control of locomotion involves all levels of the nervous system from cortex to the spinal cord. Here, we aim to cover all main aspects of this complex behavior, from the operation of the microcircuits in the spinal cord to the systems and behavioral levels and extend from mammalian locomotion to the basic undulatory movements of lamprey and fish. The cellular basis of propulsion represents the core of the control system, and it involves the spinal central pattern generator networks (CPGs) controlling the timing of different muscles, the sensory compensation for perturbations, and the brain stem command systems controlling the level of activity of the CPGs and the speed of locomotion. The forebrain and in particular the basal ganglia are involved in determining which motor programs should be recruited at a given point of time and can both initiate and stop locomotor activity. The propulsive control system needs to be integrated with the postural control system to maintain body orientation. Moreover, the locomotor movements need to be steered so that the subject approaches the goal of the locomotor episode, or avoids colliding with elements in the environment or simply escapes at high speed. These different aspects will all be covered in the review.
Collapse
Affiliation(s)
- Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
19
|
Zelenin PV, Lyalka VF, Orlovsky GN, Deliagina TG. Changes in Activity of Spinal Postural Networks at Different Time Points After Spinalization. Front Cell Neurosci 2019; 13:387. [PMID: 31496938 PMCID: PMC6712497 DOI: 10.3389/fncel.2019.00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
Postural limb reflexes (PLRs) are an essential component of postural corrections. Spinalization leads to disappearance of postural functions (including PLRs). After spinalization, spastic, incorrectly phased motor responses to postural perturbations containing oscillatory EMG bursting gradually develop, suggesting plastic changes in the spinal postural networks. Here, to reveal these plastic changes, rabbits at 3, 7, and 30 days after spinalization at T12 were decerebrated, and responses of spinal interneurons from L5 along with hindlimb muscles EMG responses to postural sensory stimuli, causing PLRs in subjects with intact spinal cord (control), were characterized. Like in control and after acute spinalization, at each of three studied time points after spinalization, neurons responding to postural sensory stimuli were found. Proportion of such neurons during 1st month after spinalization did not reach the control level, and was similar to that observed after acute spinalization. In contrast, their activity (which was significantly decreased after acute spinalization) reached the control value at 3 days after spinalization and remained close to this level during the following month. However, the processing of postural sensory signals, which was severely distorted after acute spinalization, did not recover by 30 days after injury. In addition, we found a significant enhancement of the oscillatory activity in a proportion of the examined neurons, which could contribute to generation of oscillatory EMG bursting. Motor responses to postural stimuli (which were almost absent after acute spinalization) re-appeared at 3 days after spinalization, although they were very weak, irregular, and a half of them was incorrectly phased in relation to postural stimuli. Proportion of correct and incorrect motor responses remained almost the same during the following month, but their amplitude gradually increased. Thus, spinalization triggers two processes of plastic changes in the spinal postural networks: rapid (taking days) restoration of normal activity level in spinal interneurons, and slow (taking months) recovery of motoneuronal excitability. Most likely, recovery of interneuronal activity underlies re-appearance of motor responses to postural stimuli. However, absence of recovery of normal processing of postural sensory signals and enhancement of oscillatory activity of neurons result in abnormal PLRs and loss of postural functions.
Collapse
|
20
|
Murray AJ, Croce K, Belton T, Akay T, Jessell TM. Balance Control Mediated by Vestibular Circuits Directing Limb Extension or Antagonist Muscle Co-activation. Cell Rep 2019; 22:1325-1338. [PMID: 29386118 DOI: 10.1016/j.celrep.2018.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/29/2017] [Accepted: 01/03/2018] [Indexed: 11/28/2022] Open
Abstract
Maintaining balance after an external perturbation requires modification of ongoing motor plans and the selection of contextually appropriate muscle activation patterns that respect body and limb position. We have used the vestibular system to generate sensory-evoked transitions in motor programming. In the face of a rapid balance perturbation, the lateral vestibular nucleus (LVN) generates exclusive extensor muscle activation and selective early extension of the hindlimb, followed by the co-activation of extensor and flexor muscle groups. The temporal separation in EMG response to balance perturbation reflects two distinct cell types within the LVN that generate different phases of this motor program. Initially, an LVNextensor population directs an extension movement that reflects connections with extensor, but not flexor, motor neurons. A distinct LVNco-activation population initiates muscle co-activation via the pontine reticular nucleus. Thus, distinct circuits within the LVN generate different elements of a motor program involved in the maintenance of balance.
Collapse
Affiliation(s)
- Andrew J Murray
- Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, Columbia University, New York, NY, USA; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Katherine Croce
- Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Timothy Belton
- Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Turgay Akay
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Thomas M Jessell
- Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Peruffo A, Corain L, Bombardi C, Centelleghe C, Grisan E, Graïc JM, Bontempi P, Grandis A, Cozzi B. The motor cortex of the sheep: laminar organization, projections and diffusion tensor imaging of the intracranial pyramidal and extrapyramidal tracts. Brain Struct Funct 2019; 224:1933-1946. [DOI: 10.1007/s00429-019-01885-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
|
22
|
Sayenko DG, Rath M, Ferguson AR, Burdick JW, Havton LA, Edgerton VR, Gerasimenko YP. Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. J Neurotrauma 2019; 36:1435-1450. [PMID: 30362876 PMCID: PMC6482915 DOI: 10.1089/neu.2018.5956] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuromodulation of spinal networks can improve motor control after spinal cord injury (SCI). The objectives of this study were to (1) determine whether individuals with chronic paralysis can stand with the aid of non-invasive electrical spinal stimulation with their knees and hips extended without trainer assistance, and (2) investigate whether postural control can be further improved following repeated sessions of stand training. Using a double-blind, balanced, within-subject cross-over, and sham-controlled study design, 15 individuals with SCI of various severity received transcutaneous electrical spinal stimulation to regain self-assisted standing. The primary outcomes included qualitative comparison of need of external assistance for knee and hip extension provided by trainers during standing without and in the presence of stimulation in the same participants, as well as quantitative measures, such as the level of knee assistance and amount of time spent standing without trainer assistance. None of the participants could stand unassisted without stimulation or in the presence of sham stimulation. With stimulation all participants could maintain upright standing with minimum and some (n = 7) without external assistance applied to the knees or hips, using their hands for upper body balance as needed. Quality of balance control was practice-dependent, and improved with subsequent training. During self-initiated body-weight displacements in standing enabled by spinal stimulation, high levels of leg muscle activity emerged, and depended on the amount of muscle loading. Our findings indicate that the lumbosacral spinal networks can be modulated transcutaneously using electrical spinal stimulation to facilitate self-assisted standing after chronic motor and sensory complete paralysis.
Collapse
Affiliation(s)
- Dimitry G. Sayenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Mrinal Rath
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Department of Biomedical Engineering, University of California, Los Angeles, California
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, California
| | - Joel W. Burdick
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California
| | - Leif A. Havton
- Department of Neurology and Neurobiology, University of California, Los Angeles, California
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Department of Biomedical Engineering, University of California, Los Angeles, California
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
- Department of Neurobiology and Neurosurgery, University of California, Los Angeles, California
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yury P. Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Pavlov Institute of Physiology, St. Petersburg, Russia
| |
Collapse
|
23
|
|
24
|
Zhang L, Feldman AG, Levin MF. Vestibular and corticospinal control of human body orientation in the gravitational field. J Neurophysiol 2018; 120:3026-3041. [PMID: 30207862 DOI: 10.1152/jn.00483.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Body orientation with respect to the direction of gravity changes when we lean forward from upright standing. We tested the hypothesis that during upright standing, the nervous system specifies the referent body orientation that defines spatial thresholds for activation of multiple muscles across the body. To intentionally lean the body forward, the system is postulated to transfer balance and stability to the leaned position by monotonically tilting the referent orientation, thus increasing the activation thresholds of ankle extensors and decreasing their activity. Consequently, the unbalanced gravitational torque would start to lean the body forward. With restretching, ankle extensors would be reactivated and generate increasing electromyographic (EMG) activity until the enhanced gravitational torque would be balanced at a new posture. As predicted, vestibular influences on motoneurons of ankle extensors evaluated by galvanic vestibular stimulation were smaller in the leaned compared with the upright position, despite higher tonic EMG activity. Defacilitation of vestibular influences was also observed during forward leaning when the EMG levels in the upright and leaned position were equalized by compensating the gravitational torque with a load. The vestibular system is involved in the active control of body orientation without directly specifying the motor outcome. Corticospinal influences originating from the primary motor cortex evaluated by transcranial magnetic stimulation remained similar at the two body postures. Thus, in contrast to the vestibular system, the corticospinal system maintains a similar descending facilitation of motoneurons of leg muscles at different body orientations. The study advances the understanding of how body orientation is controlled. NEW & NOTEWORTHY The brain changes the referent body orientation with respect to gravity to lean the body forward. Physiologically, this is achieved by shifts in spatial thresholds for activation of ankle muscles, which involves the vestibular system. Results advance the understanding of how the brain controls body orientation in the gravitational field. The study also extends previous evidence of empirical control of motor function, i.e., without the reliance on model-based computations and direct specification of motor outcome.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neuroscience, University of Montreal , Montreal, Quebec , Canada.,Institut de Réadaptation Gingras-Lindsay de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal, Quebec , Canada.,Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada
| | - Anatol G Feldman
- Department of Neuroscience, University of Montreal , Montreal, Quebec , Canada.,Institut de Réadaptation Gingras-Lindsay de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal, Quebec , Canada.,Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada
| | - Mindy F Levin
- Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada.,School of Physical and Occupational Therapy, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
25
|
Properties of short-latency responses in the upper limbs evoked by axial impulses during leaning: evidence for reticulospinal projections. Exp Brain Res 2018; 236:2611-2618. [DOI: 10.1007/s00221-018-5320-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
26
|
Bobet J, Masani K, Popovic MR, Vette AH. Kinematics-based prediction of trunk muscle activity in response to multi-directional perturbations during sitting. Med Eng Phys 2018; 58:S1350-4533(18)30089-4. [PMID: 29895449 DOI: 10.1016/j.medengphy.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 11/23/2022]
Abstract
Recent work suggests that functional electrical stimulation can be used to enhance dynamic trunk stability following spinal cord injury. In this context, knowledge of the relation between trunk kinematics and muscle activation in non-disabled individuals may assist in developing kinematics-based neuroprostheses. Our objective was therefore to predict the activation profiles of the major trunk muscles from trunk kinematics following multi-directional perturbations during sitting. Trunk motion and electromyograms (EMG) from ten major trunk muscles were acquired in twelve non-disabled, seated individuals who experienced a force of approximately 200 N applied to the trunk in eight horizontal directions. A linear, time-invariant model with feedback gains on angular trunk displacement, velocity, and acceleration was optimized to predict the EMG from trunk kinematics. For each muscle, only the three directions that produced the largest EMG response were considered. Our results indicate that the time course of the processed EMG was similar across muscles and directions and that the model accounted for 68-92% of the EMG variance. A combination of neural and biomechanical mechanisms associated with trunk control can explain the obtained model parameters. Future work will apply the gained insights in the design of movement-controlled neuroprostheses for facilitating trunk stability following spinal cord injury.
Collapse
Affiliation(s)
- Jacques Bobet
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, 9211 116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Kei Masani
- Rehabilitation Engineering Laboratory, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
| | - Milos R Popovic
- Rehabilitation Engineering Laboratory, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, 9211 116 Street NW, Edmonton, Alberta T6G 1H9, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 111 Avenue NW, Edmonton, Alberta T5G 0B7, Canada.
| |
Collapse
|
27
|
Ivanenko Y, Gurfinkel VS. Human Postural Control. Front Neurosci 2018; 12:171. [PMID: 29615859 PMCID: PMC5869197 DOI: 10.3389/fnins.2018.00171] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
From ancient Greece to nowadays, research on posture control was guided and shaped by many concepts. Equilibrium control is often considered part of postural control. However, two different levels have become increasingly apparent in the postural control system, one level sets a distribution of tonic muscle activity (“posture”) and the other is assigned to compensate for internal or external perturbations (“equilibrium”). While the two levels are inherently interrelated, both neurophysiological and functional considerations point toward distinct neuromuscular underpinnings. Disturbances of muscle tone may in turn affect movement performance. The unique structure, specialization and properties of skeletal muscles should also be taken into account for understanding important peripheral contributors to postural regulation. Here, we will consider the neuromechanical basis of habitual posture and various concepts that were rather influential in many experimental studies and mathematical models of human posture control.
Collapse
Affiliation(s)
- Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Victor S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
28
|
Zee DS, Jareonsettasin P, Leigh RJ. Ocular stability and set-point adaptation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0199. [PMID: 28242733 DOI: 10.1098/rstb.2016.0199] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 11/12/2022] Open
Abstract
A fundamental challenge to the brain is how to prevent intrusive movements when quiet is needed. Unwanted limb movements such as tremor impair fine motor control and unwanted eye drifts such as nystagmus impair vision. A stable platform is also necessary to launch accurate movements. Accordingly, nature has designed control systems with agonist (excitation) and antagonist (inhibition) muscle pairs functioning in push-pull, around a steady level of balanced tonic activity, the set-point Sensory information can be organized similarly, as in the vestibulo-ocular reflex, which generates eye movements that compensate for head movements. The semicircular canals, working in coplanar pairs, one in each labyrinth, are reciprocally excited and inhibited as they transduce head rotations. The relative change in activity is relayed to the vestibular nuclei, which operate around a set-point of stable balanced activity. When a pathological imbalance occurs, producing unwanted nystagmus without head movement, an adaptive mechanism restores the proper set-point and eliminates the nystagmus. Here we used 90 min of continuous 7 T magnetic field labyrinthine stimulation (MVS) in normal humans to produce sustained nystagmus simulating vestibular imbalance. We identified multiple time-scale processes towards a new zero set-point showing that MVS is an excellent paradigm to investigate the neurobiology of set-point adaptation.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
Collapse
Affiliation(s)
- D S Zee
- Department of Neurology, Johns Hopkins Hospital, 600 N. Wolfe St, Baltimore, MD 21287, USA
| | - P Jareonsettasin
- Oxford University Hospitals, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - R J Leigh
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106-5040, USA
| |
Collapse
|
29
|
Referent control of the orientation of posture and movement in the gravitational field. Exp Brain Res 2017; 236:381-398. [PMID: 29164285 DOI: 10.1007/s00221-017-5133-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
This study addresses the question of how posture and movement are oriented with respect to the direction of gravity. It is suggested that neural control levels coordinate spatial thresholds at which multiple muscles begin to be activated to specify a referent body orientation (RO) at which muscle activity is minimized. Under the influence of gravity, the body is deflected from the RO to an actual orientation (AO) until the emerging muscle activity and forces begin to balance gravitational forces and maintain body stability. We assumed that (1) during quiet standing on differently tilted surfaces, the same RO and thus AO can be maintained by adjusting activation thresholds of ankle muscles according to the surface tilt angle; (2) intentional forward body leaning results from monotonic ramp-and-hold shifts in the RO; (3) rhythmic oscillation of the RO about the ankle joints during standing results in body swaying. At certain sway phases, the AO and RO may transiently overlap, resulting in minima in the activity of multiple muscles across the body. EMG kinematic patterns of the 3 tasks were recorded and explained based on the RO concept that implies that these patterns emerge due to referent control without being pre-programmed. We also confirmed the predicted occurrence of minima in the activity of multiple muscles at specific body configurations during swaying. Results re-affirm previous rejections of model-based computational theories of motor control. The role of different descending systems in the referent control of posture and movement in the gravitational field is considered.
Collapse
|
30
|
Plasticity within excitatory and inhibitory pathways of the vestibulo-spinal circuitry guides changes in motor performance. Sci Rep 2017; 7:853. [PMID: 28405011 PMCID: PMC5429812 DOI: 10.1038/s41598-017-00956-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
Investigations of behaviors with well-characterized circuitry are required to understand how the brain learns new motor skills and ensures existing behaviors remain appropriately calibrated over time. Accordingly, here we recorded from neurons within different sites of the vestibulo-spinal circuitry of behaving macaque monkeys during temporally precise activation of vestibular afferents. Behaviorally relevant patterns of vestibular nerve activation generated a rapid and substantial decrease in the monosynaptic responses recorded at the first central stage of processing from neurons receiving direct input from vestibular afferents within minutes, as well as a decrease in the compensatory reflex response that lasted up to 8 hours. In contrast, afferent responses to this same stimulation remained constant, indicating that plasticity was not induced at the level of the periphery but rather at the afferent-central neuron synapse. Strikingly, the responses of neurons within indirect brainstem pathways also remained constant, even though the efficacy of their central input was significantly reduced. Taken together, our results show that rapid plasticity at the first central stage of vestibulo-spinal pathways can guide changes in motor performance, and that complementary plasticity on the same millisecond time scale within inhibitory vestibular nuclei networks contributes to ensuring a relatively robust behavioral output.
Collapse
|
31
|
Hsu LJ, Zelenin PV, Lyalka VF, Vemula MG, Orlovsky GN, Deliagina TG. Neural mechanisms of single corrective steps evoked in the standing rabbit. Neuroscience 2017; 347:85-102. [PMID: 28215990 PMCID: PMC5374252 DOI: 10.1016/j.neuroscience.2017.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/25/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement toward the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord.
Collapse
Affiliation(s)
- L-J Hsu
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - P V Zelenin
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - V F Lyalka
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - M G Vemula
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - G N Orlovsky
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - T G Deliagina
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden.
| |
Collapse
|
32
|
Zelenin PV, Lyalka VF, Orlovsky GN, Deliagina TG. Effect of acute lateral hemisection of the spinal cord on spinal neurons of postural networks. Neuroscience 2016; 339:235-253. [PMID: 27702647 PMCID: PMC5118056 DOI: 10.1016/j.neuroscience.2016.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 09/25/2016] [Indexed: 01/24/2023]
Abstract
In quadrupeds, acute lateral hemisection of the spinal cord (LHS) severely impairs postural functions, which recover over time. Postural limb reflexes (PLRs) represent a substantial component of postural corrections in intact animals. The aim of the present study was to characterize the effects of acute LHS on two populations of spinal neurons (F and E) mediating PLRs. For this purpose, in decerebrate rabbits, responses of individual neurons from L5 to stimulation causing PLRs were recorded before and during reversible LHS (caused by temporal cold block of signal transmission in lateral spinal pathways at L1), as well as after acute surgical LHS at L1. Results obtained after Sur-LHS were compared to control data obtained in our previous study. We found that acute LHS caused disappearance of PLRs on the affected side. It also changed a proportion of different types of neurons on that side. A significant decrease and increase in the proportion of F- and non-modulated neurons, respectively, was found. LHS caused a significant decrease in most parameters of activity in F-neurons located in the ventral horn on the lesioned side and in E-neurons of the dorsal horn on both sides. These changes were caused by a significant decrease in the efficacy of posture-related sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to both F- and E-neurons. These distortions in operation of postural networks underlie the impairment of postural control after acute LHS, and represent a starting point for the subsequent recovery of postural functions.
Collapse
Affiliation(s)
- P V Zelenin
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - V F Lyalka
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - G N Orlovsky
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - T G Deliagina
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden.
| |
Collapse
|
33
|
Hubbard JM, Böhm UL, Prendergast A, Tseng PEB, Newman M, Stokes C, Wyart C. Intraspinal Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control during Locomotion. Curr Biol 2016; 26:2841-2853. [PMID: 27720623 DOI: 10.1016/j.cub.2016.08.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 01/13/2023]
Abstract
In the vertebrate spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic neurons whose functions are only beginning to unfold. Recent evidence indicates that CSF-cNs detect local spinal bending and relay this mechanosensory feedback information to motor circuits, yet many CSF-cN targets remain unknown. Using optogenetics, patterned illumination, and in vivo electrophysiology, we show here that CSF-cNs provide somatic inhibition to fast motor neurons and excitatory sensory interneurons involved in the escape circuit. Ventral CSF-cNs respond to longitudinal spinal contractions and induce large inhibitory postsynaptic currents (IPSCs) sufficient to silence spiking of their targets. Upon repetitive stimulation, these IPSCs promptly depress, enabling the mechanosensory response to the first bend to be the most effective. When CSF-cNs are silenced, postural control is compromised, resulting in rollovers during escapes. Altogether, our data demonstrate how GABAergic sensory neurons provide powerful inhibitory feedback to the escape circuit to maintain balance during active locomotion.
Collapse
Affiliation(s)
- Jeffrey Michael Hubbard
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Urs Lucas Böhm
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Andrew Prendergast
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Po-En Brian Tseng
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Caleb Stokes
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France.
| |
Collapse
|
34
|
Zelenin PV, Lyalka VF, Hsu LJ, Orlovsky GN, Deliagina TG. Effects of acute spinalization on neurons of postural networks. Sci Rep 2016; 6:27372. [PMID: 27302149 PMCID: PMC4908393 DOI: 10.1038/srep27372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/18/2016] [Indexed: 11/15/2022] Open
Abstract
Postural limb reflexes (PLRs) represent a substantial component of postural corrections. Spinalization results in loss of postural functions, including disappearance of PLRs. The aim of the present study was to characterize the effects of acute spinalization on two populations of spinal neurons (F and E) mediating PLRs, which we characterized previously. For this purpose, in decerebrate rabbits spinalized at T12, responses of interneurons from L5 to stimulation causing PLRs before spinalization, were recorded. The results were compared to control data obtained in our previous study. We found that spinalization affected the distribution of F- and E-neurons across the spinal grey matter, caused a significant decrease in their activity, as well as disturbances in processing of posture-related sensory inputs. A two-fold decrease in the proportion of F-neurons in the intermediate grey matter was observed. Location of populations of F- and E-neurons exhibiting significant decrease in their activity was determined. A dramatic decrease of the efficacy of sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to E-neurons was found. These changes in operation of postural networks underlie the loss of postural control after spinalization, and represent a starting point for the development of spasticity.
Collapse
Affiliation(s)
- Pavel V. Zelenin
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Vladimir F. Lyalka
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Li-Ju Hsu
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Grigori N. Orlovsky
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | | |
Collapse
|
35
|
Abstract
Sitting too much kills. Epidemiological, physiological and molecular data suggest that sedentary lifestyle can explain, in part, how modernity is associated with obesity, more than 30 chronic diseases and conditions and high healthcare costs. Excessive sitting--sitting disease--is not innate to the human condition. People were designed to be bipedal and, before the industrial revolution, people moved substantially more throughout the day than they do presently. It is encouraging that solutions exist to reverse sitting disease. Work environments, schools, communities and cities can be re-imagined and re-invented as walking spaces, and people thereby offered more active, happier, healthier and more productive lives.
Collapse
Affiliation(s)
- James A Levine
- Mayo Clinic, 13400 East Shea Blvd, Scottsdale, AZ, 85259, USA,
| |
Collapse
|