1
|
Wright J, Bourke P. Cortical development in the structural model and free energy minimization. Cereb Cortex 2024; 34:bhae416. [PMID: 39470397 PMCID: PMC11520235 DOI: 10.1093/cercor/bhae416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
A model of neocortical development invoking Friston's Free Energy Principle is applied within the Structural Model of Barbas et al. and the associated functional interpretation advanced by Tucker and Luu. Evolution of a neural field with Hebbian and anti-Hebbian plasticity, maximizing synchrony and minimizing axonal length by apoptotic selection, leads to paired connection systems with mirror symmetry, interacting via Markov blankets along their line of reflection. Applied to development along the radial lines of development in the Structural Model, a primary Markov blanket emerges between the centrifugal synaptic flux in layers 2,3 and 5,6, versus the centripetal flow in layer 4, and axonal orientations in layer 4 give rise to the differing shape and movement sensitivities characteristic of neurons of dorsal and ventral neocortex. Prediction error minimization along the primary blanket integrates limbic and subcortical networks with the neocortex. Synaptic flux bypassing the blanket triggers the arousal response to surprising stimuli, enabling subsequent adaptation. As development progresses ubiquitous mirror systems separated by Markov blankets and enclosed blankets-within-blankets arise throughout neocortex, creating the typical order and response characteristics of columnar and noncolumnar cortex.
Collapse
Affiliation(s)
- James Wright
- Centre for Brain Research and Department of Psychological Medicine, School of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Paul Bourke
- Centre for Brain Research, School of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
2
|
He L, Wei B, Hao K, Gao L, Peng C. Bio-inspired deep neural local acuity and focus learning for visual image recognition. Neural Netw 2024; 181:106712. [PMID: 39388996 DOI: 10.1016/j.neunet.2024.106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
In the field of computer vision and image recognition, enabling the computer to discern target features while filtering out irrelevant ones poses a challenge. Drawing insights from studies in biological vision, we find that there is a local visual acuity mechanism and a visual focus mechanism in the initial conversion and processing of visual information, ensuring that the visual system can give ear to salient features of the target in the early visual observation phase. Inspired by this, we build a novel image recognition network to focus on the target features while ignoring other irrelevant features in the image, and further focus on the focus features based on the target features. Meanwhile, in order to comply with the output characteristics when similar features exist in different categories, we design a softer image label operation for similar features in different categories, which solves the correlation of labels between categories. Relevant experimental findings underscore the efficacy of our proposed method, revealing discernible advantages in comparison to alternative approaches. Visualization results further attest to the method's capability to selectively focus on pertinent target features within the image, sidelining extraneous information.
Collapse
Affiliation(s)
- Langping He
- Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China; College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
| | - Bing Wei
- Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China; College of Information Sciences and Technology, Donghua University, Shanghai 201620, China.
| | - Kuangrong Hao
- Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China; College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
| | - Lei Gao
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Waite Campus, Urrbrae, SA 5064, Australia
| | - Chuang Peng
- Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China; College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Cacciamani L, Tomer D, Mylod-Vargas MG, Selcov A, Peterson GA, Oseguera CI, Barbieux A. HD-tDCS to the lateral occipital complex improves haptic object recognition. Exp Brain Res 2024; 242:2113-2124. [PMID: 38970654 DOI: 10.1007/s00221-024-06888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) is a non-invasive brain stimulation technique that has been shown to be safe and effective in modulating neuronal activity. The present study investigates the effect of anodal HD-tDCS on haptic object perception and memory through stimulation of the lateral occipital complex (LOC), a structure that has been shown to be involved in both visual and haptic object recognition. In this single-blind, sham-controlled, between-subjects study, blindfolded healthy, sighted participants used their right (dominant) hand to perform haptic discrimination and recognition tasks with 3D-printed, novel objects called "Greebles" while receiving 20 min of 2 milliamp (mA) anodal stimulation (or sham) to the left or right LOC. Compared to sham, those who received left LOC stimulation (contralateral to the hand used) showed an improvement in haptic object recognition but not discrimination-a finding that was evident from the start of the behavioral tasks. A second experiment showed that this effect was not observed with right LOC stimulation (ipsilateral to the hand used). These results suggest that HD-tDCS to the left LOC can improve recognition of objects perceived via touch. Overall, this work sheds light on the LOC as a multimodal structure that plays a key role in object recognition in both the visual and haptic modalities.
Collapse
Affiliation(s)
- Laura Cacciamani
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA.
| | - Daniel Tomer
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| | - Mary Grace Mylod-Vargas
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| | - Aaron Selcov
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| | - Grace A Peterson
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| | - Christopher I Oseguera
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| | - Aidan Barbieux
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| |
Collapse
|
4
|
Chen Y, Beech P, Yin Z, Jia S, Zhang J, Yu Z, Liu JK. Decoding dynamic visual scenes across the brain hierarchy. PLoS Comput Biol 2024; 20:e1012297. [PMID: 39093861 PMCID: PMC11324145 DOI: 10.1371/journal.pcbi.1012297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/14/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding the computational mechanisms that underlie the encoding and decoding of environmental stimuli is a crucial investigation in neuroscience. Central to this pursuit is the exploration of how the brain represents visual information across its hierarchical architecture. A prominent challenge resides in discerning the neural underpinnings of the processing of dynamic natural visual scenes. Although considerable research efforts have been made to characterize individual components of the visual pathway, a systematic understanding of the distinctive neural coding associated with visual stimuli, as they traverse this hierarchical landscape, remains elusive. In this study, we leverage the comprehensive Allen Visual Coding-Neuropixels dataset and utilize the capabilities of deep learning neural network models to study neural coding in response to dynamic natural visual scenes across an expansive array of brain regions. Our study reveals that our decoding model adeptly deciphers visual scenes from neural spiking patterns exhibited within each distinct brain area. A compelling observation arises from the comparative analysis of decoding performances, which manifests as a notable encoding proficiency within the visual cortex and subcortical nuclei, in contrast to a relatively reduced encoding activity within hippocampal neurons. Strikingly, our results unveil a robust correlation between our decoding metrics and well-established anatomical and functional hierarchy indexes. These findings corroborate existing knowledge in visual coding related to artificial visual stimuli and illuminate the functional role of these deeper brain regions using dynamic stimuli. Consequently, our results suggest a novel perspective on the utility of decoding neural network models as a metric for quantifying the encoding quality of dynamic natural visual scenes represented by neural responses, thereby advancing our comprehension of visual coding within the complex hierarchy of the brain.
Collapse
Affiliation(s)
- Ye Chen
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Peter Beech
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Ziwei Yin
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Shanshan Jia
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhaofei Yu
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Jian K. Liu
- School of Computing, University of Leeds, Leeds, United Kingdom
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Klug S, Murgaš M, Godbersen GM, Hacker M, Lanzenberger R, Hahn A. Synaptic signaling modeled by functional connectivity predicts metabolic demands of the human brain. Neuroimage 2024; 295:120658. [PMID: 38810891 DOI: 10.1016/j.neuroimage.2024.120658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE The human brain is characterized by interacting large-scale functional networks fueled by glucose metabolism. Since former studies could not sufficiently clarify how these functional connections shape glucose metabolism, we aimed to provide a neurophysiologically-based approach. METHODS 51 healthy volunteers underwent simultaneous PET/MRI to obtain BOLD functional connectivity and [18F]FDG glucose metabolism. These multimodal imaging proxies of fMRI and PET were combined in a whole-brain extension of metabolic connectivity mapping. Specifically, functional connectivity of all brain regions were used as input to explain glucose metabolism of a given target region. This enabled the modeling of postsynaptic energy demands by incoming signals from distinct brain regions. RESULTS Functional connectivity input explained a substantial part of metabolic demands but with pronounced regional variations (34 - 76%). During cognitive task performance this multimodal association revealed a shift to higher network integration compared to resting state. In healthy aging, a dedifferentiation (decreased segregated/modular structure of the brain) of brain networks during rest was observed. Furthermore, by including data from mRNA maps, [11C]UCB-J synaptic density and aerobic glycolysis (oxygen-to-glucose index from PET data), we show that whole-brain functional input reflects non-oxidative, on-demand metabolism of synaptic signaling. The metabolically-derived directionality of functional inputs further marked them as top-down predictions. In addition, the approach uncovered formerly hidden networks with superior efficiency through metabolically informed network partitioning. CONCLUSIONS Applying multimodal imaging, we decipher a crucial part of the metabolic and neurophysiological basis of functional connections in the brain as interregional on-demand synaptic signaling fueled by anaerobic metabolism. The observed task- and age-related effects indicate promising future applications to characterize human brain function and clinical alterations.
Collapse
Affiliation(s)
- Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria.
| |
Collapse
|
6
|
Degré-Pelletier J, Danis É, Thérien VD, Bernhardt B, Barbeau EB, Soulières I. Differential neural correlates underlying visuospatial versus semantic reasoning in autistic children. Cereb Cortex 2024; 34:19-29. [PMID: 38696600 PMCID: PMC11065103 DOI: 10.1093/cercor/bhae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 05/04/2024] Open
Abstract
While fronto-posterior underconnectivity has often been reported in autism, it was shown that different contexts may modulate between-group differences in functional connectivity. Here, we assessed how different task paradigms modulate functional connectivity differences in a young autistic sample relative to typically developing children. Twenty-three autistic and 23 typically developing children aged 6 to 15 years underwent functional magnetic resonance imaging (fMRI) scanning while completing a reasoning task with visuospatial versus semantic content. We observed distinct connectivity patterns in autistic versus typical children as a function of task type (visuospatial vs. semantic) and problem complexity (visual matching vs. reasoning), despite similar performance. For semantic reasoning problems, there was no significant between-group differences in connectivity. However, during visuospatial reasoning problems, we observed occipital-occipital, occipital-temporal, and occipital-frontal over-connectivity in autistic children relative to typical children. Also, increasing the complexity of visuospatial problems resulted in increased functional connectivity between occipital, posterior (temporal), and anterior (frontal) brain regions in autistic participants, more so than in typical children. Our results add to several studies now demonstrating that the connectivity alterations in autistic relative to neurotypical individuals are much more complex than previously thought and depend on both task type and task complexity and their respective underlying cognitive processes.
Collapse
Affiliation(s)
- Janie Degré-Pelletier
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, C.P. 8888 Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal, Quebec H1E 1A4, Canada
| | - Éliane Danis
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, C.P. 8888 Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal, Quebec H1E 1A4, Canada
| | - Véronique D Thérien
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, C.P. 8888 Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal, Quebec H1E 1A4, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801, University street, Montreal, Quebec H3A 2B4, Canada
| | - Elise B Barbeau
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, C.P. 8888 Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Isabelle Soulières
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, C.P. 8888 Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal, Quebec H1E 1A4, Canada
| |
Collapse
|
7
|
Wright J, Bourke P. Markov Blankets and Mirror Symmetries-Free Energy Minimization and Mesocortical Anatomy. ENTROPY (BASEL, SWITZERLAND) 2024; 26:287. [PMID: 38667842 PMCID: PMC11049374 DOI: 10.3390/e26040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
A theoretical account of development in mesocortical anatomy is derived from the free energy principle, operating in a neural field with both Hebbian and anti-Hebbian neural plasticity. An elementary structural unit is proposed, in which synaptic connections at mesoscale are arranged in paired patterns with mirror symmetry. Exchanges of synaptic flux in each pattern form coupled spatial eigenmodes, and the line of mirror reflection between the paired patterns operates as a Markov blanket, so that prediction errors in exchanges between the pairs are minimized. The theoretical analysis is then compared to the outcomes from a biological model of neocortical development, in which neuron precursors are selected by apoptosis for cell body and synaptic connections maximizing synchrony and also minimizing axonal length. It is shown that this model results in patterns of connection with the anticipated mirror symmetries, at micro-, meso- and inter-arial scales, among lateral connections, and in cortical depth. This explains the spatial organization and functional significance of neuron response preferences, and is compatible with the structural form of both columnar and noncolumnar cortex. Multi-way interactions of mirrored representations can provide a preliminary anatomically realistic model of cortical information processing.
Collapse
Affiliation(s)
- James Wright
- Centre for Brain Research, and Department of Psychological Medicine, School of Medicine, University of Auckland, Auckland 1010, New Zealand
| | - Paul Bourke
- School of Social Sciences, Faculty of Arts, Business, Law and Education, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Roccato M, Campana G, Vicovaro M, Donato R, Pavan A. Perception of complex Glass patterns through spatial summation across unique frames. Vision Res 2024; 216:108364. [PMID: 38377786 DOI: 10.1016/j.visres.2024.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
When processing visual information from the surroundings, human vision depends on the constant integration of form and motion cues. Dynamic Glass patterns (GPs) may be used to study how such visual integration occurs in the human visual system. Dynamic GPs are visual stimuli composed of two or more unique frames consisting of different configurations of dot pairs, called dipoles, presented in rapid succession. Previous psychophysical studies showed that the discrimination of translational and circular dynamic GPs is influenced by both the number of unique frames and the pattern update rate. In this study, we manipulated these two variables to assess their influence on the discrimination threshold of circular, radial, and spiral GPs, partially replicating previous findings on circular GPs. Our results indicate that circular GPs are more easily perceived than radial and spiral GPs, showing lower discrimination thresholds. Furthermore, we found that discrimination thresholds vary as a function of the number of unique frames but not as a function of the pattern update rate. Specifically, coherence thresholds decreased with increasing the number of unique frames. In conclusion, our findings support the existence of spatial summation of form signals coming from the unique frames that generate complex GPs. On the other hand, they do not support temporal integration of local form-motion signals based on the pattern update rate.
Collapse
Affiliation(s)
- Marco Roccato
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy.
| | - Gianluca Campana
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy; Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy
| | - Michele Vicovaro
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Rita Donato
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Andrea Pavan
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy
| |
Collapse
|
9
|
Worden BL, Tolin DF, Stevens MC. An exploration of neural predictors of treatment compliance in cognitive-behavioral group therapy for hoarding disorder. J Affect Disord 2023; 345:S0165-0327(23)01346-0. [PMID: 39492520 PMCID: PMC11068362 DOI: 10.1016/j.jad.2023.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 05/07/2024]
Abstract
A persistent and influential barrier to effective cognitive-behavioral therapy (CBT) for patients with hoarding disorder (HD) is treatment retention and compliance. Recent research has suggested that HD patients have abnormal brain activity identified by functional magnetic resonance (fMRI) in regions often engaged for executive functioning (e.g., right superior frontal gyrus, anterior insula, and anterior cingulate), which raises questions about whether these abnormalities could relate to patients' ability to attend, understand, and engage in HD treatment. We examined data from 74 HD-diagnosed adults who completed fMRI-measured brain activity during a discarding task designed to elicit symptom-related brain dysfunction, exploring which regions' activity might predict treatment compliance variables, including treatment engagement (within-session compliance), homework completion (between-session compliance), and treatment attendance. Brain activity that was significantly related to within- and between-session compliance was found largely in insula, parietal, and premotor areas. No brain regions were associated with treatment attendance. The results add to findings from prior research that have found prefrontal, cingulate, and insula activity abnormalities in HD by suggesting that some aspects of HD brain dysfunction might play a role in preventing the engagement needed for therapeutic benefit.
Collapse
Affiliation(s)
- Blaise L Worden
- Institute of Living/Hartford Hospital, Hartford, CT, United States of America.
| | - David F Tolin
- Institute of Living/Hartford Hospital, Hartford, CT, United States of America; Yale University School of Medicine, New Haven, CT, United States of America
| | - Michael C Stevens
- Institute of Living/Hartford Hospital, Hartford, CT, United States of America; Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
10
|
Misthos LM, Krassanakis V, Merlemis N, Kesidis AL. Modeling the Visual Landscape: A Review on Approaches, Methods and Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:8135. [PMID: 37836966 PMCID: PMC10574952 DOI: 10.3390/s23198135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Modeling the perception and evaluation of landscapes from the human perspective is a desirable goal for several scientific domains and applications. Human vision is the dominant sense, and human eyes are the sensors for apperceiving the environmental stimuli of our surroundings. Therefore, exploring the experimental recording and measurement of the visual landscape can reveal crucial aspects about human visual perception responses while viewing the natural or man-made landscapes. Landscape evaluation (or assessment) is another dimension that refers mainly to preferences of the visual landscape, involving human cognition as well, in ways that are often unpredictable. Yet, landscape can be approached by both egocentric (i.e., human view) and exocentric (i.e., bird's eye view) perspectives. The overarching approach of this review article lies in systematically presenting the different ways for modeling and quantifying the two 'modalities' of human perception and evaluation, under the two geometric perspectives, suggesting integrative approaches on these two 'diverging' dualities. To this end, several pertinent traditions/approaches, sensor-based experimental methods and techniques (e.g., eye tracking, fMRI, and EEG), and metrics are adduced and described. Essentially, this review article acts as a 'guide-map' for the delineation of the different activities related to landscape experience and/or management and to the valid or potentially suitable types of stimuli, sensors techniques, and metrics for each activity. Throughout our work, two main research directions are identified: (1) one that attempts to transfer the visual landscape experience/management from the one perspective to the other (and vice versa); (2) another one that aims to anticipate the visual perception of different landscapes and establish connections between perceptual processes and landscape preferences. As it appears, the research in the field is rapidly growing. In our opinion, it can be greatly advanced and enriched using integrative, interdisciplinary approaches in order to better understand the concepts and the mechanisms by which the visual landscape, as a complex set of stimuli, influences visual perception, potentially leading to more elaborate outcomes such as the anticipation of landscape preferences. As an effect, such approaches can support a rigorous, evidence-based, and socially just framework towards landscape management, protection, and decision making, based on a wide spectrum of well-suited and advanced sensor-based technologies.
Collapse
Affiliation(s)
- Loukas-Moysis Misthos
- Department of Surveying and Geoinformatics Engineering, University of West Attica, GR-12243 Athens, Greece; (L.-M.M.); (V.K.); (N.M.)
- Department of Public and One Health, University of Thessaly, GR-43100 Karditsa, Greece
| | - Vassilios Krassanakis
- Department of Surveying and Geoinformatics Engineering, University of West Attica, GR-12243 Athens, Greece; (L.-M.M.); (V.K.); (N.M.)
| | - Nikolaos Merlemis
- Department of Surveying and Geoinformatics Engineering, University of West Attica, GR-12243 Athens, Greece; (L.-M.M.); (V.K.); (N.M.)
| | - Anastasios L. Kesidis
- Department of Surveying and Geoinformatics Engineering, University of West Attica, GR-12243 Athens, Greece; (L.-M.M.); (V.K.); (N.M.)
| |
Collapse
|
11
|
Jiang L, Zhuo J, Furman A, Fishman PS, Gullapalli R. Cerebellar functional connectivity change is associated with motor and neuropsychological function in early stage drug-naïve patients with Parkinson's disease. Front Neurosci 2023; 17:1113889. [PMID: 37425003 PMCID: PMC10324581 DOI: 10.3389/fnins.2023.1113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Parkinson's Disease (PD) is a progressive neurodegenerative disorder affecting both motor and cognitive function. Previous neuroimaging studies have reported altered functional connectivity (FC) in distributed functional networks. However, most neuroimaging studies focused on patients at an advanced stage and with antiparkinsonian medication. This study aims to conduct a cross-sectional study on cerebellar FC changes in early-stage drug-naïve PD patients and its association with motor and cognitive function. Methods Twenty-nine early-stage drug-naïve PD patients and 20 healthy controls (HCs) with resting-state fMRI data and motor UPDRS and neuropsychological cognitive data were extracted from the Parkinson's Progression Markers Initiative (PPMI) archives. We used seed-based resting-state fMRI (rs-fMRI) FC analysis and the cerebellar seeds were defined based on the hierarchical parcellation of the cerebellum (AAL atlas) and its topological function mapping (motor cerebellum and non-motor cerebellum). Results The early stage drug-naïve PD patients had significant differences in cerebellar FC when compared with HCs. Our findings include: (1) Increased intra-cerebellar FC within motor cerebellum, (2) increase motor cerebellar FC in inferior temporal gyrus and lateral occipital gyrus within ventral visual pathway and decreased motor-cerebellar FC in cuneus and dorsal posterior precuneus within dorsal visual pathway, (3) increased non-motor cerebellar FC in attention, language, and visual cortical networks, (4) increased vermal FC in somatomotor cortical network, and (5) decreased non-motor and vermal FC within brainstem, thalamus and hippocampus. Enhanced FC within motor cerebellum is positively associated with the MDS-UPDRS motor score and enhanced non-motor FC and vermal FC is negatively associated with cognitive function test scores of SDM and SFT. Conclusion These findings provide support for the involvement of cerebellum at an early stage and prior to clinical presentation of non-motor features of the disease in PD patients.
Collapse
Affiliation(s)
- Li Jiang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiachen Zhuo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew Furman
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul S. Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao Gullapalli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Meng X, Deng K, Huang B, Lin X, Wu Y, Tao W, Lin C, Yang Y, Chen F. Classification of temporal lobe epilepsy based on neuropsychological tests and exploration of its underlying neurobiology. Front Hum Neurosci 2023; 17:1100683. [PMID: 37397855 PMCID: PMC10307531 DOI: 10.3389/fnhum.2023.1100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Objective To assist improving long-term postoperative seizure-free rate, we aimed to use machine learning algorithms based on neuropsychological data to differentiate temporal lobe epilepsy (TLE) from extratemporal lobe epilepsy (extraTLE), as well as explore the relationship between magnetic resonance imaging (MRI) and neuropsychological tests. Methods Twenty-three patients with TLE and 23 patients with extraTLE underwent neuropsychological tests and MRI scans before surgery. The least absolute shrinkage and selection operator were firstly employed for feature selection, and a machine learning approach with neuropsychological tests was employed to classify TLE using leave-one-out cross-validation. A generalized linear model was used to analyze the relationship between brain alterations and neuropsychological tests. Results We found that logistic regression with the selected neuropsychological tests generated classification accuracies of 87.0%, with an area under the receiver operating characteristic curve (AUC) of 0.89. Three neuropsychological tests were acquired as significant neuropsychological signatures for the diagnosis of TLE. We also found that the Right-Left Orientation Test difference was related to the superior temporal and the banks of the superior temporal sulcus (bankssts). The Conditional Association Learning Test (CALT) was associated with the cortical thickness difference in the lateral orbitofrontal area between the two groups, and the Component Verbal Fluency Test was associated with the cortical thickness difference in the lateral occipital cortex between the two groups. Conclusion These results showed that machine learning-based classification with the selected neuropsychological data can successfully classify TLE with high accuracy compared to previous studies, which could provide kind of warning sign for surgery candidate of TLE patients. In addition, understanding the mechanism of cognitive behavior by neuroimaging information could assist doctors in the presurgical evaluation of TLE.
Collapse
Affiliation(s)
- Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Kan Deng
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- MSC Clinical and Technical Solutions, Philips Healthcare, Guangzhou, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoyi Lin
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yingtong Wu
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wei Tao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Chuxuan Lin
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yang Yang
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Fuyong Chen
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
13
|
Avcu E, Hwang M, Brown KS, Gow DW. A tale of two lexica: Investigating computational pressures on word representation with neural networks. Front Artif Intell 2023; 6:1062230. [PMID: 37051161 PMCID: PMC10083378 DOI: 10.3389/frai.2023.1062230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction The notion of a single localized store of word representations has become increasingly less plausible as evidence has accumulated for the widely distributed neural representation of wordform grounded in motor, perceptual, and conceptual processes. Here, we attempt to combine machine learning methods and neurobiological frameworks to propose a computational model of brain systems potentially responsible for wordform representation. We tested the hypothesis that the functional specialization of word representation in the brain is driven partly by computational optimization. This hypothesis directly addresses the unique problem of mapping sound and articulation vs. mapping sound and meaning. Results We found that artificial neural networks trained on the mapping between sound and articulation performed poorly in recognizing the mapping between sound and meaning and vice versa. Moreover, a network trained on both tasks simultaneously could not discover the features required for efficient mapping between sound and higher-level cognitive states compared to the other two models. Furthermore, these networks developed internal representations reflecting specialized task-optimized functions without explicit training. Discussion Together, these findings demonstrate that different task-directed representations lead to more focused responses and better performance of a machine or algorithm and, hypothetically, the brain. Thus, we imply that the functional specialization of word representation mirrors a computational optimization strategy given the nature of the tasks that the human brain faces.
Collapse
Affiliation(s)
- Enes Avcu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Kevin Scott Brown
- Department of Pharmaceutical Sciences and School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - David W. Gow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital, Charlestown, MA, United States
- Department of Psychology, Salem State University, Salem, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States
| |
Collapse
|
14
|
Navarro-Guerrero N, Toprak S, Josifovski J, Jamone L. Visuo-haptic object perception for robots: an overview. Auton Robots 2023. [DOI: 10.1007/s10514-023-10091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractThe object perception capabilities of humans are impressive, and this becomes even more evident when trying to develop solutions with a similar proficiency in autonomous robots. While there have been notable advancements in the technologies for artificial vision and touch, the effective integration of these two sensory modalities in robotic applications still needs to be improved, and several open challenges exist. Taking inspiration from how humans combine visual and haptic perception to perceive object properties and drive the execution of manual tasks, this article summarises the current state of the art of visuo-haptic object perception in robots. Firstly, the biological basis of human multimodal object perception is outlined. Then, the latest advances in sensing technologies and data collection strategies for robots are discussed. Next, an overview of the main computational techniques is presented, highlighting the main challenges of multimodal machine learning and presenting a few representative articles in the areas of robotic object recognition, peripersonal space representation and manipulation. Finally, informed by the latest advancements and open challenges, this article outlines promising new research directions.
Collapse
|
15
|
Lima B, Florentino MM, Fiorani M, Soares JGM, Schmidt KE, Neuenschwander S, Baron J, Gattass R. Cortical maps as a fundamental neural substrate for visual representation. Prog Neurobiol 2023; 224:102424. [PMID: 36828036 DOI: 10.1016/j.pneurobio.2023.102424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/20/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Visual perception is the product of serial hierarchical processing, parallel processing, and remapping on a dynamic network involving several topographically organized cortical visual areas. Here, we will focus on the topographical organization of cortical areas and the different kinds of visual maps found in the primate brain. We will interpret our findings in light of a broader representational framework for perception. Based on neurophysiological data, our results do not support the notion that vision can be explained by a strict representational model, where the objective visual world is faithfully represented in our brain. On the contrary, we find strong evidence that vision is an active and constructive process from the very initial stages taking place in the eye and from the very initial stages of our development. A constructive interplay between perceptual and motor systems (e.g., during saccadic eye movements) is actively learnt from early infancy and ultimately provides our fluid stable visual perception of the world.
Collapse
Affiliation(s)
- Bruss Lima
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Maria M Florentino
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mario Fiorani
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Juliana G M Soares
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Kerstin E Schmidt
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Sergio Neuenschwander
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Jerome Baron
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ricardo Gattass
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
16
|
Hong TY, Yang CJ, Shih CH, Fan SF, Yeh TC, Yu HY, Chen LF, Hsieh JC. Enhanced intrinsic functional connectivity in the visual system of visual artist: Implications for creativity. Front Neurosci 2023; 17:1114771. [PMID: 36908805 PMCID: PMC9992720 DOI: 10.3389/fnins.2023.1114771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction This study sought to elucidate the cognitive traits of visual artists (VAs) from the perspective of visual creativity and the visual system (i.e., the most fundamental neural correlate). Methods We examined the local and long-distance intrinsic functional connectivity (FC) of the visual system to unravel changes in brain traits among VAs. Twenty-seven university students majoring in visual arts and 27 non-artist controls were enrolled. Results VAs presented enhanced local FC in the right superior parietal lobule, right precuneus, left inferior temporal gyrus (ITG), left superior parietal lobule, left angular gyrus, and left middle occipital gyrus. VAs also presented enhanced FC with the ITG that targeted the visual area (occipital gyrus and cuneus), which appears to be associated with visual creativity. Discussion The visual creativity of VAs was correlated with strength of intrinsic functional connectivity in the visual system. Learning-induced neuroplasticity as a trait change observed in VAs can be attributed to the macroscopic consolidation of consociated neural circuits that are engaged over long-term training in the visual arts and aesthetic experience. The consolidated network can be regarded as virtuoso-specific neural fingerprint.
Collapse
Affiliation(s)
- Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Fen Fan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
17
|
Li VJ, Chorghay Z, Ruthazer ES. A Guide for the Multiplexed: The Development of Visual Feature Maps in the Brain. Neuroscience 2023; 508:62-75. [PMID: 35952996 DOI: 10.1016/j.neuroscience.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
Neural maps are found ubiquitously in the brain, where they encode a wide range of behaviourally relevant features into neural space. Developmental studies have shown that animals devote a great deal of resources to establish consistently patterned organization in neural circuits throughout the nervous system, but what purposes maps serve beneath their often intricate appearance and composition is a topic of active debate and exploration. In this article, we review the general mechanisms of map formation, with a focus on the visual system, and then survey notable organizational properties of neural maps: the multiplexing of feature representations through a nested architecture, the interspersing of fine-scale heterogeneity within a globally smooth organization, and the complex integration at the microcircuit level that enables a high dimensionality of information encoding. Finally, we discuss the roles of maps in cortical functions, including input segregation, feature extraction and routing of circuit outputs for higher order processing, as well as the evolutionary basis for the properties we observe in neural maps.
Collapse
Affiliation(s)
- Vanessa J Li
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Zahraa Chorghay
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
18
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
19
|
Prestimulus oscillatory brain activity interacts with evoked recurrent processing to facilitate conscious visual perception. Sci Rep 2022; 12:22126. [PMID: 36550141 PMCID: PMC9780344 DOI: 10.1038/s41598-022-25720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated whether prestimulus alpha-band oscillatory activity and stimulus-elicited recurrent processing interact to facilitate conscious visual perception. Participants tried to perceive a visual stimulus that was perceptually masked through object substitution masking (OSM). We showed that attenuated prestimulus alpha power was associated with greater negative-polarity stimulus-evoked ERP activity that resembled the visual awareness negativity (VAN), previously argued to reflect recurrent processing related to conscious perception. This effect, however, was not associated with better perception. Instead, when prestimulus alpha power was elevated, a preferred prestimulus alpha phase was associated with a greater VAN-like negativity, which was then associated with better cue perception. Cue perception was worse when prestimulus alpha power was elevated but the stimulus occurred at a nonoptimal prestimulus alpha phase and the VAN-like negativity was low. Our findings suggest that prestimulus alpha activity at a specific phase enables temporally selective recurrent processing that facilitates conscious perception in OSM.
Collapse
|
20
|
Walia P, Fu Y, Norfleet J, Schwaitzberg SD, Intes X, De S, Cavuoto L, Dutta A. Error-related brain state analysis using electroencephalography in conjunction with functional near-infrared spectroscopy during a complex surgical motor task. Brain Inform 2022; 9:29. [PMID: 36484977 PMCID: PMC9733771 DOI: 10.1186/s40708-022-00179-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Error-based learning is one of the basic skill acquisition mechanisms that can be modeled as a perception-action system and investigated based on brain-behavior analysis during skill training. Here, the error-related chain of mental processes is postulated to depend on the skill level leading to a difference in the contextual switching of the brain states on error commission. Therefore, the objective of this paper was to compare error-related brain states, measured with multi-modal portable brain imaging, between experts and novices during the Fundamentals of Laparoscopic Surgery (FLS) "suturing and intracorporeal knot-tying" task (FLS complex task)-the most difficult among the five psychomotor FLS tasks. The multi-modal portable brain imaging combined functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) for brain-behavior analysis in thirteen right-handed novice medical students and nine expert surgeons. The brain state changes were defined by quasi-stable EEG scalp topography (called microstates) changes using 32-channel EEG data acquired at 250 Hz. Six microstate prototypes were identified from the combined EEG data from experts and novices during the FLS complex task that explained 77.14% of the global variance. Analysis of variance (ANOVA) found that the proportion of the total time spent in different microstates during the 10-s error epoch was significantly affected by the skill level (p < 0.01), the microstate type (p < 0.01), and the interaction between the skill level and the microstate type (p < 0.01). Brain activation based on the slower oxyhemoglobin (HbO) changes corresponding to the EEG band power (1-40 Hz) changes were found using the regularized temporally embedded Canonical Correlation Analysis of the simultaneously acquired fNIRS-EEG signals. The HbO signal from the overlying the left inferior frontal gyrus-opercular part, left superior frontal gyrus-medial orbital, left postcentral gyrus, left superior temporal gyrus, right superior frontal gyrus-medial orbital cortical areas showed significant (p < 0.05) difference between experts and novices in the 10-s error epoch. We conclude that the difference in the error-related chain of mental processes was the activation of cognitive top-down attention-related brain areas, including left dorsolateral prefrontal/frontal eye field and left frontopolar brain regions, along with a 'focusing' effect of global suppression of hemodynamic activation in the experts, while the novices had a widespread stimulus(error)-driven hemodynamic activation without the 'focusing' effect.
Collapse
Affiliation(s)
- Pushpinder Walia
- grid.273335.30000 0004 1936 9887Neuroengineering and Informatics for Rehabilitation Laboratory, Department of Biomedical Engineering, University at Buffalo, Buffalo, USA
| | - Yaoyu Fu
- grid.273335.30000 0004 1936 9887Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, USA
| | - Jack Norfleet
- U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, USA
| | - Steven D. Schwaitzberg
- grid.273335.30000 0004 1936 9887University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Xavier Intes
- grid.33647.350000 0001 2160 9198Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY USA ,grid.33647.350000 0001 2160 9198Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA
| | - Suvranu De
- grid.33647.350000 0001 2160 9198Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY USA ,grid.33647.350000 0001 2160 9198Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA
| | - Lora Cavuoto
- grid.273335.30000 0004 1936 9887Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, USA
| | - Anirban Dutta
- grid.36511.300000 0004 0420 4262Neuroengineering and Informatics for Rehabilitation and Simulation-Based Learning, University of Lincoln, Lincoln, UK
| |
Collapse
|
21
|
Marcen-Cinca N, Sanchez X, Otin S, Cimarras-Otal C, Bataller-Cervero AV. Visual Perception in Expert Athletes: The Case of Rock Climbers. Front Psychol 2022; 13:903518. [PMID: 35911052 PMCID: PMC9330107 DOI: 10.3389/fpsyg.2022.903518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of the present study was to examine the visual perception system in expert climbers through a psychophysical optical test in a cross-sectional study. Twenty-seven male participants with an International Rock Climbing Research Association (IRCRA) best on-sight lead skill level ranging between 18 and 27 and a best red-point level ranging between 18 and 29 completed a series of psychophysical optic tests assessing their visual field, visual acuity, and contrast sensitivity. Climbers were divided by their best red-pointed lead level, and, following IRCRA recommendations, two groups were created: an advanced group (IRCRA redpoint level between 18 and 23), and an elite-high elite group (IRCRA redpoint level between 24 and 29). The elite group presented more training days per week (5.25 ± 1.28), best on-sighted lead level (24.63 ± 1.92 IRCRA), and best red-pointed lead level (26.63 ± 2.56 IRCRA) than the advanced group (3.67 ± 0.91 training days per week, 19.50 ± 1.04 IRCRA on-sighted level and 20.67 ± 1.57 IRCRA red-pointed level). Better visual perception outputs were produced by the group of elite climbers in visual field tests; no differences were observed between the two groups for visual acuity and contrast sensitivity tests. Overall, findings indicate that best climbers performed better at the visual perception tasks that tested their visual field. Such better perception from best climbers is discussed given (1) the greater time they spend coercing the visual system during practicing climbing and (2) the specific complexity of the stimuli as they are confronted to harder routes where holds are less perceptible and the time to find best hold sequences is constrained.
Collapse
Affiliation(s)
- Noel Marcen-Cinca
- Department of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Spain
- *Correspondence: Noel Marcen-Cinca,
| | - Xavier Sanchez
- Université d’Orléans, Complexité, Innovation et Activités Motrices et Sportives (CIAMS), Orléans, France
- Université Paris-Saclay, Complexité, Innovation et Activités Motrices et Sportives (CIAMS), Orsay, France
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Sofia Otin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Health Sciences Institute (IIS Aragón), Zaragoza, Spain
- Department of Applied Physics, University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
22
|
Misser SK, Lotz JW, van Toorn R, Mchunu N, Archary M, Barkovich AJ. Thalamus L-Sign: A Potential Biomarker of Neonatal Partial, Prolonged Hypoxic-Ischemic Brain Injury or Hypoglycemic Encephalopathy? AJNR Am J Neuroradiol 2022; 43:919-925. [PMID: 35589136 DOI: 10.3174/ajnr.a7511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Considerable overlap exists in the MR imaging features of hypoglycemic injury and hypoxic-ischemic brain injury, with similar predilections for the occipital and parietal lobes. In partial, prolonged hypoxia-ischemia, there is cortical destruction at the interarterial watershed zones, and in concomitant hypoglycemia and hypoxia-ischemia, an exaggerated final common pathway injury occurs. We interrogated secondary white matter tract-based thalamic injury as a tool to separate pure injuries in each group. MATERIALS AND METHODS A retrospective observational study of the MRIs of 320 children with a history of hypoxia-ischemia and/or hypoglycemia was undertaken with 3 major subgroups: 1) watershed-type hypoxic-ischemic injury, 2) neonatal hypoglycemia, and 3) both perinatal hypoxia-ischemia and proved hypoglycemia. Cerebral and thalamic injuries were assessed, particularly hyperintensity of the posterolateral margin of the thalami. A modified Poisson regression model was used to assess factors associated with such thalamic injury. RESULTS Parieto-occipital injuries occurred commonly in patients with hypoglycemia and/or hypoxia-ischemia. Eighty-five of 99 (86%) patients with partial, prolonged hypoxia-ischemia exhibited the thalamus L-sign. This sign was also observed in patients who had both hypoglycemia and hypoxia-ischemia, predominantly attributable to the latter. Notably, the risk of a thalamus L-sign injury was 2.79 times higher when both the parietal and occipital lobes were injured compared with when they were not involved (95% CI, 1.25-6.23; P = .012). The thalamus L-sign was not depicted in patients with pure hypoglycemia. CONCLUSIONS We propose the thalamus L-sign as a biomarker of partial, prolonged hypoxia-ischemia, which is exaggerated in combined hypoglycemic/hypoxic-ischemic injury.
Collapse
Affiliation(s)
- S K Misser
- From the Departments of Radiology (S.K.M.) .,Lake Smit and Partners Inc (S.K.M.), Durban, South Africa
| | - J W Lotz
- Departments of Radiodiagnosis (J.W.L.)
| | - R van Toorn
- Paediatrics and Child Health (R.v.T.), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - N Mchunu
- Biostatistics Research Unit (N.M.), South African Medical Research Council, Durban, South Africa.,School of Mathematics, Statistics and Computer Sciences, (N.M.), University of KwaZulu-Natal, Pietermaritzburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (N.M.), Urban, South Africa
| | - M Archary
- Pediatrics (M.A.), Faculty of Health Sciences, University of KwaZulu-Natal, Nelson R Mandela School of Medicine, Durban, South Africa
| | - A J Barkovich
- School of Medicine (A.J.B.), University of California, San Francisco, San Francisco, California
| |
Collapse
|
23
|
van der Zee YJ, Stiers PLJ, Evenhuis HM. Object Recognition and Dorsal Stream Vulnerabilities in Children With Early Brain Damage. Front Hum Neurosci 2022; 16:733055. [PMID: 35634210 PMCID: PMC9133330 DOI: 10.3389/fnhum.2022.733055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Aim Visual functions of the dorsal stream are considered vulnerable in children with early brain damage. Considering the recognition of objects in suboptimal representations a dorsal stream dysfunction, we examined whether children with early brain damage and impaired object recognition had either general or selective dorsal stream dysfunctions. Method In a group of children with early brain damage (n = 48) we evaluated the dorsal stream functioning. To determine whether these patients had an increased risk of a dorsal stream dysfunction we compared the percentage of patients with impaired object recognition, assessed with the L94, with the estimated base rate. Then we evaluated the performance levels on motion perception, visual attention and visuomotor tasks in patients with (n = 18) and without (n = 11) object recognition abnormalities. A general dorsal stream dysfunction was considered present if a patient showed at least one abnormally low score in two out of three additional dorsal stream functions. Results Six of the eighteen (33.3%) patients with object recognition problems scored abnormally low on at least two additional dorsal stream functions. This was significantly higher than the base rate (p = 0.01). The difference of 24.1% between the patients with and without object recognition problems was not significant. Of the patients with object recognition problems 72.2% had at least 1 dorsal weakness, whereas this was only the case in 27.3% of patients without object recognition problems. Compared to patients with normal object recognition, patients with object recognition problems scored significantly more abnormally low on motion perception and visual attention (ps = 0.03) but did not differ on visuomotor skills. Conclusion Children with object recognition problems seem at risk for other dorsal stream dysfunctions, but dysfunctions might be rather specific than general. Multiple functions/aspects should be evaluated in neuropsychological assessment of children at risk.
Collapse
Affiliation(s)
- Ymie J. van der Zee
- Royal Dutch Visio, Rotterdam, Netherlands
- Department of General Practice, Intellectual Disability Medicine, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Ymie J. van der Zee,
| | - Peter L. J. Stiers
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
| | - Heleen M. Evenhuis
- Department of General Practice, Intellectual Disability Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
24
|
Sedigh-Sarvestani M, Fitzpatrick D. What and Where: Location-Dependent Feature Sensitivity as a Canonical Organizing Principle of the Visual System. Front Neural Circuits 2022; 16:834876. [PMID: 35498372 PMCID: PMC9039279 DOI: 10.3389/fncir.2022.834876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Traditionally, functional representations in early visual areas are conceived as retinotopic maps preserving ego-centric spatial location information while ensuring that other stimulus features are uniformly represented for all locations in space. Recent results challenge this framework of relatively independent encoding of location and features in the early visual system, emphasizing location-dependent feature sensitivities that reflect specialization of cortical circuits for different locations in visual space. Here we review the evidence for such location-specific encoding including: (1) systematic variation of functional properties within conventional retinotopic maps in the cortex; (2) novel periodic retinotopic transforms that dramatically illustrate the tight linkage of feature sensitivity, spatial location, and cortical circuitry; and (3) retinotopic biases in cortical areas, and groups of areas, that have been defined by their functional specializations. We propose that location-dependent feature sensitivity is a fundamental organizing principle of the visual system that achieves efficient representation of positional regularities in visual experience, and reflects the evolutionary selection of sensory and motor circuits to optimally represent behaviorally relevant information. Future studies are necessary to discover mechanisms underlying joint encoding of location and functional information, how this relates to behavior, emerges during development, and varies across species.
Collapse
|
25
|
George GC, Keding TJ, Heyn SA, Herringa RJ. Longitudinal hippocampal circuit change differentiates persistence and remission of pediatric posttraumatic stress disorder. Depress Anxiety 2022; 39:8-18. [PMID: 34843625 PMCID: PMC8763137 DOI: 10.1002/da.23229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Previous studies have identified functional brain abnormalities in pediatric posttraumatic stress disorder (pPTSD) suggesting altered frontoparietal-subcortical function during emotion processing. However, little is known about how the brain functionally changes over time in recovery versus the persistence of pPTSD. METHODS This longitudinal study recruited 23 youth with PTSD and 28 typically developing (TD) youth (ages: 8.07-17.99). Within the PTSD group, nine remitted by the 1-year follow-up (Remit) while the remaining 14 persisted (PTSD). At each visit, youth completed an emotional processing task in which they viewed threat and neutral images during functional magnetic resonance imaging (fMRI). Voxelwise activation analyses using linear mixed-effects regression were conducted using a group (TD, Remit, PTSD) by time (baseline, follow-up) by valence (threat, neutral) design. Based on activation findings, a subsequent analysis of hippocampal functional connectivity was performed using a similar model. RESULTS PTSD youth showed significantly increasing hippocampal activation to threatening images compared to TD youth, while the Remit group showed more similar patterns to TD youth. Subsequent hippocampal functional connectivity analyses reveal the Remit group showed increasing functional connectivity between the hippocampus and visual cortex (V4) while viewing threat stimuli. CONCLUSIONS These findings represent one of the first preliminary reports of functional brain substrates of persistence and remission in pPTSD. Notably, increased hippocampal activation to threat and decreased connectivity in the hippocampal-V4 network over time may contribute to persistence in pPTSD. These findings suggest potential biomarkers that could be utilized to advance the treatment of pediatric PTSD.
Collapse
Affiliation(s)
- Grace C. George
- Neuroscience & Public Policy Program, University of Wisconsin-Madison, Madison, WI, USA,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA,Department of Psychiatry, BRAVE Youth Lab, 6001 Research Park Blvd., Madison, WI 53719, USA
| | - Taylor J. Keding
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA,Department of Psychiatry, BRAVE Youth Lab, 6001 Research Park Blvd., Madison, WI 53719, USA
| | - Sara A. Heyn
- Department of Psychiatry, BRAVE Youth Lab, 6001 Research Park Blvd., Madison, WI 53719, USA
| | - Ryan J. Herringa
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA,Department of Psychiatry, BRAVE Youth Lab, 6001 Research Park Blvd., Madison, WI 53719, USA
| |
Collapse
|
26
|
Dorsal visual stream is preferentially engaged during externally guided action selection in Parkinson Disease. Clin Neurophysiol 2021; 136:237-246. [PMID: 35012844 PMCID: PMC8941338 DOI: 10.1016/j.clinph.2021.11.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/01/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE In patients with Parkinson Disease (PD), self-imitated or internally cued (IC) actions are thought to be compromised by the disease process, as exemplified by impairments in action initiation. In contrast, externally-cued (EC) actions which are made in response to sensory prompts can restore a remarkable degree of movement capability in PD, particularly alleviating freezing-of-gait. This study investigates the electrophysiological underpinnings of movement facilitation in PD through visuospatial cuing, with particular attention to the dynamics within the posterior parietal cortex (PPC) and lateral premotor cortex (LPMC) axis of the dorsal visual stream. METHODS Invasive cortical recordings over the PPC and LPMC were obtained during deep brain stimulation lead implantation surgery. Thirteen PD subjects performed an action selection task, which was constituted by left or right joystick movement with directional visual cuing in the EC condition and internally generated direction selection in the IC condition. Time-resolved neural activities within and between the PPC and LPMC were compared between EC and IC conditions. RESULTS Reaction times (RT) were significantly faster in the EC condition relative to the IC condition (paired t-test, p = 0.0015). PPC-LPMC inter-site phase synchrony within the β-band (13-35 Hz) was significantly greater in the EC relative to the IC condition. Greater PPC-LPMC β debiased phase lag index (dwPLI) prior to movement onset was correlated with faster reaction times only in the EC condition. Multivariate granger causality (GC) was greater in the EC condition relative to the IC condition, prior to and during movement. CONCLUSION Relative to IC actions, we report relative increase in inter-site phase synchrony and directional PPC to LPMC connectivity in the β-band during preparation and execution of EC actions. Furthermore, increased strength of connectivity is predictive of faster RT, which are pathologically slow in PD patients. Stronger engagement of the PPC-LPMC cortical network by an EC specifically through the channel of β-modulation is implicated in correcting the pathological slowing of action initiation seen in Parkinson's patients. SIGNIFICANCE These findings shed light on the electrophysiological mechanisms that underlie motor facilitation in PD patients through visuospatial cuing.
Collapse
|
27
|
Sedigh-Sarvestani M, Lee KS, Jaepel J, Satterfield R, Shultz N, Fitzpatrick D. A sinusoidal transformation of the visual field is the basis for periodic maps in area V2. Neuron 2021; 109:4068-4079.e6. [PMID: 34687665 DOI: 10.1016/j.neuron.2021.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Retinotopic maps of many visual areas are thought to follow the fundamental principles described for the primary visual cortex (V1), where nearby points on the retina map to nearby points on the surface of V1, and orthogonal axes of the retinal surface are represented along orthogonal axes of the cortical surface. Here we demonstrate a striking departure from this mapping in the secondary visual area (V2) of the tree shrew best described as a sinusoidal transformation of the visual field. This sinusoidal topography is ideal for achieving uniform coverage in an elongated area like V2, as predicted by mathematical models designed for wiring minimization, and provides a novel explanation for periodic banded patterns of intra-cortical connections and functional response properties in V2 of tree shrews as well as several other species. Our findings suggest that cortical circuits flexibly implement solutions to sensory surface representation, with dramatic consequences for large-scale cortical organization.
Collapse
Affiliation(s)
- Madineh Sedigh-Sarvestani
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| | - Kuo-Sheng Lee
- Department of Basic Neurosciences, University of Geneva, Geneva 1211, Switzerland
| | - Juliane Jaepel
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Rachel Satterfield
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Nicole Shultz
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - David Fitzpatrick
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| |
Collapse
|
28
|
Ptito M, Bleau M, Bouskila J. The Retina: A Window into the Brain. Cells 2021; 10:cells10123269. [PMID: 34943777 PMCID: PMC8699497 DOI: 10.3390/cells10123269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maurice Ptito
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada; (M.B.); (J.B.)
- Department of Neuroscience, Copenhagen University, 2200 Copenhagen, Denmark
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Correspondence:
| | - Maxime Bleau
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada; (M.B.); (J.B.)
| | - Joseph Bouskila
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada; (M.B.); (J.B.)
| |
Collapse
|
29
|
Sun C, Chen J, Chen Y, Tang R. The Influence of Induced Emotions on Distance and Size Perception and on the Grip Scaling During Grasping. Front Psychol 2021; 12:651885. [PMID: 34650465 PMCID: PMC8507847 DOI: 10.3389/fpsyg.2021.651885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that our perception of stimulus properties can be affected by the emotional nature of the stimulus. It is not clear, however, how emotions affect visually-guided actions toward objects. To address this question, we used toy rats, toy squirrels, and wooden blocks to induce negative, positive, and neutral emotions, respectively. Participants were asked to report the perceived distance and the perceived size of a target object resting on top of one of the three emotion-inducing objects; or to grasp the same target object either without visual feedback (open-loop) or with visual feedback (closed-loop) of both the target object and their grasping hand during the execution of grasping. We found that the target object was perceived closer and larger, but was grasped with a smaller grip aperture in the rat condition than in the squirrel and the wooden-block conditions when no visual feedback was available. With visual feedback present, this difference in grip aperture disappeared. These results showed that negative emotion influences both perceived size and grip aperture, but in opposite directions (larger perceived size but smaller grip aperture) and its influence on grip aperture could be corrected by visual feedback, which revealed different effects of emotion to perception and action. Our results have implications on the understanding of the relationship between perception and action in emotional condition, which showed the novel difference from previous theories.
Collapse
Affiliation(s)
- Chuyang Sun
- Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China
| | - Juan Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China
| | - Yuting Chen
- Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China
| | - Rixin Tang
- Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Agren T, Hoppe JM, Singh L, Holmes EA, Rosén J. The neural basis of Tetris gameplay: implicating the role of visuospatial processing. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-02081-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractTetris is not only a widely used entertaining computer game, but has been used as a component in emerging psychological interventions targeting dysfunctional mental imagery, e.g., intrusive memories and imagery-based cravings. However, little is known about the neurobiological mechanisms underlying these interventions. Tetris gameplay has been hypothesized to disrupt dysfunctional mental imagery (e.g., imagery-based intrusive memories of adverse events) and cravings (e.g., substance use) by taxing visuospatial working memory. In line with this, the present study aimed to characterize brain areas involved in the visuospatial aspects of Tetris gameplay, by controlling for motor activity (button presses) and using gameplay instructions emphasizing mental rotation. Participants (N = 28) received mental rotation instructions and thereafter either played Tetris, or only pressed buttons as if playing Tetris (motor activity), while undergoing functional magnetic resonance imaging. Tetris gameplay (when using mental rotation instructions and controlling for motor activity) robustly activated brain areas located in the ventral and dorsal stream, with maximum peak activation in the inferior and mid temporal gyrus. To the best of our knowledge, this is the first study to characterize brain areas specifically associated with the visuospatial aspects of Tetris gameplay, by controlling for motor activity and when using mental rotation instructions. Results demonstrate that engaging in Tetris gameplay recruits an extensive brain circuitry previously tied to visuospatial processing. Thus, findings are consistent with the use of Tetris as an imagery-competing task as one of several components of emerging interventions targeting dysfunctional mental imagery.
Collapse
|
31
|
Wang Y, Sun K, Liu Z, Chen G, Jia Y, Zhong S, Pan J, Huang L, Tian J. Classification of Unmedicated Bipolar Disorder Using Whole-Brain Functional Activity and Connectivity: A Radiomics Analysis. Cereb Cortex 2021; 30:1117-1128. [PMID: 31408101 DOI: 10.1093/cercor/bhz152] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to develop and validate a method of disease classification for bipolar disorder (BD) by functional activity and connectivity using radiomics analysis. Ninety patients with unmedicated BD II as well as 117 healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). A total of 4 types of 7018 features were extracted after preprocessing, including mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), resting-state functional connectivity (RSFC), and voxel-mirrored homotopic connectivity (VMHC). Then, predictive features were selected by Mann-Whitney U test and removing variables with a high correlation. Least absolute shrinkage and selection operator (LASSO) method was further used to select features. At last, support vector machine (SVM) model was used to estimate the state of each subject based on the selected features after LASSO. Sixty-five features including 54 RSFCs, 7 mALFFs, 1 mReHo, and 3 VMHCs were selected. The accuracy and area under curve (AUC) of the SVM model built based on the 65 features is 87.3% and 0.919 in the training dataset, respectively, and the accuracy and AUC of this model validated in the validation dataset is 80.5% and 0.838, respectively. These findings demonstrate a valid radiomics approach by rs-fMRI can identify BD individuals from healthy controls with a high classification accuracy, providing the potential adjunctive approach to clinical diagnostic systems.
Collapse
Affiliation(s)
- Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Kai Sun
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100190, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- University of Chinese Academy of Science, Beijing, 100190, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100190, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|
32
|
Latini F, Fahlström M, Marklund N, Feresiadou A. White matter abnormalities in a patient with visual snow syndrome: New evidence from a diffusion tensor imaging study. Eur J Neurol 2021; 28:2789-2793. [PMID: 33960084 DOI: 10.1111/ene.14903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Visual snow syndrome (VSS) is a neurological condition characterized by flickering dots throughout the entire visual field. Both the pathophysiology and possible location of VSS are still under debate. White matter abnormalities were investigated using diffusion tensor imaging (DTI) in a patient with VSS. METHODS A 28-year-old patient with VSS and 10 healthy controls were investigated with DTI. Diffusion parametric maps were calculated and reconstructed using q-space diffeomorphic reconstruction. White matter pathways of the dorsal, ventral, integrative visual streams and thalamic connectivity were tracked. Then, they were applied to each subject's parameter map, stretched to the same length, and sampled along the tracts for regional analyses of DTI parameters. RESULTS Compared with healthy controls, our patient displayed higher axial diffusivity (AD) and radial diffusivity (RD) in the dorsal visual stream (cingulum, arcuate fasciculus, horizontal indirect anterior segment of the superior longitudinal fasciculus), in the ventral visual stream (fronto-occipital fasciculus, inferior longitudinal fasciculus) and in the integrative visual stream (indirect posterior component of the superior longitudinal fasciculus, vertical occipital fasciculus). Higher AD and RD were also detected in acoustic and optic radiations, and in thalamic radiations distal to the thalamus. CONCLUSION This VSS patient displayed multiple, bilateral white matter changes in the temporo-parieto-occipital junction in white matter pathways related to vision. We encourage the study of white matter pathology using DTI in complex neurological syndromes including VSS.
Collapse
Affiliation(s)
- Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Amalia Feresiadou
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Yogev-Seligmann G, Eisenstein T, Ash E, Giladi N, Sharon H, Nachman S, Bregman N, Kodesh E, Hendler T, Lerner Y. Neurocognitive Plasticity Is Associated with Cardiorespiratory Fitness Following Physical Exercise in Older Adults with Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2021; 81:91-112. [PMID: 33720893 DOI: 10.3233/jad-201429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aerobic training has been shown to promote structural and functional neurocognitive plasticity in cognitively intact older adults. However, little is known about the neuroplastic potential of aerobic exercise in individuals at risk of Alzheimer's disease (AD) and dementia. OBJECTIVE We aimed to explore the effect of aerobic exercise intervention and cardiorespiratory fitness improvement on brain and cognitive functions in older adults with amnestic mild cognitive impairment (aMCI). METHODS 27 participants with aMCI were randomized to either aerobic training (n = 13) or balance and toning (BAT) control group (n = 14) for a 16-week intervention. Pre- and post-assessments included functional MRI experiments of brain activation during associative memory encoding and neural synchronization during complex information processing, cognitive evaluation using neuropsychological tests, and cardiorespiratory fitness assessment. RESULTS The aerobic group demonstrated increased frontal activity during memory encoding and increased neural synchronization in higher-order cognitive regions such as the frontal cortex and temporo-parietal junction (TPJ) following the intervention. In contrast, the BAT control group demonstrated decreased brain activity during memory encoding, primarily in occipital, temporal, and parietal areas. Increases in cardiorespiratory fitness were associated with increases in brain activationin both the left inferior frontal and precentral gyri. Furthermore, changes in cardiorespiratory fitness were also correlated with changes in performance on several neuropsychological tests. CONCLUSION Aerobic exercise training may result in functional plasticity of high-order cognitive areas, especially, frontal regions, among older adults at risk of AD and dementia. Furthermore, cardiorespiratory fitness may be an important mediating factor of the observed changes in neurocognitive functions.
Collapse
Affiliation(s)
- Galit Yogev-Seligmann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Elissa Ash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Haggai Sharon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Pain Management & Neuromodulation Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Institute of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shikma Nachman
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Bregman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Einat Kodesh
- Department of Physical Therapy Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Yoshioka TW, Doi T, Abdolrahmani M, Fujita I. Specialized contributions of mid-tier stages of dorsal and ventral pathways to stereoscopic processing in macaque. eLife 2021; 10:58749. [PMID: 33625356 PMCID: PMC7959693 DOI: 10.7554/elife.58749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/18/2021] [Indexed: 11/22/2022] Open
Abstract
The division of labor between the dorsal and ventral visual pathways has been well studied, but not often with direct comparison at the single-neuron resolution with matched stimuli. Here we directly compared how single neurons in MT and V4, mid-tier areas of the two pathways, process binocular disparity, a powerful cue for 3D perception and actions. We found that MT neurons transmitted disparity signals more quickly and robustly, whereas V4 or its upstream neurons transformed the signals into sophisticated representations more prominently. Therefore, signaling speed and robustness were traded for transformation between the dorsal and ventral pathways. The key factor in this tradeoff was disparity-tuning shape: V4 neurons had more even-symmetric tuning than MT neurons. Moreover, the tuning symmetry predicted the degree of signal transformation across neurons similarly within each area, implying a general role of tuning symmetry in the stereoscopic processing by the two pathways.
Collapse
Affiliation(s)
- Toshihide W Yoshioka
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, SuitaOsaka, Japan.,Center for Information and Neural Networks, Osaka University and National Institute of Information and Communications Technology, SuitaOsaka, Japan
| | - Takahiro Doi
- Department of Psychology, University of Pennsylvania, Philadelphia, United States
| | - Mohammad Abdolrahmani
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Ichiro Fujita
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, SuitaOsaka, Japan.,Center for Information and Neural Networks, Osaka University and National Institute of Information and Communications Technology, SuitaOsaka, Japan
| |
Collapse
|
35
|
Pan H, Zhang S, Pan D, Ye Z, Yu H, Ding J, Wang Q, Sun Q, Hua T. Characterization of Feedback Neurons in the High-Level Visual Cortical Areas That Project Directly to the Primary Visual Cortex in the Cat. Front Neuroanat 2021; 14:616465. [PMID: 33488364 PMCID: PMC7820340 DOI: 10.3389/fnana.2020.616465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies indicate that top-down influence plays a critical role in visual information processing and perceptual detection. However, the substrate that carries top-down influence remains poorly understood. Using a combined technique of retrograde neuronal tracing and immunofluorescent double labeling, we characterized the distribution and cell type of feedback neurons in cat's high-level visual cortical areas that send direct connections to the primary visual cortex (V1: area 17). Our results showed: (1) the high-level visual cortex of area 21a at the ventral stream and PMLS area at the dorsal stream have a similar proportion of feedback neurons back projecting to the V1 area, (2) the distribution of feedback neurons in the higher-order visual area 21a and PMLS was significantly denser than in the intermediate visual cortex of area 19 and 18, (3) feedback neurons in all observed high-level visual cortex were found in layer II-III, IV, V, and VI, with a higher proportion in layer II-III, V, and VI than in layer IV, and (4) most feedback neurons were CaMKII-positive excitatory neurons, and few of them were identified as inhibitory GABAergic neurons. These results may argue against the segregation of ventral and dorsal streams during visual information processing, and support "reverse hierarchy theory" or interactive model proposing that recurrent connections between V1 and higher-order visual areas constitute the functional circuits that mediate visual perception. Also, the corticocortical feedback neurons from high-level visual cortical areas to the V1 area are mostly excitatory in nature.
Collapse
Affiliation(s)
- Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qin Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
36
|
Foik AT, Scholl LR, Lean GA, Lyon DC. Visual Response Characteristics in Lateral and Medial Subdivisions of the Rat Pulvinar. Neuroscience 2020; 441:117-130. [PMID: 32599121 PMCID: PMC7398122 DOI: 10.1016/j.neuroscience.2020.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
The pulvinar is a higher-order thalamic relay and a central component of the extrageniculate visual pathway, with input from the superior colliculus and visual cortex and output to all of visual cortex. Rodent pulvinar, more commonly called the lateral posterior nucleus (LP), consists of three highly-conserved subdivisions, and offers the advantage of simplicity in its study compared to more subdivided primate pulvinar. Little is known about receptive field properties of LP, let alone whether functional differences exist between different LP subdivisions, making it difficult to understand what visual information is relayed and what kinds of computations the pulvinar might support. Here, we characterized single-cell response properties in two V1 recipient subdivisions of rat pulvinar, the rostromedial (LPrm) and lateral (LPl), and found that a fourth of the cells were selective for orientation, compared to half in V1, and that LP tuning widths were significantly broader. Response latencies were also significantly longer and preferred size more than three times larger on average than in V1; the latter suggesting pulvinar as a source of spatial context to V1. Between subdivisons, LPl cells preferred higher temporal frequencies, whereas LPrm showed a greater degree of direction selectivity and pattern motion detection. Taken together with known differences in connectivity patterns, these results suggest two separate visual feature processing channels in the pulvinar, one in LPl related to higher speed processing which likely derives from superior colliculus input, and the other in LPrm for motion processing derived through input from visual cortex. SIGNIFICANCE STATEMENT: The pulvinar has a perplexing role in visual cognition as no clear link has been found between the functional properties of its neurons and behavioral deficits that arise when it is damaged. The pulvinar, called the lateral posterior nucleus (LP) in rats, is a higher order thalamic relay with input from the superior colliculus and visual cortex and output to all of visual cortex. By characterizing single-cell response properties in anatomically distinct subdivisions we found two separate visual feature processing channels in the pulvinar, one in lateral LP related to higher speed processing which likely derives from superior colliculus input, and the other in rostromedial LP for motion processing derived through input from visual cortex.
Collapse
Affiliation(s)
- Andrzej T Foik
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, United States
| | - Leo R Scholl
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, United States; Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, United States
| | - Georgina A Lean
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, United States; Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, United States
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, United States.
| |
Collapse
|
37
|
Matsuoka K, Makinodan M, Kitamura S, Takahashi M, Yoshikawa H, Yasuno F, Ishida R, Kishimoto N, Yasuda Y, Hashimoto R, Taoka T, Miyasaka T, Kichikawa K, Kishimoto T. Increased Dendritic Orientation Dispersion in the Left Occipital Gyrus is Associated with Atypical Visual Processing in Adults with Autism Spectrum Disorder. Cereb Cortex 2020; 30:5617-5625. [PMID: 32515826 DOI: 10.1093/cercor/bhaa121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
In autism spectrum disorder (ASD), the complexity-specific hypothesis explains that atypical visual processing is attributable to selective functional changes in visual pathways. We investigated dendritic microstructures and their associations with functional connectivity (FC). Participants included 28 individuals with ASD and 29 typically developed persons. We explored changes in neurite orientation dispersion and density imaging (NODDI) and brain areas whose FC was significantly correlated with NODDI parameters in the explored regions of interests. Individuals with ASD showed significantly higher orientation dispersion index (ODI) values in the left occipital gyrus (OG) corresponding to the secondary visual cortex (V2). FC values between the left OG and the left middle temporal gyrus (MTG) were significantly negatively correlated with mean ODI values. The mean ODI values in the left OG were significantly positively associated with low registration of the visual quadrants of the Adolescent/Adult Sensory Profile (AASP), resulting in a significant positive correlation with passive behavioral responses of the AASP visual quadrants; additionally, the FC values between the left OG and the left MTG were significantly negatively associated with reciprocal social interaction. Our results suggest that abnormal V2 dendritic arborization is associated with atypical visual processing by altered intermediation in the ventral visual pathway.
Collapse
Affiliation(s)
- Kiwamu Matsuoka
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.,Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Soichiro Kitamura
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.,Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroaki Yoshikawa
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan.,Department of Psychiatry, Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka 530-0012, Japan.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan.,Department of Psychiatry, Osaka University Medical School, Suita 565-0871, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Toshiteru Miyasaka
- Department of Radiology, Nara Medical University, Kashihara 634-8521, Japan
| | - Kimihiko Kichikawa
- Department of Radiology, Nara Medical University, Kashihara 634-8521, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
38
|
Greene HH, Brown JM, Strauss GP. Shorter fixation durations for up-directed saccades during saccadic exploration: A meta-analysis. J Eye Mov Res 2020; 12:10.16910/jemr.12.8.5. [PMID: 33828778 PMCID: PMC7881898 DOI: 10.16910/jemr.12.8.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Utilizing 23 datasets, we report a meta-analysis of an asymmetry in presaccadic fixation durations for saccades directed above and below eye fixation during saccadic exploration. For inclusion in the meta-analysis, saccadic exploration of complex visual displays had to have been made without gaze-contingent manipulations. Effect sizes for the asymmetry were quantified as Hedge's g. Pooled effect sizes indicated significant asymmetries such that during saccadic exploration in a variety of tasks, presaccadic fixation durations for saccades directed into the upper visual field were reliably shorter than presaccadic fixation durations for saccades into the lower visual field. It is contended that the asymmetry is robust and important for efforts aimed at modelling when a saccade is initiated as a function of ensuing saccade direction.
Collapse
|
39
|
Origin and evolution of human speech: Emergence from a trimodal auditory, visual and vocal network. PROGRESS IN BRAIN RESEARCH 2019; 250:345-371. [PMID: 31703907 DOI: 10.1016/bs.pbr.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, there have been important additions to the classical model of speech processing as originally depicted by the Broca-Wernicke model consisting of an anterior, productive region and a posterior, perceptive region, both connected via the arcuate fasciculus. The modern view implies a separation into a dorsal and a ventral pathway conveying different kinds of linguistic information, which parallels the organization of the visual system. Furthermore, this organization is highly conserved in evolution and can be seen as the neural scaffolding from which the speech networks originated. In this chapter we emphasize that the speech networks are embedded in a multimodal system encompassing audio-vocal and visuo-vocal connections, which can be referred to an ancestral audio-visuo-motor pathway present in nonhuman primates. Likewise, we propose a trimodal repertoire for speech processing and acquisition involving auditory, visual and motor representations of the basic elements of speech: phoneme, observation of mouth movements, and articulatory processes. Finally, we discuss this proposal in the context of a scenario for early speech acquisition in infants and in human evolution.
Collapse
|
40
|
Berga D, Fdez-Vidal XR, Otazu X, Leborán V, Pardo XM. Psychophysical evaluation of individual low-level feature influences on visual attention. Vision Res 2018; 154:60-79. [PMID: 30408434 DOI: 10.1016/j.visres.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
Abstract
In this study we provide the analysis of eye movement behavior elicited by low-level feature distinctiveness with a dataset of synthetically-generated image patterns. Design of visual stimuli was inspired by the ones used in previous psychophysical experiments, namely in free-viewing and visual searching tasks, to provide a total of 15 types of stimuli, divided according to the task and feature to be analyzed. Our interest is to analyze the influences of low-level feature contrast between a salient region and the rest of distractors, providing fixation localization characteristics and reaction time of landing inside the salient region. Eye-tracking data was collected from 34 participants during the viewing of a 230 images dataset. Results show that saliency is predominantly and distinctively influenced by: 1. feature type, 2. feature contrast, 3. temporality of fixations, 4. task difficulty and 5. center bias. This experimentation proposes a new psychophysical basis for saliency model evaluation using synthetic images.
Collapse
Affiliation(s)
- David Berga
- Computer Vision Center, Universitat Autonoma de Barcelona, Spain; Computer Science Department, Universitat Autonoma de Barcelona, Spain.
| | - Xosé R Fdez-Vidal
- Centro de Investigacion en Tecnoloxias da Informacion, Universidade Santiago de Compostela, Spain
| | - Xavier Otazu
- Computer Vision Center, Universitat Autonoma de Barcelona, Spain; Computer Science Department, Universitat Autonoma de Barcelona, Spain
| | - Víctor Leborán
- Centro de Investigacion en Tecnoloxias da Informacion, Universidade Santiago de Compostela, Spain
| | - Xosé M Pardo
- Centro de Investigacion en Tecnoloxias da Informacion, Universidade Santiago de Compostela, Spain
| |
Collapse
|
41
|
Wei Y, Chang M, Womer FY, Zhou Q, Yin Z, Wei S, Zhou Y, Jiang X, Yao X, Duan J, Xu K, Zuo XN, Tang Y, Wang F. Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder. J Affect Disord 2018; 236:266-273. [PMID: 29751242 DOI: 10.1016/j.jad.2018.04.069] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/18/2018] [Accepted: 04/07/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Local functional connectivity (FC) indicates local or short-distance functional interactions and may serve as a neuroimaging marker to investigate the human brain connectome. Local FC alterations suggest a disrupted balance in the local functionality of the whole brain network and are increasingly implicated in schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). METHODS We aim to examine the similarities and differences in the local FC across SZ, BD, and MDD. In total, 537 participants (SZ, 126; BD, 97; MDD, 126; and healthy controls, 188) completed resting-state functional magnetic resonance imaging at a single site. The local FC at resting state was calculated and compared across SZ, BD, and MDD. RESULTS The local FC increased across SZ, BD, and MDD within the bilateral orbital frontal cortex (OFC) and additional region in the left OFC extending to putamen and decreased in the primary visual, auditory, and motor cortices, right supplemental motor area, and bilateral thalami. There was a gradient in the extent of alterations such that SZ > BD > MDD. LIMITATIONS This cross-sectional study cannot consider medications and other clinical variables. CONCLUSIONS These findings indicate a disrupted balance between network integration and segregation in SZ, BD, and MDD, including over-integration via increased local FC in the OFC and diminished segregation of neural processing with the weakening of the local FC in the primary sensory cortices and thalamus. The shared local FC abnormalities across SZ, BD, and MDD may shed new light on the potential biological mechanisms underlying these disorders.
Collapse
Affiliation(s)
- Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Miao Chang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Qian Zhou
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Shengnan Wei
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Yifang Zhou
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xudong Yao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Jia Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xi-Nian Zuo
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100000, PR China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
42
|
Differential Sampling of Visual Space in Ventral and Dorsal Early Visual Cortex. J Neurosci 2018; 38:2294-2303. [PMID: 29382711 DOI: 10.1523/jneurosci.2717-17.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/21/2022] Open
Abstract
A fundamental feature of cortical visual processing is the separation of visual processing for the upper and lower visual fields. In early visual cortex (EVC), the upper visual field is processed ventrally, with the lower visual field processed dorsally. This distinction persists into several category-selective regions of occipitotemporal cortex, with ventral and lateral scene-, face-, and object-selective regions biased for the upper and lower visual fields, respectively. Here, using an elliptical population receptive field (pRF) model, we systematically tested the sampling of visual space within ventral and dorsal divisions of human EVC in both male and female participants. We found that (1) pRFs tend to be elliptical and oriented toward the fovea with distinct angular distributions for ventral and dorsal divisions of EVC, potentially reflecting a radial bias; and (2) pRFs in ventral areas were larger (∼1.5×) and more elliptical (∼1.2×) than those in dorsal areas. These differences potentially reflect a tendency for receptive fields in ventral temporal cortex to overlap the fovea with less emphasis on precise localization and isotropic representation of space compared with dorsal areas. Collectively, these findings suggest that ventral and dorsal divisions of EVC sample visual space differently, likely contributing to and/or stemming from the functional differentiation of visual processing observed in higher-level regions of the ventral and dorsal cortical visual pathways.SIGNIFICANCE STATEMENT The processing of visual information from the upper and lower visual fields is separated in visual cortex. Although ventral and dorsal divisions of early visual cortex (EVC) are commonly assumed to sample visual space equivalently, we demonstrate systematic differences using an elliptical population receptive field (pRF) model. Specifically, we demonstrate that (1) ventral and dorsal divisions of EVC exhibit diverging distributions of pRF angle, which are biased toward the fovea; and (2) ventral pRFs exhibit higher aspect ratios and cover larger areas than dorsal pRFs. These results suggest that ventral and dorsal divisions of EVC sample visual space differently and that such differential sampling likely contributes to different functional roles attributed to the ventral and dorsal pathways, such as object recognition and visually guided attention, respectively.
Collapse
|
43
|
Rizzo JR, Hosseini M, Wong EA, Mackey WE, Fung JK, Ahdoot E, Rucker JC, Raghavan P, Landy MS, Hudson TE. The Intersection between Ocular and Manual Motor Control: Eye-Hand Coordination in Acquired Brain Injury. Front Neurol 2017; 8:227. [PMID: 28620341 PMCID: PMC5451505 DOI: 10.3389/fneur.2017.00227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Acute and chronic disease processes that lead to cerebral injury can often be clinically challenging diagnostically, prognostically, and therapeutically. Neurodegenerative processes are one such elusive diagnostic group, given their often diffuse and indolent nature, creating difficulties in pinpointing specific structural abnormalities that relate to functional limitations. A number of studies in recent years have focused on eye-hand coordination (EHC) in the setting of acquired brain injury (ABI), highlighting the important set of interconnected functions of the eye and hand and their relevance in neurological conditions. These experiments, which have concentrated on focal lesion-based models, have significantly improved our understanding of neurophysiology and underscored the sensitivity of biomarkers in acute and chronic neurological disease processes, especially when such biomarkers are combined synergistically. To better understand EHC and its connection with ABI, there is a need to clarify its definition and to delineate its neuroanatomical and computational underpinnings. Successful EHC relies on the complex feedback- and prediction-mediated relationship between the visual, ocular motor, and manual motor systems and takes advantage of finely orchestrated synergies between these systems in both the spatial and temporal domains. Interactions of this type are representative of functional sensorimotor control, and their disruption constitutes one of the most frequent deficits secondary to brain injury. The present review describes the visually mediated planning and control of eye movements, hand movements, and their coordination, with a particular focus on deficits that occur following neurovascular, neurotraumatic, and neurodegenerative conditions. Following this review, we also discuss potential future research directions, highlighting objective EHC as a sensitive biomarker complement within acute and chronic neurological disease processes.
Collapse
Affiliation(s)
- John-Ross Rizzo
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States.,Department of Neurology, New York University Langone Medical Center, New York, NY, United States
| | - Maryam Hosseini
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Eric A Wong
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Wayne E Mackey
- Department of Psychology and Center for Neural Science, New York University, New York, NY, United States
| | - James K Fung
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Edmond Ahdoot
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Janet C Rucker
- Department of Neurology, New York University Langone Medical Center, New York, NY, United States.,Department of Ophthalmology, New York University Langone Medical Center, New York, NY, United States
| | - Preeti Raghavan
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Michael S Landy
- Department of Psychology and Center for Neural Science, New York University, New York, NY, United States
| | - Todd E Hudson
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States.,Department of Neurology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
44
|
Abstract
Recent years have witnessed a remarkable growth in the way mathematics, informatics, and computer science can process data. In disciplines such as machine learning,
pattern recognition, computer vision, computational neurology, molecular biology,
information retrieval, etc., many new methods have been developed to cope with the
ever increasing amount and complexity of the data. These new methods offer interesting possibilities for processing, classifying and interpreting eye-tracking data. The
present paper exemplifies the application of topological arguments to improve the
evaluation of eye-tracking data. The task of classifying raw eye-tracking data into
saccades and fixations, with a single, simple as well as intuitive argument, described
as coherence of spacetime, is discussed, and the hierarchical ordering of the fixations
into dwells is shown. The method, namely identification by topological characteristics
(ITop), is parameter-free and needs no pre-processing and post-processing of the raw
data. The general and robust topological argument is easy to expand into complex
settings of higher visual tasks, making it possible to identify visual strategies.
Collapse
Affiliation(s)
- Oliver Hein
- Neurological University Clinic Hamburg UKE, Germany
| | | |
Collapse
|