1
|
Gholami-Zanjanbar M, Soleimanian F, Reyhani N, Hajizamani S, Sajadi AE, Ghofrani-Jahromi Z, Vaseghi S. Synaptophysin and GSK-3beta activity in the prefrontal cortex may underlie the effects of REM sleep deprivation and lithium on behavioral functions and memory performance in male rats. Pharmacol Biochem Behav 2024; 245:173894. [PMID: 39413852 DOI: 10.1016/j.pbb.2024.173894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Rapid-eye movement (REM) stage of sleep serves a critical role in processing cognitive and behavioral functions. Evidence shows that REM sleep deprivation (REM SD) strongly affects the mood state and cognitive abilities. However, there are many inconsistent reports. Although the exact molecular mechanisms underlying REM SD effects have not well been discovered, however, molecular factors including those affected synaptic plasticity and mood state may be involved. There are two important molecular factors that have not been well studied: synaptophysin and glycogen synthase kinase-3 beta (GSK-3beta). The present study aimed to investigate the role of synaptophysin and GSK-3beta in the modulation of memory and behavioral changes induced by REM SD and lithium (as a potent GSK-3beta inhibitor and mood stabilizer). Multiple platform apparatus was used to induce REM SD for 48 h. Lithium was injected at the dose of 50 mg/kg, intraperitoneal (i.p.). Locomotor activity, anxiety-like behavior, pain threshold, novel object recognition memory, and synaptophysin and GSK-3beta level in the prefrontal cortex were evaluated. Results showed REM SD increased locomotor activity, decreased pain threshold, impaired novel object recognition memory, decreased synaptophysin and increased GSK-3beta levels. Lithium reversed these effects. Anxiety-like behavior was unaffected. For the first time, the present study showed that GSK-3beta and synaptophysin may be involved in the modulation of behavior and cognition induced by REM SD and lithium. In conclusion, we suggested that GSK-3beta upregulation and synaptophysin downregulation may underlie the deleterious effects of REM SD, while lithium may counteract REM SD effects via restoring the level of both.
Collapse
Affiliation(s)
| | | | - Niloufar Reyhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shadi Hajizamani
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ghofrani-Jahromi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
2
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
3
|
Xu Y, Nie J, Lu C, Hu C, Chen Y, Ma Y, Huang Y, Lu L. Effects and mechanisms of bisphenols exposure on neurodegenerative diseases risk: A systemic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170670. [PMID: 38325473 DOI: 10.1016/j.scitotenv.2024.170670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Environmental bisphenols (BPs) pose a global threat to human health because of their extensive use as additives in plastic products. BP residues are increasing in various environmental media (i.e., water, soil, and indoor dust) and biological and human samples (i.e., serum and brain). Both epidemiological and animal studies have determined an association between exposure to BPs and an increased risk of neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis), including cognitive abnormalities and behavioral disturbances. Hence, understanding the biological responses to different BPs is essential for prevention, and treatment. This study provides an overview of the underlying pathogenic molecular mechanisms as a valuable basis for understanding neurodegenerative disease responses to BPs, including accumulation of misfolded proteins, reduction of tyrosine hydroxylase and dopamine, abnormal hormone signaling, neuronal death, oxidative stress, calcium homeostasis, and inflammation. These findings provide new insights into the neurotoxic potential of BPs and ultimately contribute to a comprehensive health risk evaluation.
Collapse
Affiliation(s)
- Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Nie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenghao Lu
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunlu Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying Ma
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuru Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
Lai S, Wang P, Gong J, Zhang S. New insights into the role of GSK-3β in the brain: from neurodegenerative disease to tumorigenesis. PeerJ 2023; 11:e16635. [PMID: 38107562 PMCID: PMC10722984 DOI: 10.7717/peerj.16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in various tissues and organs. Unlike other kinases, GSK-3 is active under resting conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3 α and GSK-3β isoforms encoded by two homologous genes, namely, GSK3A and GSK3B. GSK-3β is essential for the control of glucose metabolism, signal transduction, and tissue homeostasis. As more than 100 known proteins have been identified as GSK-3β substrates, it is sometimes referred to as a moonlighting kinase. Previous studies have elucidated the regulation modes of GSK-3β. GSK-3β is involved in almost all aspects of brain functions, such as neuronal morphology, synapse formation, neuroinflammation, and neurological disorders. Recently, several comparatively specific small molecules have facilitated the chemical manipulation of this enzyme within cellular systems, leading to the discovery of novel inhibitors for GSK-3β. Despite these advancements, the therapeutic significance of GSK-3β as a drug target is still complicated by uncertainties surrounding the potential of inhibitors to stimulate tumorigenesis. This review provides a comprehensive overview of the intricate mechanisms of this enzyme and evaluates the existing evidence regarding the therapeutic potential of GSK-3β in brain diseases, including Alzheimer's disease, Parkinson's disease, mood disorders, and glioblastoma.
Collapse
Affiliation(s)
- Shenjin Lai
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Li KT, Ji D, Zhou C. Memory rescue and learning in synaptic impaired neuronal circuits. iScience 2023; 26:106931. [PMID: 37534172 PMCID: PMC10391582 DOI: 10.1016/j.isci.2023.106931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 08/04/2023] Open
Abstract
Neuronal impairment is a characteristic of Alzheimer's disease (AD), but its effect on neural activity dynamics underlying memory deficits is unclear. Here, we studied the effects of synaptic impairment on neural activities associated with memory recall, memory rescue, and learning a new memory, in an integrate-and-fire neuronal network. Our results showed that reducing connectivity decreases the neuronal synchronization of memory neurons and impairs memory recall performance. Although, slow-gamma stimulation rescued memory recall and slow-gamma oscillations, the rescue caused a side effect of activating mixed memories. During the learning of a new memory, reducing connectivity caused impairment in storing the new memory, but did not affect previously stored memories. We also explored the effects of other types of impairments including neuronal loss and excitation-inhibition imbalance and the rescue by general increase of excitability. Our results reveal potential computational mechanisms underlying the memory deficits caused by impairment in AD.
Collapse
Affiliation(s)
- Kwan Tung Li
- Department of Physics, Centre for Nonlinear Studies, Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
6
|
Matysek A, Kimmantudawage SP, Feng L, Maier AB. Targeting Impaired Nutrient Sensing via the Glycogen Synthase Kinase-3 Pathway With Therapeutic Compounds to Prevent or Treat Dementia: A Systematic Review. FRONTIERS IN AGING 2022; 3:898853. [PMID: 35923682 PMCID: PMC9341294 DOI: 10.3389/fragi.2022.898853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Background: Dementia is a global challenge with 10 million individuals being diagnosed every year. Currently, there are no established disease-modifying treatments for dementia. Impaired nutrient sensing has been implicated in the pathogenesis of dementia. Compounds that inhibit the glycogen synthase kinase-3 (GSK3) pathway have been investigated as a possible treatment to attenuate the progression of the disease, particularly the suppression of the hyper-phosphorylation process of the tau protein. Aims: Systematically summarizing compounds which have been tested to inhibit the GSK3 pathway to treat cognitive impairment and dementia. Methods: PubMed, Embase and Web of Science databases were searched from inception until 28 July 2021 for articles published in English. Interventional animal studies inhibiting the GSK3 pathway in Alzheimer’s disease (AD), Parkinson’s dementia, Lewy body dementia, vascular dementia, mild cognitive impairment (MCI) and normal cognitive ageing investigating the change in cognition as the outcome were included. The Systematic Review Centre for Laboratory animal Experimentation’s risk of bias tool for animal studies was applied. Results: Out of 4,154 articles, 29 described compounds inhibiting the GSK3 pathway. All studies were based on animal models of MCI, AD or normal cognitive ageing. Thirteen out of 21 natural compounds and five out of nine synthetic compounds tested in MCI and dementia animal models showed an overall positive effect on cognition. No articles reported human studies. The risk of bias was largely unclear. Conclusion: Novel therapeutics involved in the modulation of the GSK3 nutrient sensing pathway have the potential to improve cognitive function. Overall, there is a clear lack of translation from animal models to humans.
Collapse
Affiliation(s)
- Adrian Matysek
- Department of Human Genetics, University of Amsterdam, Amsterdam UMC, University Medical Centers, Amsterdam, Netherlands
| | - Sumudu Perera Kimmantudawage
- Department of Medicine and Aged Care, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Andrea B. Maier
- Department of Medicine and Aged Care, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
- *Correspondence: Andrea B. Maier,
| |
Collapse
|
7
|
Macromolecular structures and proteins interacting with the microtubule associated tau protein. Neuroscience 2022; 518:70-82. [PMID: 35609757 DOI: 10.1016/j.neuroscience.2022.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 12/25/2022]
Abstract
It is well established that neurodegenerative diseases known as tauopathies are characterized by the presence of filamentous forms of phosphorylated tau protein inside neurons. However, the causal relationship between the initial symptoms of a particular disease and the molecular events affecting tau and leading to the appearance of tangles of filamentous forms of this protein remains unknown. Even the main function (or functions) of tau inside neurons is debatable and controversial. Tau seems to be a multifunctional protein. I review here some of the most studied interactions of tau with different macromolecules and proteins, which can be classified according to the structural o functional unit within which the interaction works: Microtubule, Nuclear localization and DNA, Synaptic activity, RNA metabolism, Fats transport, Proteostasis, Amyloid Cascade Hypothesis, Mitochondria and Phosphorylation. Although this seems to be a broad spectrum of tau functions, interactome studies of tau reveal hundreds of plausible partners of tau, suggesting that it engages in an extensive network of interconnected regulatory interactions by means of its high capability to interact with all kinds of proteins and complex structures, combined with its vast number of post-translational modifications. I include also some thermodynamic data concerning the interaction of tau with some partners.
Collapse
|
8
|
Chronic exposure of bisphenol-A impairs cognitive function and disrupts hippocampal insulin signaling pathway in male mice. Toxicology 2022; 472:153192. [PMID: 35489422 DOI: 10.1016/j.tox.2022.153192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
Bisphenol-A (BPA), a well-known estrogenic endocrine disruptor, is generally applied to turn out plastic consumer products. Available data have manifested that exposure to BPA can trigger insulin resistance. Hence, the purpose of the actual study was to consider the impacts of BPA exposure on cognitive function and insulin signaling pathway in the hippocampus of male offspring mice. For this purpose, the pregnant female mice were treated either vehicle (0.1% ethanol) or BPA (0.01, 0.1, and 1µg/mL) via drinking water from day 1 of gestation until delactation (D1-PND21, newborn exposure). Afterward, the three-week-old male offspring mice took orally with the same doses of BPA for nine weeks (PND84). The behavioral tests, blood sugar level, histological observation, transcriptome sequencing, glucose transporter 4 (GLUT4), and hippocampal insulin signaling pathway were checked for the male offspring mice at 13 weeks of age (PND91). Our data indicated that BPA exposure impaired cognitive function, disrupted the hippocampal regular cell arrangement, increased blood glucose levels, disturbed the insulin signaling pathway including phosphorylated insulin receptor substrate1 (p-IRS1), protein kinase B (p-AKT), and glycogen synthase kinase 3β (p-GSK3β). At the same time, the mRNA and protein expressions of GLUT4 were markedly down-regulated in the BPA-exposed groups. To sum up, it has been suggested from these results that BPA has detrimental effects on the insulin signaling pathway, which might subsequently be conducive to the impairment of cognitive function in the adult male offspring mice. Therefore, BPA exposure might in part be an element of risk for the long-term neurodegeneration in male offspring mice.
Collapse
|
9
|
Corrê MDS, de Freitas BS, Machado GDB, Pires VN, Bromberg E, Hallak JEC, Zuardi AW, Crippa JAS, Schröder N. Cannabidiol reverses memory impairments and activates components of the Akt/GSK3β pathway in an experimental model of estrogen depletion. Behav Brain Res 2022; 417:113555. [PMID: 34450240 DOI: 10.1016/j.bbr.2021.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Clinical and preclinical evidence has indicated that estrogen depletion leads to memory impairments and increases the susceptibility to neural damage. Here, we have sought to investigate the effects of Cannabidiol (CBD) a non-psychotomimetic compound from Cannabis sativa, on memory deficits induced by estrogen depletion in rats, and its underlying mechanisms. Adult rats were subjected to bilateral ovariectomy, an established estrogen depletion model in rodents, or sham surgery and allowed to recover for three weeks. After that, they received daily injections of CBD (10 mg/kg) for fourteen days. Rats were tested in the inhibitory avoidance task, a type of emotionally-motivated memory. After behavioral testing they were euthanized, and their hippocampi were isolated for analysis of components of the Akt/GSK3β survival pathway and the antiapoptotic protein Bcl2. Results revealed that ovariectomy impaired avoidance memory, and CBD was able to completely reverse estrogen depletion-induced memory impairment. Ovariectomy also reduced Akt/GSK3β pathway's activation by decreasing the phosphorylation levels of Akt and GSK3β and Bcl2 levels, which were ameliorated by CBD. The present results indicate that CBD leads to a functional recovery accompanied by the Akt/GSK3β survival pathway's activation, supporting its potential as a treatment for estrogen decline-induced deterioration of neural functioning and maintenance.
Collapse
Affiliation(s)
- Márcio da Silveira Corrê
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Faculty of Medicine, Department of Health, Integrated Regional University of Upper Uruguay and Missions, Erechim, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Dalto Barroso Machado
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vivian Naziaseno Pires
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Jaime E C Hallak
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Antônio Waldo Zuardi
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - José Alexandre S Crippa
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Takashima A, Koike R, Soeda Y. Can the entorhinal cortex help distinguish healthy aging brains from pathological aging brains? AGING BRAIN 2022; 2:100026. [PMID: 36908878 PMCID: PMC9999443 DOI: 10.1016/j.nbas.2021.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Riki Koike
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
11
|
Ozkan A, Aslan MA, Sinen O, Munzuroglu M, Derin N, Parlak H, Bulbul M, Agar A. Effects of adropin on learning and memory in rats tested in the Morris water maze. Hippocampus 2021; 32:253-263. [PMID: 34971006 DOI: 10.1002/hipo.23403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
Adropin is a secreted peptide, which is composed of 43 amino acids and shows an effective role in regulating energy metabolism and insulin resistance. Motor coordination and locomotor activity were improved by adropin in the cerebellum. However, it is not known whether adropin administration has an effect on spatial learning and memory. In this study, we investigated the effect of adropin on spatial learning and memory and characterized the biochemical properties of adropin in the hippocampus. Thirty male Sprague-Dawley rats were randomly divided into two groups as control and adropin groups. The control group received 0.9% NaCl intracerebroventricular for 6 days, while the adropin groups received 1 nmol of adropin dissolved in 0.9% NaCl (for 6 days). The Morris water maze, Y maze, and object location recognition tests were performed to evaluate learning and memory. Also, the locomotor activity tests were measured to assess the motor function. The expression of Akt, phospho-Akt, CREB, phospho-CREB, Erk1/2, phospho-Erk1/2, glycogen synthase kinase 3 β (GSK3β), phospho-GSK3β, brain-derived neurotrophic factor (BDNF), and N-methyl-d-aspartate receptor NR2B subunit were determined in the hippocampal tissues by using western blot. Behavior tests showed that adropin significantly increase spatial memory performance. Meanwhile, the western blot analyses revealed that the phosphorylated form of the Akt and CREB were enhanced with adropin administration in the hippocampus. Also, the expression of BDNF showed an enhancement in adropin group in comparison to the control group. In conclusion, we have shown for the first time that adropin exerts its enhancing effect on spatial memory capacity through Akt/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Ayse Ozkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mutay Aydin Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mustafa Munzuroglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mehmet Bulbul
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Aysel Agar
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
12
|
Zhang H, Han Y, Zhang L, Jia X, Niu Q. The GSK-3β/β-Catenin Signaling-Mediated Brain-Derived Neurotrophic Factor Pathway Is Involved in Aluminum-Induced Impairment of Hippocampal LTP In Vivo. Biol Trace Elem Res 2021; 199:4635-4645. [PMID: 33462795 DOI: 10.1007/s12011-021-02582-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022]
Abstract
The neurotoxic effects of aluminum (Al) are associated with the impairment of synaptic plasticity, the biological basis of learning and memory, the major form of which is long-term potentiation (LTP). The canonical glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling-mediated brain-derived neurotrophic factor (BDNF) pathway has been suggested to play important roles in memory. Thus, Al may affect LTP through this pathway. In this study, a Sprague-Dawley rat model of neurotoxicity was established through intracerebroventricular (i.c.v.) injection of aluminum maltol (Al(mal)3), which was achieved by preimplantation of a cannula into the lateral ventricle. The rats in the control and Al-treated groups received a daily injection of SB216763, an inhibitor of GSK-3β. Electrophysiology and western blot analysis were used to investigate the regulatory effect of the GSK-3β/β-catenin signaling-mediated BDNF pathway on LTP impairment induced by Al(mal)3. The results confirmed that i.c.v. injection of Al(mal)3 significantly suppressed the field excitatory postsynaptic potential (fEPSP) amplitude, as indicated by a decrease in BDNF protein expression, which was accompanied by dose-dependent decreases in β-catenin protein expression and the phosphorylation of GSK-3β at Ser9. Rats that received SB216763, a GSK-3β inhibitor, exhibited higher fEPSP amplitudes than control rats. Furthermore, SB216763 treatment upregulated the hippocampal protein expression of BDNF and β-catenin while increasing the ratio of p-GSK-3β/GSK-3β. From the perspective of the identified β-catenin-BDNF axis, Al impairs hippocampal LTP, possibly through the GSK-3β/β-catenin signaling-mediated BDNF pathway.
Collapse
Affiliation(s)
- Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yingchao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Xiaofang Jia
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
13
|
Wang N, Wang X, He M, Zheng W, Qi D, Zhang Y, Han CC. Ginseng polysaccharides: A potential neuroprotective agent. J Ginseng Res 2021; 45:211-217. [PMID: 33841001 PMCID: PMC8020291 DOI: 10.1016/j.jgr.2020.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/26/2022] Open
Abstract
The treatments of nervous system diseases (NSDs) have long been difficult issues for researchers because of their complexity of pathogenesis. With the advent of aging society, searching for effective treatments of NSDs has become a hot topic. Ginseng polysaccharides (GP), as the main biologically active substance in ginseng, has various biological properties in immune-regulation, anti-oxidant, anti-inflammation and etc. Considering the association between the effects of GP and the pathogenesis of neurological disorders, many related experiments have been conducted in recent years. In this paper, we reviewed previous studies about the effects and mechanisms of GP on diseases related to nervous system. We found GP play an ameliorative role on NSDs through the regulation of immune system, inflammatory response, oxidative damage and signaling pathway. Structure-activity relationship was also discussed and summarized. In addition, we provided new insights into GP as promising neuroprotective agent for its further development and utilization.
Collapse
Key Words
- AG, Arabinogalactan
- BBB, Blood–brain barrier
- BDNF, Brain-derived neurotrophic factor
- GP, Ginseng polysaccharides
- Ginseng
- HG, Homogalacturonan
- IFN-γ, Interferon-γ
- IL-17α, Interleukin-17 α
- MS, Multiple sclerosis
- Molecular mechanism
- NSDs, Nervous system diseases
- Nervous system
- Polysaccharides
- RG, Rhamnogalacturonan
- TNF-α, tumor necrosis factor-α
Collapse
Affiliation(s)
- Na Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Xianlei Wang
- National Oceanographic Center, Qingdao, 88 Xuzhou Road, Qingdao, Shandong, 266071, People’s Republic of China
| | - Mengjiao He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Wenxiu Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Dongmei Qi
- Experimental center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Chun-chao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| |
Collapse
|
14
|
Benítez MJ, Cuadros R, Jiménez JS. Phosphorylation and Dephosphorylation of Tau Protein by the Catalytic Subunit of PKA, as Probed by Electrophoretic Mobility Retard. J Alzheimers Dis 2021; 79:1143-1156. [PMID: 33386804 PMCID: PMC7990467 DOI: 10.3233/jad-201077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Tau is a microtubule associated protein that regulates the stability of microtubules and the microtubule-dependent axonal transport. Its hyperphosphorylated form is one of the hallmarks of Alzheimer’s disease and other tauopathies and the major component of the paired helical filaments that form the abnormal proteinaceous tangles found in these neurodegenerative diseases. It is generally accepted that the phosphorylation extent of tau is the result of an equilibrium in the activity of protein kinases and phosphatases. Disruption of the balance between both types of enzyme activities has been assumed to be at the origin of tau hyperphosphorylation and the subsequent toxicity and progress of the disease. Objective: We explore the possibility that, beside the phosphatase action on phosphorylated tau, the catalytic subunit of PKA catalyzes both tau phosphorylation and also tau dephosphorylation, depending on the ATP/ADP ratio. Methods: We use the shift in the relative electrophoretic mobility suffered by different phosphorylated forms of tau, as a sensor of the catalytic action of the enzyme. Results: The results are in agreement with the long-known thermodynamic reversibility of the phosphorylation reaction (ATP + Protein = ADP+Phospho-Protein) catalyzed by PKA and many other protein kinases. Conclusion: The results contribute to put the compartmentalized energy state of the neuron and the mitochondrial-functions disruption upstream of tau-related pathologies.
Collapse
Affiliation(s)
- María J Benítez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Cuadros
- Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain
| | - Juan S Jiménez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Liu XG, Lv MC, Huang MY, Sun YQ, Gao PY, Li DQ. A network pharmacology study on the triterpene saponins from Medicago sativa L. for the treatment of Neurodegenerative diseases. J Food Biochem 2019; 43:e12955. [PMID: 31368545 DOI: 10.1111/jfbc.12955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive and irreversible, is a kind of complex illnesses, and the long-term therapy which is frequently associated with adverse side effects. Medicago sativa L., widely consumed as a vegetable, has the effects of improving memory and relieving central nervous system diseases. However, there are less studies on its specific mechanism for NDDs. In this investigation, we applied a method of network pharmacology, which combined molecular docking and network analysis to decipher the mechanisms of M. sativa in NDDs. The pharmacological system generated 55 triterpene saponins from M. sativa, and predicted 27 potential targets with 100 pathways in the treatment of NDDs. As a result, 13 compounds, 10 target proteins, and 6 signaling pathways were found to play important roles in the treatment of NDDs. In addition, in vitro experiments of isolates confirmed activities for NDDs, which were consistent with the results of network pharmacology prediction. PRACTICAL APPLICATIONS: Medicago sativa L. has been widely consumed as a vegetable, which possesses many nutritional components. As a functional food stuff, M. sativa can improve human health, such as memory improving activities, relieving central nervous system diseases, immunomodulatory, antioxidant, anticancer, and anti-inflammatory. In this article, the mechanism of triterpene saponins from M. sativa against NDDs was successfully predicted by network pharmacology method. The results will serve as a reference of M. sativa against NDDs.
Collapse
Affiliation(s)
- Xue-Gui Liu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China.,Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, P.R. China
| | - Meng-Chao Lv
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
| | - Ming-Yuan Huang
- Shenyang Institute of Science and Technology, Shenyang, P.R. China
| | - Yu-Qiu Sun
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
| | - Pin-Yi Gao
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China.,Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, P.R. China
| | - Dan-Qi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, P.R. China
| |
Collapse
|
16
|
Lin L, Jadoon SS, Liu SZ, Zhang RY, Li F, Zhang MY, Ai-Hua T, You QY, Wang P. Tanshinone IIA Ameliorates Spatial Learning and Memory Deficits by Inhibiting the Activity of ERK and GSK-3β. J Geriatr Psychiatry Neurol 2019; 32:152-163. [PMID: 30885037 DOI: 10.1177/0891988719837373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer disease (AD) is the most common type of dementia which is becoming a primary problem in the present society, but it lacks effective treatment methods and means of AD. Tanshinone IIA (Tan IIA) has been reported to have neuroprotective effects to restrain the Aβ25-35-mediated apoptosis. However, few studies try to understand how Aβ1-42 affects hyperphosphorylation of tau and how Tan IIA regulates this process at the molecular level. METHODS Fifty male Sprague-Dawley rats were randomly divided into 5 groups and infused through the lateral ventricle with Aβ1-42 except the control group. Then the rats were treated with Tan IIA through intragastric administration for 4 weeks. After the ability of learning and memory being measured, histomorphological examination and Western blot were used to detect the possible mechanism in the AD-associated model rats. RESULTS We observed that Aβ1-42 infusion could induce spatial learning and memory deficits in rats. Simultaneously, Aβ1-42 also could reduce the neuron in cornu ammonis 1 and dentate gyrus of hippocampus, as well as increase the levels of cleaved caspase 3, hyperphosphorylated tau at the sites Ser396, Ser404, and Thr205 with enhancing staining of black granules in brain. We also found that Aβ1-42 could increase the activity of extracellular signal-regulated protein kinase (ERK) and glycogen synthase kinase-3β (GSK-3β). Meanwhile, these phenomena could be ameliorated when Tan IIA was used. CONCLUSION We concluded that Tan IIA might have neuroprotective effect and improving learning and memory ability to be a viable candidate in AD therapy with mechanisms involving the ERK and GSK-3β signal pathway.
Collapse
Affiliation(s)
- Li Lin
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Sarmad Sheraz Jadoon
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shang-Zhi Liu
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Ru-Yi Zhang
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Li
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Mei-Ya Zhang
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Tan Ai-Hua
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiu-Yun You
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- 2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
17
|
Glycogen synthase kinase-3 inhibition as a potential pharmacological target for vascular dementia: In silico and in vivo evidence. Comput Biol Med 2019; 108:305-316. [PMID: 31022582 DOI: 10.1016/j.compbiomed.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/13/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
Vascular dementia is a serious problem as it creates significant disability and dependency in the affected person. Lives of these patients can be improved through the advent of novel drug targets which can be targeted by pharmacological therapies. However, finding a precise and druggable target for vascular dementia is experimentally impossible and challenging task owing to a complex and mostly unknown interplay between the cognitive abilities of the brain with a diversity of vascular diseases. To address this issue, we have systematically analyzed the literature reports by using well-known methods and approaches of bioinformatics (viz. network pharmacology, reverse pharmacology, enrichment analysis of KEGG pathways, biological processes of Gene Ontology and DIAMOnD algorithm). Because glycogen synthase kinase-3 (GSK-3) seems to be one of the most promising targets, therefore, we have tested the capacity of lithium carbonate, a classical inhibitor of GSK-3, for treatment of dementia resulting from mild chronic cerebral hypoperfusion in mice. To this end, our study shows in-vivo validation of predicted target, i.e., pharmacological deactivation of GSK-3 enzyme and its impact on cognitive abilities employing a behavioral test battery, i.e., object recognition task, step-through passive avoidance task, elevated plus maze task and water maze task. In this framework, we observed that lithium carbonate attenuates recognition, emotion, spatial and fear-motivated learning and memory impairments along with attenuation of oxidative stress, cholinergic dysfunction and glutamate-induced excitotoxicity in cerebral cortex and hippocampus. In conclusion, we propose GSK-3 as a promising drug target for vascular dementia in light of experimental results and in-silico predictions.
Collapse
|
18
|
Jiang P, Li G, Zhou X, Wang C, Qiao Y, Liao D, Shi D. Chronic fluoride exposure induces neuronal apoptosis and impairs neurogenesis and synaptic plasticity: Role of GSK-3β/β-catenin pathway. CHEMOSPHERE 2019; 214:430-435. [PMID: 30273876 DOI: 10.1016/j.chemosphere.2018.09.095] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Fluoride is becoming an ineluctable environmental pollutant and its longterm exposure would cause fluorosis and irreversible brain damage, but the molecular mechanisms remain far from fully understood. In the present study, we firstly evaluated the glycogen synthase kinase 3β (GSK-3β)/β-catenin pathway in the hippocampus of rats exposed to fluoride, given the well-established role of GSK-3β/β-catenin pathway in neuronal death and survival. Our data showed that sustained exposure to 50 mg/L and 100 mg/L NaF in drinking water dose-dependently induced neuronal loss and apoptosis in rat hippocampus. Neurogenesis was also weakened by fluoride administration in the hippocampal dentate gyrus region. Additionally, the synaptic markers, synaptophysin (SYP) and post-synaptic density 95 (PSD95) protein levels, were decreased by 100 mg/L NaF treatment, whereas 50 mg/L NaF only reduced SYP expression, indicating a compromised synaptic function. We further demonstrated that NaF, especially the higher dose, induced GSK-3β activity, with decreased inactive phosphorylated GSK-3β levels and increased GSK-3β, the active form of the kinase. Correspondingly, downstream β-catenin signaling was undermined by NaF treatment as evidenced by the fact that both two doses of NaF decreased nucleus β-catenin status and the higher dose of NaF also reduced cytoplasmic β-catenin protein expression. Taken together, the present study firstly showed the aberrant changes of GSK-3β/β-catenin signaling in the fluoride-exposed brain, highlighting the involvement of GSK-3β/β-catenin signaling in the fluoride-induced neurotoxicity.
Collapse
Affiliation(s)
- Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Gongying Li
- Department of Mental Health, Jining Medical University, Jining 272000, China
| | - Xueyuan Zhou
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Changshui Wang
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yi Qiao
- Department of Public Health, Jining Medical University, Jining 272000, China
| | - Dehua Liao
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Dongmei Shi
- Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
19
|
Nishizaki T. IL-33 suppresses GSK-3β activation through an ST2-independent MyD88/TRAF6/RIP/PI3K/Akt pathway. Heliyon 2018; 4:e00971. [PMID: 30533546 PMCID: PMC6260469 DOI: 10.1016/j.heliyon.2018.e00971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/17/2023] Open
Abstract
Aims The present study was conducted to explore the effect of interleukin-33 (IL-33) on glycogen synthase kinase-3β (GSK-3β) activation involving Tau phosphorylation, a critical causative factor for Alzheimer's disease (AD). Main methods Experiments were performed using PC-12 cells. Target proteins were knocked-down by transfecting with the siRNA for each protein. The kinase activities were assessed by monitoring phosphorylation of Thr308 and Ser473 for Akt and phosphorylation of Ser9 and Tyr216 for GSK-3β in the Western blotting. Key findings Exogenously applied IL-33 activated Akt and inactivated GSK-3β. IL-33-induced Akt activation and GSK-3β inactivation were significantly inhibited by knocking-down myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), receptor-interacting protein (RIP), or phosphatidylinositol 3 kinase (PI3K). IL-33 neutralized amyloid β1-42 (Aβ1-42)-induced Akt inactivation and GSK-3β activation. Significance The results of the present study show that IL-33 inactivates GSK-3β through an ST2-independent MyD88/TRAF6/RIP/PI3K/Akt pathway and inhibits Aβ1-42-induced GSK-3β activation. This suggests that IL-33 could restrain GSK-3β-mediated Tau phosphorylation in AD.
Collapse
Affiliation(s)
- Tomoyuki Nishizaki
- Shanghai University of Traditional Chinese Medicine, Education College of Medicine, Osaka, 530-0047, Japan.,Innovative Bioinformation Research Organization, Kobe, 651-1223, Japan
| |
Collapse
|
20
|
Yang C, Li X, Gao W, Wang Q, Zhang L, Li Y, Li L, Zhang L. Cornel Iridoid Glycoside Inhibits Tau Hyperphosphorylation via Regulating Cross-Talk Between GSK-3β and PP2A Signaling. Front Pharmacol 2018; 9:682. [PMID: 29997510 PMCID: PMC6028923 DOI: 10.3389/fphar.2018.00682] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Neurofibrillary pathology contributes to neuronal dysfunction and correlates with the clinical progression of Alzheimer's disease (AD). Tau phosphorylation is mainly regulated by a balance of glycogen synthase kinase-3β (GSK-3β) and protein phosphatase 2A (PP2A) activities. Cornel iridoid glycoside (CIG) is a main component extracted from Cornus officinalis. The purpose of this study was to investigate the effects of CIG on GSK-3β and PP2A, thus to explore the mechanisms of CIG to inhibit tau hyperphosphorylation. The rat model of tau hyperphosphorylation was established by intraventricular injection of wortmannin and GF-109203X (GFX) to activate GSK-3β. The results showed that intragastrical administration of CIG inhibited tau hyperphosphorylation in the brain of rats induced by wortmannin/GFX. The results in vivo and in vitro exhibited that CIG inhibited tau hyperphosphorylation and GSK-3β over-activation. In the mechanism of action, CIG's attenuating GSK-3β activity was found to be dependent on PI3K/AKT signaling pathway. PP2A catalytic C subunit (PP2Ac) siRNA abrogated the effect of CIG on PI3K/AKT/GSK-3β. Additionally and crucially, we also found that CIG inhibited the demethylation of PP2Ac at Leu309 in vivo and in vitro. It enhanced PP2A activity, decreased tau hyperphosphorylation, and protected cell morphology in okadaic acid (OA)-induced cell model in vitro. PP2Ac siRNA abated the inhibitory effect of CIG on tau hyperphosphorylation. Moreover, CIG inhibited protein phosphatase methylesterase-1 (PME-1) and demethylation of PP2Ac, enhanced PP2A activity, and decreased tau hyperphosphorylation in PME-1-transfectd cells. Taken together, CIG inhibited GSK-3β activity via promoting P13K/AKT and PP2A signaling pathways. In addition, CIG also elevated PP2A activity via inhibiting PME-1-induced PP2Ac demethylation to inhibit GSK-3β activity, thus regulated the cross-talk between GSK-3β and PP2A signaling and consequently inhibited tau hyperphosphorylation. These results suggest that CIG may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xuelian Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Gao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
21
|
Nikitin VP, Solntseva SV, Kozyrev SA. Involvement of Glycogen Synthase Kinase-3 in the Mechanisms of Conditioned Food Aversion Memory Reconsolidation. Bull Exp Biol Med 2017; 162:413-417. [PMID: 28239792 DOI: 10.1007/s10517-017-3628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 11/25/2022]
Abstract
Experiments were performed on the snails trained in conditioned food aversion for 3 days. Injection of TDZD-8 (glycogen synthase kinase-3 inhibitor, 2 mg/kg) in combination with reminder (presentation of a conditioned food stimulus) led to memory impairment developing 3 days after inhibitor/reminder exposure and followed by spontaneous recovery in 10 days. Injections of TDZD-8 in a dose of 4 or 20 mg/kg before reminder were shown to cause amnesia that persisted for more than 10 days. Memory recovery during repeated training was observed at the earlier period than after initial training. The impairment of memory reconsolidation by TDZD-8 after training of snails for 1 day was less pronounced than under standard training conditions (3 days). The effect of a glycogen synthase kinase-3 inhibitor during memory reconsolidation is probably followed by impairment of memory retrieval and/or partial loss, which can be compensated spontaneously or after repeated training.
Collapse
Affiliation(s)
- V P Nikitin
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation.
| | - S V Solntseva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - S A Kozyrev
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| |
Collapse
|
22
|
Avila J, Jiménez JS, Sayas CL, Bolós M, Zabala JC, Rivas G, Hernández F. Tau Structures. Front Aging Neurosci 2016; 8:262. [PMID: 27877124 PMCID: PMC5099159 DOI: 10.3389/fnagi.2016.00262] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/21/2016] [Indexed: 12/25/2022] Open
Abstract
Tau is a microtubule-associated protein that plays an important role in axonal stabilization, neuronal development, and neuronal polarity. In this review, we focus on the primary, secondary, tertiary, and quaternary tau structures. We describe the structure of tau from its specific residues until its conformation in dimers, oligomers, and larger polymers in physiological and pathological situations.
Collapse
Affiliation(s)
- Jesus Avila
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| | - Juan S Jiménez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid Madrid, Spain
| | - Carmen L Sayas
- Centre for Biomedical Research of the Canary Islands, Institute for Biomedical Technologies, University of La Laguna Tenerife, Spain
| | - Marta Bolós
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| | - Juan C Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IDIVAL-Universidad de Cantabria Santander, Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Felix Hernández
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| |
Collapse
|
23
|
Park S, Kang S, Kim DS, Moon BR. Agrimonia pilosa Ledeb., Cinnamomum cassia Blume, and Lonicera japonica Thunb. protect against cognitive dysfunction and energy and glucose dysregulation by reducing neuroinflammation and hippocampal insulin resistance in β-amyloid-infused rats. Nutr Neurosci 2016; 20:77-88. [DOI: 10.1080/1028415x.2015.1135572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336–795, South Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336–795, South Korea
| | - Da Sol Kim
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336–795, South Korea
| | - Bo Rerum Moon
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336–795, South Korea
| |
Collapse
|
24
|
Isoflurane Is More Deleterious to Developing Brain Than Desflurane: The Role of the Akt/GSK3β Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7919640. [PMID: 27057548 PMCID: PMC4753322 DOI: 10.1155/2016/7919640] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Demand is increasing for safer inhalational anesthetics for use in pediatric anesthesia. In this regard, researchers have debated whether isoflurane is more toxic to the developing brain than desflurane. In the present study, we compared the effects of postnatal exposure to isoflurane with those of desflurane on long-term cognitive performance and investigated the role of the Akt/GSK3β signaling pathway. Postnatal day 6 (P6) mice were exposed to either isoflurane or desflurane, after which the phosphorylation levels of Akt/GSK3β and learning and memory were assessed at P8 or P31. The phosphorylation levels of Akt/GSK3β and learning and memory were examined after intervention with lithium. We found that isoflurane, but not desflurane, impaired spatial learning and memory at P31. Accompanied by behavioral change, only isoflurane decreased p-Akt (ser473) and p-GSK3β (ser9) expressions, which led to GSK3β overactivation. Lithium prevented GSK3β overactivation and alleviated isoflurane-induced cognitive deficits. These results suggest that isoflurane is more likely to induce developmental neurotoxicity than desflurane in context of multiple exposures and that the Akt/GSK3β signaling pathway partly participates in this process. GSK3β inhibition might be an effective way to protect against developmental neurotoxicity.
Collapse
|
25
|
Luo G, Chen L, Burton CR, Xiao H, Sivaprakasam P, Krause CM, Cao Y, Liu N, Lippy J, Clarke WJ, Snow K, Raybon J, Arora V, Pokross M, Kish K, Lewis HA, Langley DR, Macor JE, Dubowchik GM. Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors. J Med Chem 2016; 59:1041-51. [DOI: 10.1021/acs.jmedchem.5b01550] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ling Chen
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Catherine R. Burton
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Hong Xiao
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Prasanna Sivaprakasam
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Carol M. Krause
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yang Cao
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nengyin Liu
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jonathan Lippy
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wendy J. Clarke
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kimberly Snow
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joseph Raybon
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Vinod Arora
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matt Pokross
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kevin Kish
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Hal A. Lewis
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - David R. Langley
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E. Macor
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Gene M. Dubowchik
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
26
|
Storozheva ZI, Gruden MA, Proshin AT, Sewell RDE. Learning ability is a key outcome determinant of GSK-3 inhibition on visuospatial memory in rats. J Psychopharmacol 2015; 29:822-35. [PMID: 25735991 DOI: 10.1177/0269881115573805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Learning aptitude has never been a focus of visuospatial performance studies, particularly on memory consolidation and reconsolidation. The aim of this study was to determine the consequences of learning ability on memory consolidation/reconsolidation following inhibition of glucose synthase kinase-3 (GSK-3) by 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). The anxiety-like nature of rats was characterized in the elevated plus maze. The rats were then trained for four days in the Morris water maze (MWM) and classified as 'superior', 'intermediate' or 'inferior' learners. There were no major differences between superior, intermediate or inferior learners with respect to anxiety which might have influenced learning. After training (day-5), TDZD-8 (2.0 mg/kg) was administered and half of the cohort were exposed to a MWM retrieval trial. Ten days later, animals were subjected to repeated MWM learning. TDZD-8 without a retrieval trial impaired subsequent reconsolidation in inferior learners, but enhanced it in superior learners. There was no modification of performance in intermediate learners. In TDZD-8-treated subjects exposed to retrieval, the pattern of outcomes was identical whereby impairment of reconsolidation occurred in inferior learners, enhancement occurred in superior learners but there was no modification of performance in intermediate learners. Thus, learning ability was a key determinant of the qualitative outcome from GSK-3 inhibition on visuospatial memory.
Collapse
Affiliation(s)
- Zinaida I Storozheva
- Federal State Budgetary Scientific Institution, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russian Federation
| | - Marina A Gruden
- Federal State Budgetary Scientific Institution, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Andrey T Proshin
- Federal State Budgetary Scientific Institution, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
27
|
Ahmed T, Blum D, Burnouf S, Demeyer D, Buée-Scherrer V, D'Hooge R, Buée L, Balschun D. Rescue of impaired late-phase long-term depression in a tau transgenic mouse model. Neurobiol Aging 2014; 36:730-9. [PMID: 25443285 DOI: 10.1016/j.neurobiolaging.2014.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/01/2014] [Accepted: 09/17/2014] [Indexed: 12/18/2022]
Abstract
Cognitive decline, the hallmark of Alzheimer's disease, and accompanying neuropsychiatric symptoms share dysfunctions of synaptic processes as a common cellular pathomechanism. Long-term potentiation has proven to be a sensitive tool for the "diagnosis" of such synaptic dysfunctions. Much less, however, is known about how long-term depression (LTD), an alternative mechanism for the storage of memory, is affected by Alzheimer's disease progression. Here, we demonstrate that impaired late LTD (>3 hours) in THY-Tau22 mice can be rescued by either inhibition of glycogen synthase kinase-3 (GSK3β) activity or by application of the protein-phosphatase 2A agonist selenate. In line with these findings, we observed increased phosphorylation of GSK3β at Y216 and reduced total phosphatase activity in biochemical assays of hippocampal tissue of THY-Tau22 mice. Interestingly, LTD induction and pharmacologic inhibition of GSK3β appeared to downregulate GSK3ß activity via a marked upregulation of phosphorylation at the inhibitory Ser9 residue. Our results point to alterations in phosphorylation and/or dephosphorylation homeostasis as key mechanisms underlying the deficits in LTD and hippocampus-dependent learning found in THY-Tau22 mice.
Collapse
Affiliation(s)
- Tariq Ahmed
- Laboratory of Biological Psychology, University of Leuven, Leuven, Belgium
| | - David Blum
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France; CHRU-Lille, Lille, France
| | - Sylvie Burnouf
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France; Max-Planck Institute for Biology of Ageing, Köln, Germany
| | - Dominique Demeyer
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France
| | - Valérie Buée-Scherrer
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France; CHRU-Lille, Lille, France
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Leuven, Belgium
| | - Luc Buée
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France; CHRU-Lille, Lille, France
| | - Detlef Balschun
- Laboratory of Biological Psychology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
28
|
Medina M, Avila J. Understanding the relationship between GSK-3 and Alzheimer’s disease: a focus on how GSK-3 can modulate synaptic plasticity processes. Expert Rev Neurother 2014; 13:495-503. [DOI: 10.1586/ern.13.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PLoS One 2013; 8:e83243. [PMID: 24349472 PMCID: PMC3862724 DOI: 10.1371/journal.pone.0083243] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
Insulin resistance leads to memory impairment. Cinnamon (CN) improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr) diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App) were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.
Collapse
Affiliation(s)
- Richard A. Anderson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- * E-mail:
| | - Bolin Qin
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- Integrity Nutraceuticals International, Spring Hill, Tennessee, United States of America
| | - Frederic Canini
- Army Institute for Research in Biology, Grenoble, France
- Ecole du Val de Grâce, 1 place Laveran, Paris, France
| | - Laurent Poulet
- Army Institute for Research in Biology, Grenoble, France
- National Institute for Health, Joseph Fourier University, Grenoble, France
| | - Anne Marie Roussel
- National Institute for Health, Joseph Fourier University, Grenoble, France
| |
Collapse
|
30
|
Maurin H, Lechat B, Dewachter I, Ris L, Louis JV, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Neurological characterization of mice deficient in GSK3α highlight pleiotropic physiological functions in cognition and pathological activity as Tau kinase. Mol Brain 2013; 6:27. [PMID: 23705847 PMCID: PMC3671145 DOI: 10.1186/1756-6606-6-27] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GSK3β is involved in a wide range of physiological functions, and is presumed to act in the pathogenesis of neurological diseases, from bipolar disorder to Alzheimer's disease (AD). In contrast, the GSK3α isozyme remained largely ignored with respect to both aspects. RESULTS We generated and characterized two mouse strains with neuron-specific or with total GSK3α deficiency. Behavioral and electrophysiological analysis demonstrated the physiological importance of neuronal GSK3α, with GSK3β not compensating for impaired cognition and reduced LTP. Interestingly, the passive inhibitory avoidance task proved to modulate the phosphorylation status of both GSK3 isozymes in wild-type mice, further implying both to function in cognition. Moreover, GSK3α contributed to the neuronal architecture of the hippocampal CA1 sub-region that is most vulnerable in AD. Consequently, practically all parameters and characteristics indicated that both GSK3 isoforms were regulated independently, but that they acted on the same physiological functions in learning and memory, in mobility and in behavior. CONCLUSIONS GSK3α proved to be regulated independently from GSK3β, and to exert non-redundant physiological neurological functions in general behavior and in cognition. Moreover, GSK3α contributes to the pathological phosphorylation of protein Tau.
Collapse
Affiliation(s)
- Hervé Maurin
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Benoit Lechat
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Ilse Dewachter
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Laurence Ris
- Department Neurosciences, University Mons-Hainaut, B-7000, Mons, Belgium
| | - Justin V Louis
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Tomasz Jaworski
- Present address: Nencki Institute Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| |
Collapse
|
31
|
Maurin H, Seymour CM, Lechat B, Borghgraef P, Devijver H, Jaworski T, Schmidt MV, Kuegler S, Van Leuven F. Tauopathy differentially affects cell adhesion molecules in mouse brain: early down-regulation of nectin-3 in stratum lacunosum moleculare. PLoS One 2013; 8:e63589. [PMID: 23704923 PMCID: PMC3660566 DOI: 10.1371/journal.pone.0063589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion molecules are important structural substrates, required for synaptic plasticity and synaptogenesis. CAMs differ widely in their expression throughout different brain regions and their specific structural and functional roles in the brain remain to be elucidated. Here, we investigated selected cell adhesion molecules for alterations in expression levels and neuronal localization in validated mouse models for Alzheimer's disease that mimic the age-related progression of amyloid accumulation and tauopathy. Among the cell adhesion molecules analyzed, Nectin-3 expression was affected most and specifically in all mouse models with tauopathy. In particular was Nectin-3 depleted from the specific region of the hippocampus, known as the stratum lacunosum and moleculare, in mice that express wild-type or mutant human protein Tau, either chronically or sub-acutely. Tauopathy progresses from the entorhinal cortex to the hippocampus by unknown mechanisms that could involve transport by the myelinated axons of the temporoammonic and perforant pathways. The decreased expression of Nectin-3 in the stratum lacunosum moleculare is an early marker of impaired transport, and eventual synaptic problems, caused by beginning tauopathy.
Collapse
Affiliation(s)
- Hervé Maurin
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Claire Marie Seymour
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Benoit Lechat
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | - Tomasz Jaworski
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
| | | | | | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Dept Human Genetics, KULeuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
32
|
Kaidanovich-Beilin O, Beaulieu JM, Jope RS, Woodgett JR. Neurological functions of the masterswitch protein kinase - gsk-3. Front Mol Neurosci 2012; 5:48. [PMID: 22509152 PMCID: PMC3321477 DOI: 10.3389/fnmol.2012.00048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/23/2012] [Indexed: 12/03/2022] Open
|