1
|
Harracksingh AN, Singh A, Mayorova TD, Bejoy B, Hornbeck J, Elkhatib W, McEdwards G, Gauberg J, Taha A, Islam IM, Erclik T, Currie MA, Noyes M, Senatore A. Mint/X11 PDZ domains from non-bilaterian animals recognize and bind Ca V2 calcium channel C-termini in vitro. Sci Rep 2024; 14:21615. [PMID: 39284887 PMCID: PMC11405698 DOI: 10.1038/s41598-024-70652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
PDZ domain mediated interactions with voltage-gated calcium (CaV) channel C-termini play important roles in localizing membrane Ca2+ signaling. The first such interaction was described between the scaffolding protein Mint-1 and CaV2.2 in mammals. In this study, we show through various in silico analyses that Mint is an animal-specific gene with a highly divergent N-terminus but a strongly conserved C-terminus comprised of a phosphotyrosine binding domain, two tandem PDZ domains (PDZ-1 and PDZ-2), and a C-terminal auto-inhibitory element that binds and inhibits PDZ-1. In addition to CaV2 chanels, most genes that interact with Mint are also deeply conserved including amyloid precursor proteins, presenilins, neurexin, and CASK and Veli which form a tripartite complex with Mint in bilaterians. Through yeast and bacterial 2-hybrid experiments, we show that Mint and CaV2 channels from cnidarians and placozoans interact in vitro, and in situ hybridization revealed co-expression in dissociated neurons from the cnidarian Nematostella vectensis. Unexpectedly, the Mint orthologue from the ctenophore Hormiphora californiensis strongly bound the divergent C-terminal ligands of cnidarian and placozoan CaV2 channels, despite neither the ctenophore Mint, nor the placozoan and cnidarian orthologues, binding the ctenophore CaV2 channel C-terminus. Altogether, our analyses suggest that the capacity of Mint to bind CaV2 channels predates bilaterian animals, and that evolutionary changes in CaV2 channel C-terminal sequences resulted in altered binding modalities with Mint.
Collapse
Affiliation(s)
- Alicia N Harracksingh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Tatiana D Mayorova
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Bejoy
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Jillian Hornbeck
- Institute for Systems Genetics, NYU Grossman School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Abdul Taha
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Ishrat Maliha Islam
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Ted Erclik
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Mark A Currie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marcus Noyes
- Institute for Systems Genetics, NYU Grossman School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Patel PA, LaConte LEW, Liang C, Cecere T, Rajan D, Srivastava S, Mukherjee K. Genetic evidence for splicing-dependent structural and functional plasticity in CASK protein. J Med Genet 2024; 61:759-768. [PMID: 38670634 PMCID: PMC11290809 DOI: 10.1136/jmg-2023-109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Pontocerebellar hypoplasia (PCH) may present with supratentorial phenotypes and is often accompanied by microcephaly. Damaging mutations in the X-linked gene CASK produce self-limiting microcephaly with PCH in females but are often lethal in males. CASK deficiency leads to early degeneration of cerebellar granule cells but its role in other regions of the brain remains uncertain. METHOD We generated a conditional Cask knockout mice and deleted Cask ubiquitously after birth at different times. We examined the clinical features in several subjects with damaging mutations clustered in the central part of the CASK protein. We have performed phylogenetic analysis and RT-PCR to assess the splicing pattern within the same protein region and performed in silico structural analysis to examine the effect of splicing on the CASK's structure. RESULT We demonstrate that deletion of murine Cask after adulthood does not affect survival but leads to cerebellar degeneration and ataxia over time. Intriguingly, damaging hemizygous CASK mutations in boys who display microcephaly and cerebral dysfunction but without PCH are known. These mutations are present in two vertebrate-specific CASK exons. These exons are subject to alternative splicing both in forebrain and hindbrain. Inclusion of these exons differentially affects the molecular structure and hence possibly the function/s of the CASK C-terminus. CONCLUSION Loss of CASK function disproportionately affects the cerebellum. Clinical data, however, suggest that CASK may have additional vertebrate-specific function/s that play a role in the mammalian forebrain. Thus, CASK has an ancient function shared between invertebrates and vertebrates as well as novel vertebrate-specific function/s.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Leslie E W LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Chen Liang
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Thomas Cecere
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Deepa Rajan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
4
|
Mukherjee K, LaConte LEW, Srivastava S. The Non-Linear Path from Gene Dysfunction to Genetic Disease: Lessons from the MICPCH Mouse Model. Cells 2022; 11:1131. [PMID: 35406695 PMCID: PMC8997851 DOI: 10.3390/cells11071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most human disease manifests as a result of tissue pathology, due to an underlying disease process (pathogenesis), rather than the acute loss of specific molecular function(s). Successful therapeutic strategies thus may either target the correction of a specific molecular function or halt the disease process. For the vast majority of brain diseases, clear etiologic and pathogenic mechanisms are still elusive, impeding the discovery or design of effective disease-modifying drugs. The development of valid animal models and their proper characterization is thus critical for uncovering the molecular basis of the underlying pathobiological processes of brain disorders. MICPCH (microcephaly and pontocerebellar hypoplasia) is a monogenic condition that results from variants of an X-linked gene, CASK (calcium/calmodulin-dependent serine protein kinase). CASK variants are associated with a wide range of clinical presentations, from lethality and epileptic encephalopathies to intellectual disabilities, microcephaly, and autistic traits. We have examined CASK loss-of-function mutations in model organisms to simultaneously understand the pathogenesis of MICPCH and the molecular function/s of CASK. Our studies point to a highly complex relationship between the potential molecular function/s of CASK and the phenotypes observed in model organisms and humans. Here we discuss the implications of our observations from the pathogenesis of MICPCH as a cautionary narrative against oversimplifying molecular interpretations of data obtained from genetically modified animal models of human diseases.
Collapse
Affiliation(s)
- Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Leslie E. W. LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
5
|
Zhang Z, Li W, Yang G, Lu X, Qi X, Wang S, Cao C, Zhang P, Ren J, Zhao J, Zhang J, Hong S, Tan Y, Burchfield J, Yu Y, Xu T, Yao X, James D, Feng W, Chen Z. CASK modulates the assembly and function of the Mint1/Munc18-1 complex to regulate insulin secretion. Cell Discov 2020; 6:92. [PMID: 33318489 PMCID: PMC7736295 DOI: 10.1038/s41421-020-00216-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
Calcium/calmodulin-dependent protein serine kinase (CASK) is a key player in vesicle transport and release in neurons. However, its precise role, particularly in nonneuronal systems, is incompletely understood. We report that CASK functions as an important regulator of insulin secretion. CASK depletion in mouse islets/β cells substantially reduces insulin secretion and vesicle docking/fusion. CASK forms a ternary complex with Mint1 and Munc18-1, and this event is regulated by glucose stimulation in β cells. The crystal structure of the CASK/Mint1 complex demonstrates that Mint1 exhibits a unique "whip"-like structure that wraps tightly around the CASK-CaMK domain, which contains dual hydrophobic interaction sites. When triggered by CASK binding, Mint1 modulates the assembly of the complex. Further investigation revealed that CASK-Mint1 binding is critical for ternary complex formation, thereby controlling Munc18-1 membrane localization and insulin secretion. Our work illustrates the distinctive molecular basis underlying CASK/Mint1/Munc18-1 complex formation and reveals the importance of the CASK-Mint1-Munc18 signaling axis in insulin secretion.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guang Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xuefeng Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Qi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuting Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Cao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peng Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinqi Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaxu Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junyi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Hong
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Tan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - James Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yang Yu
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - David James
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Mukherjee K, Patel PA, Rajan DS, LaConte LEW, Srivastava S. Survival of a male patient harboring CASK Arg27Ter mutation to adolescence. Mol Genet Genomic Med 2020; 8:e1426. [PMID: 32696595 PMCID: PMC7549553 DOI: 10.1002/mgg3.1426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background CASK is an X‐linked gene in mammals and its deletion in males is incompatible with life. CASK heterozygous mutations in female patients associate with intellectual disability, microcephaly, pontocerebellar hypoplasia, and optic nerve hypoplasia, whereas CASK hemizygous mutations in males manifest as early infantile epileptic encephalopathy with a grim prognosis. Here, we report a rare case of survival of a male patient harboring a CASK null mutation to adolescent age. Methods Trio whole exome sequencing analysis was performed from blood genomic DNA. Magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and electroencephalogram (EEG) analyses were performed to determine anomalies in brain development, metabolite concentrations, and electrical activity, respectively. Results Trio‐WES analysis identified a de novo c.79C>T (p.Arginine27Ter) mutation in CASK causing a premature translation termination at the very N‐terminus of the protein. The 17‐years, and 11‐month‐old male patient displayed profound intellectual disability, microcephaly, dysmorphism, ponto‐cerebellar hypoplasia, and intractable epilepsy. His systemic symptoms included overall reduced somatic growth, dysautonomia, ventilator and G tube dependence, and severe osteopenia. Brain MRI revealed a severe cerebellar and brain stem hypoplasia with progressive cerebral atrophy. EEG spectral analysis revealed a global functional defect with generalized background slowing and delta waves dominating even in the awake state. Conclusion This case study is the first to report survival of a male patient carrying a CASK loss‐of‐function mutation to adolescence and highlights that improved palliative care could extend survival. Moreover, the genomic position encoding Arg27 in CASK may possess an increased susceptibility to mutations.
Collapse
Affiliation(s)
- Konark Mukherjee
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Paras A Patel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Deepa S Rajan
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie E W LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
7
|
Patel PA, Liang C, Arora A, Vijayan S, Ahuja S, Wagley PK, Settlage R, LaConte LEW, Goodkin HP, Lazar I, Srivastava S, Mukherjee K. Haploinsufficiency of X-linked intellectual disability gene CASK induces post-transcriptional changes in synaptic and cellular metabolic pathways. Exp Neurol 2020; 329:113319. [PMID: 32305418 DOI: 10.1016/j.expneurol.2020.113319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Heterozygous mutations in the X-linked gene CASK are associated with intellectual disability, microcephaly, pontocerebellar hypoplasia, optic nerve hypoplasia and partially penetrant seizures in girls. The Cask+/- heterozygous knockout female mouse phenocopies the human disorder and exhibits postnatal microencephaly, cerebellar hypoplasia and optic nerve hypoplasia. It is not known if Cask+/- mice also display seizures, nor is known the molecular mechanism by which CASK haploinsufficiency produces the numerous documented phenotypes. 24-h video electroencephalography demonstrates that despite sporadic seizure activity, the overall electrographic patterns remain unaltered in Cask+/- mice. Additionally, seizure threshold to the commonly used kindling agent, pentylenetetrazol, remains unaltered in Cask+/- mice, indicating that even in mice the seizure phenotype is only partially penetrant and may have an indirect mechanism. RNA sequencing experiments on Cask+/- mouse brain uncovers a very limited number of changes, with most differences arising in the transcripts of extracellular matrix proteins and the transcripts of a group of nuclear proteins. In contrast to limited changes at the transcript level, quantitative whole-brain proteomics using iTRAQ quantitative mass-spectrometry reveals major changes in synaptic, metabolic/mitochondrial, cytoskeletal, and protein metabolic pathways. Unbiased protein-protein interaction mapping using affinity chromatography demonstrates that CASK may form complexes with proteins belonging to the same functional groups in which altered protein levels are observed. We discuss the mechanism of the observed changes in the context of known molecular function/s of CASK. Overall, our data indicate that the phenotypic spectrum of female Cask+/- mice includes sporadic seizures and thus closely parallels that of CASK haploinsufficient girls; the Cask+/- mouse is thus a face-validated model for CASK-related pathologies. We therefore surmise that CASK haploinsufficiency is likely to affect brain structure and function due to dysregulation of several cellular pathways including synaptic signaling and cellular metabolism.
Collapse
Affiliation(s)
- P A Patel
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - C Liang
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - A Arora
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - S Vijayan
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - S Ahuja
- Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - P K Wagley
- Neurology, University of Virginia, Charlottesville, VA, USA
| | - R Settlage
- Advanced Research Computing, Virginia Tech, Blacksburg, VA, United States
| | - L E W LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - H P Goodkin
- Neurology, University of Virginia, Charlottesville, VA, USA
| | - I Lazar
- Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - S Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - K Mukherjee
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.
| |
Collapse
|
8
|
LaConte LEW, Chavan V, DeLuca S, Rubin K, Malc J, Berry S, Gail Summers C, Mukherjee K. An N-terminal heterozygous missense CASK mutation is associated with microcephaly and bilateral retinal dystrophy plus optic nerve atrophy. Am J Med Genet A 2018; 179:94-103. [PMID: 30549415 DOI: 10.1002/ajmg.a.60687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 11/08/2022]
Abstract
Heterozygous loss-of-function mutations in the X-linked gene CASK are associated with mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH) and ophthalmological disorders including optic nerve atrophy (ONA) and optic nerve hypoplasia (ONH). Recently, we have demonstrated that CASK(+/-) mice display ONH with 100% penetrance but exhibit no change in retinal lamination or structure. It is not clear if CASK loss-of-function predominantly affects retinal ganglion cells, or if other retinal cells like photoreceptors are also involved. Here, we report a heterozygous missense mutation in the N-terminal calcium/calmodulin-dependent kinase (CaMK) domain of the CASK protein in which a highly conserved leucine is mutated to the cyclic amino acid proline. In silico analysis suggests that the mutation may produce destabilizing structural changes. Experimentally, we observe pronounced misfolding and insolubility of the CASKL209P protein. Interestingly, the remaining soluble mutant protein fails to interact with Mint1, which specifically binds to CASK's CaMK domain, suggesting a mechanism for the phenotypes observed with the CASKL209P mutation. In addition to microcephaly, cerebellar hypoplasia and delayed development, the subject with the L209P mutation also presented with bilateral retinal dystrophy and ONA. Electroretinography indicated that rod photoreceptors are the most prominently affected cells. Our data suggest that the CASK interactions mediated by the CaMK domain may play a crucial role in retinal function, and thus, in addition to ONH, individuals with mutations in the CASK gene may exhibit other retinal disorders, depending on the nature of mutation.
Collapse
Affiliation(s)
| | - Vrushali Chavan
- Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | | | - Karol Rubin
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Malc
- Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | - Susan Berry
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota
| | - C Gail Summers
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
9
|
Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction. Hum Genet 2018; 137:231-246. [PMID: 29426960 DOI: 10.1007/s00439-018-1874-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022]
Abstract
Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASKM519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASKG659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASKW919R) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.
Collapse
|
10
|
LaConte LEW, Chavan V, Liang C, Willis J, Schönhense EM, Schoch S, Mukherjee K. CASK stabilizes neurexin and links it to liprin-α in a neuronal activity-dependent manner. Cell Mol Life Sci 2016; 73:3599-621. [PMID: 27015872 PMCID: PMC4982824 DOI: 10.1007/s00018-016-2183-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 11/28/2022]
Abstract
CASK, a MAGUK family protein, is an essential protein present in the presynaptic compartment. CASK's cellular role is unknown, but it interacts with multiple proteins important for synapse formation and function, including neurexin, liprin-α, and Mint1. CASK phosphorylates neurexin in a divalent ion-sensitive manner, although the functional relevance of this activity is unclear. Here we find that liprin-α and Mint1 compete for direct binding to CASK, but neurexin1β eliminates this competition, and all four proteins form a complex. We describe a novel mode of interaction between liprin-α and CASK when CASK is bound to neurexin1β. We show that CASK phosphorylates neurexin, modulating the interaction of liprin-α with the CASK-neurexin1β-Mint1 complex. Thus, CASK creates a regulatory and structural link between the presynaptic adhesion molecule neurexin and active zone organizer, liprin-α. In neuronal culture, CASK appears to regulate the stability of neurexin by linking it with this multi-protein presynaptic active zone complex.
Collapse
Affiliation(s)
- Leslie E W LaConte
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Vrushali Chavan
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Chen Liang
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Jeffery Willis
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | | | - Susanne Schoch
- Institute of Neuropathology, Sigmund Freud Strasse 25, 53105, Bonn, Germany
| | - Konark Mukherjee
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
11
|
X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun 2016; 4:30. [PMID: 27036546 PMCID: PMC4818453 DOI: 10.1186/s40478-016-0295-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/07/2023] Open
Abstract
The phenotypic spectrum among girls with heterozygous mutations in the X-linked intellectual disability (XLID) gene CASK (calcium/calmodulin-dependent serine protein kinase) includes postnatal microcephaly, ponto-cerebellar hypoplasia, seizures, optic nerve hypoplasia, growth retardation and hypotonia. Although CASK knockout mice were previously reported to exhibit perinatal lethality and a 3-fold increased apoptotic rate in the brain, CASK deletion was not found to affect neuronal physiology and their electrical properties. The pathogenesis of CASK associated disorders and the potential function of CASK therefore remains unknown. Here, using Cre-LoxP mediated gene excision experiments; we demonstrate that deleting CASK specifically from mouse cerebellar neurons does not alter the cerebellar architecture or function. We demonstrate that the neuron-specific deletion of CASK in mice does not cause perinatal lethality but induces severe recurrent epileptic seizures and growth retardation before the onset of adulthood. Furthermore, we demonstrate that although neuron-specific haploinsufficiency of CASK is inconsequential, the CASK mutation associated human phenotypes are replicated with high fidelity in CASK heterozygous knockout female mice (CASK(+/-)). These data suggest that CASK-related phenotypes are not purely neuronal in origin. Surprisingly, the observed microcephaly in CASK(+/-) animals is not associated with a specific loss of CASK null brain cells indicating that CASK regulates postnatal brain growth in a non-cell autonomous manner. Using biochemical assay, we also demonstrate that CASK can interact with metabolic proteins. CASK knockdown in human cell lines cause reduced cellular respiration and CASK(+/-) mice display abnormalities in muscle and brain oxidative metabolism, suggesting a novel function of CASK in metabolism. Our data implies that some phenotypic components of CASK heterozygous deletion mutation associated disorders represent systemic manifestation of metabolic stress and therefore amenable to therapeutic intervention.
Collapse
|
12
|
Slawson JB, Kuklin EA, Mukherjee K, Pírez N, Donelson NC, Griffith LC. Regulation of dopamine release by CASK-β modulates locomotor initiation in Drosophila melanogaster. Front Behav Neurosci 2014; 8:394. [PMID: 25477794 PMCID: PMC4235261 DOI: 10.3389/fnbeh.2014.00394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/25/2014] [Indexed: 11/13/2022] Open
Abstract
CASK is an evolutionarily conserved scaffolding protein that has roles in many cell types. In Drosophila, loss of the entire CASK gene or just the CASK-β transcript causes a complex set of adult locomotor defects. In this study, we show that the motor initiation component of this phenotype is due to loss of CASK-β in dopaminergic neurons and can be specifically rescued by expression of CASK-β within this subset of neurons. Functional imaging demonstrates that mutation of CASK-β disrupts coupling of neuronal activity to vesicle fusion. Consistent with this, locomotor initiation can be rescued by artificially driving activity in dopaminergic neurons. The molecular mechanism underlying this role of CASK-β in dopaminergic neurons involves interaction with Hsc70-4, a molecular chaperone previously shown to regulate calcium-dependent vesicle fusion. These data suggest that there is a novel CASK-β-dependent regulatory complex in dopaminergic neurons that serves to link activity and neurotransmitter release.
Collapse
Affiliation(s)
- Justin B Slawson
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| | - Elena A Kuklin
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| | - Konark Mukherjee
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| | - Nicolás Pírez
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| | - Nathan C Donelson
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University Waltham, MA, USA
| |
Collapse
|