1
|
Li Y, Lu J, Zhang J, Gui W, Xie W. Molecular insights into enriched environments and behavioral improvements in autism: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1328240. [PMID: 38362032 PMCID: PMC10867156 DOI: 10.3389/fpsyt.2024.1328240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Aims Autism is a multifaceted developmental disorder of the nervous system, that necessitates novel therapeutic approaches beyond traditional medications and psychosomatic therapy, such as appropriate sensory integration training. This systematic mapping review aims to synthesize existing knowledge on enriching environmental interventions as an alternative avenue for improving autism, guiding future research and practice. Method A comprehensive search using the terms ASD and Enriched Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and OVID databases. Most of the literature included in this review was derived from animal model experiments, with a particular focus on assessing the effect of EE on autism-like behavior, along with related pathways and molecular mechanisms. Following extensive group discussion and screening, a total of 19 studies were included for analysis. Results Enriched environmental interventions exhibited the potential to induce both behavioral and biochemical changes, ameliorating autism-like behaviors in animal models. These improvements were attributed to the targeting of BDNF-related pathways, enhanced neurogenesis, and the regulation of glial inflammation. Conclusion This paper underscores the positive impact of enriched environmental interventions on autism through a review of existing literature. The findings contribute to a deeper understanding of the underlying brain mechanisms associated with this intervention.
Collapse
Affiliation(s)
- Yutong Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenxin Gui
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Weijie Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Torres R, Hidalgo C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 2023; 116:102821. [PMID: 37949035 DOI: 10.1016/j.ceca.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.
Collapse
Affiliation(s)
- Rodrigo Torres
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842, Puerto Montt, Chile.
| | - Cecilia Hidalgo
- Department of Neurosciences. Biomedical Neuroscience Institute, Physiology and Biophysics Program, Institute of Biomedical Sciences, Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
3
|
Valdés-Undurraga I, Lobos P, Sánchez-Robledo V, Arias-Cavieres A, SanMartín CD, Barrientos G, More J, Muñoz P, Paula-Lima AC, Hidalgo C, Adasme T. Long-term potentiation and spatial memory training stimulate the hippocampal expression of RyR2 calcium release channels. Front Cell Neurosci 2023; 17:1132121. [PMID: 37025696 PMCID: PMC10071512 DOI: 10.3389/fncel.2023.1132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: Neuronal Ca2+ signals generated through the activation of Ca2+-induced Ca2+ release in response to activity-generated Ca2+ influx play a significant role in hippocampal synaptic plasticity, spatial learning, and memory. We and others have previously reported that diverse stimulation protocols, or different memory-inducing procedures, enhance the expression of endoplasmic reticulum-resident Ca2+ release channels in rat primary hippocampal neuronal cells or hippocampal tissue. Methods and Results: Here, we report that induction of long-term potentiation (LTP) by Theta burst stimulation protocols of the CA3-CA1 hippocampal synapse increased the mRNA and protein levels of type-2 Ryanodine Receptor (RyR2) Ca2+ release channels in rat hippocampal slices. Suppression of RyR channel activity (1 h preincubation with 20 μM ryanodine) abolished both LTP induction and the enhanced expression of these channels; it also promoted an increase in the surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1 and GluR2 and caused a moderate but significant reduction of dendritic spine density. In addition, training rats in the Morris water maze induced memory consolidation, which lasted for several days after the end of the training period, accompanied by an increase in the mRNA levels and the protein content of the RyR2 channel isoform. Discussion: We confirm in this work that LTP induction by TBS protocols requires functional RyR channels. We propose that the increments in the protein content of RyR2 Ca2+ release channels, induced by LTP or spatial memory training, play a significant role in hippocampal synaptic plasticity and spatial memory consolidation.
Collapse
Affiliation(s)
- Ismael Valdés-Undurraga
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- IVIRMA, Santiago, Chile
| | - Pedro Lobos
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
| | | | - Alejandra Arias-Cavieres
- Section of Emergency Medicine, Department of Medicine, Institute for Integrative Physiology, Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| | - Carol D. SanMartín
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
| | - Genaro Barrientos
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jamileth More
- Center for Advanced Clinical Investigation (CICA), Clinical Hospital, Universidad de Chile, Santiago, Chile
- Laboratory of Translational Psychiatry, Department of Neuroscience and Department de Psychiatry North, Universidad de Chile, Santiago, Chile
| | - Pablo Muñoz
- Translational Neurology Center and Biomedical Research Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- Biomedical Research Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Section of Emergency Medicine, Department of Medicine, Institute for Integrative Physiology, Neuroscience Institute, The University of Chicago, Chicago, IL, United States
- Laboratory of Translational Psychiatry, Department of Neuroscience and Department de Psychiatry North, Universidad de Chile, Santiago, Chile
- *Correspondence: Tatiana Adasme
| |
Collapse
|
4
|
Spatial Learning Is Associated with Antagonist Outcomes for DNA Methylation and DNA Hydroxymethylation in the Transcriptional Regulation of the Ryanodine Receptor 3. Neural Plast 2021; 2021:9930962. [PMID: 34434232 PMCID: PMC8380497 DOI: 10.1155/2021/9930962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/29/2021] [Accepted: 07/24/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing attention has been drawn to the role that intracellular calcium stores play in neuronal function. Ryr3 is an intracellular calcium channel that contributes to hippocampal long-term potentiation, dendritic spine function, and higher cognitive processes. Interestingly, stimuli that increase neuronal activity upregulate the transcriptional activity of Ryr3 and augment DNA methylation in its proximal promoter. However, if these observations are valid for complex behavioral tasks such as learning and memory remains being evaluated. Relative expression analysis revealed that spatial learning increased the hippocampal levels of Ryr3, whereas mice trained using a visible platform that resulted in no spatial association showed reduced expression. Interestingly, we also observed that specific DNA modifications accompanied these opposite transcriptional changes. Increased DNA methylation was observed in hippocampal samples from spatially trained mice, and increased DNA hydroxymethylation was found in samples from mice trained using a visible platform. Both DNA modifications were not altered in control regions, suggesting that these changes are not generalized, but rather specific modifications associated with this calcium channel's transcriptional regulation. Our two experimental groups underwent the same physical task differing only in the spatial learning component, highlighting the tight relationship between DNA modifications and transcriptional activity in a relevant context such as behavioral training. Our results complement previous observations and suggest that DNA modifications are a reliable signal for the transcriptional activity of Ryr3 and can be useful to understand how conditions such as aging and neuropathological diseases determine altered Ryr3 expression.
Collapse
|
5
|
Writers and Readers of DNA Methylation/Hydroxymethylation in Physiological Aging and Its Impact on Cognitive Function. Neural Plast 2019; 2019:5982625. [PMID: 31396272 PMCID: PMC6664507 DOI: 10.1155/2019/5982625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/25/2019] [Accepted: 05/26/2019] [Indexed: 12/31/2022] Open
Abstract
The chromatin landscape has acquired deep attention from several fields ranging from cell biology to neurological and psychiatric diseases. The role that DNA modifications have on gene expression regulation has become apparent in several physiological processes, and numerous efforts have been performed to establish a relationship between DNA modifications and physiological conditions, such as cognitive performance and aging. DNA modifications are incorporated by specific sets of enzymes-the writers-and the modified DNA-interacting partners-the readers-are ultimately responsible for maintaining a functional epigenetic landscape. Therefore, understanding how these epigenetic mediators-writers and readers-are modulated in physiological aging will contribute to unraveling how aging-associated neuronal disturbances arise and contribute to the cognitive decline associated with this period of life. In this review, we focused on DNA modifications, writers and readers, highlighting that despite some methodological disparities, the evidence suggests a critical role for epigenetic mediators in the aging-associated neuronal dysfunction.
Collapse
|