1
|
Zhang P, Li J, Li W, Qiao S, Ou Y, Yuan X. Synaptic endocytosis in adult adipose stromal cell-derived neurons. Brain Res 2024; 1827:148746. [PMID: 38184164 DOI: 10.1016/j.brainres.2023.148746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Synapses are essential for facilitating the transmission of information between neurons and for executing neurophysiological processes. Following the exocytosis of neurotransmitters, the synaptic vesicle may quickly undergo endocytosis to preserve the structural integrity of the synapse. When converting adipose-derived stromal cells (ADSCs) into neurons, the ADSCs have already demonstrated comparable morphology, structure, and electrophysiological characteristics to neurons. Nevertheless, there is currently no published study on the endocytotic function of neurons that are produced from ADSCs. This study aimed to examine synaptic endocytosis in neurons derived from ADSCs by qualitatively and quantitatively analyzing the presence of Ap-2, Clathrin, Endophilin, Dynamin, and Hsc70, which are the key proteins involved in clathrin-mediated endocytosis (CME), as well as by using FM1-43 and cadmium selenide quantum dots (CdSe QDs). Additionally, single-cell RNA sequencing (scRNA-seq) was used to look at the levels of both neuronal markers and markers related to CME at the same time. The results of this study provide evidence that synapses in neurons produced from ADSCs have a role in endocytosis, mainly through the CME route.
Collapse
Affiliation(s)
- Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Jing Li
- Radiology Department of Tangshan Maternal and Child Health Hospital, Tangshan City, Hebei Province, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Sijia Qiao
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China.
| |
Collapse
|
2
|
Wu X, Liu L, Xue X, Li X, Zhao K, Zhang J, Li W, Yao W, Ding S, Jia C, Zhu F. Captive ERVWE1 triggers impairment of 5-HT neuronal plasticity in the first-episode schizophrenia by post-transcriptional activation of HTR1B in ALKBH5-m6A dependent epigenetic mechanisms. Cell Biosci 2023; 13:213. [PMID: 37990254 PMCID: PMC10664518 DOI: 10.1186/s13578-023-01167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Abnormalities in the 5-HT system and synaptic plasticity are hallmark features of schizophrenia. Previous studies suggest that the human endogenous retrovirus W family envelope (ERVWE1) is an influential risk factor for schizophrenia and inversely correlates with 5-HT4 receptor in schizophrenia. To our knowledge, no data describes the effect of ERVWE1 on 5-HT neuronal plasticity. N6-methyladenosine (m6A) regulates gene expression and impacts synaptic plasticity. Our research aims to systematically investigate the effects of ERVWE1 on 5-HT neuronal plasticity through m6A modification in schizophrenia. RESULTS HTR1B, ALKBH5, and Arc exhibited higher levels in individuals with first-episode schizophrenia compared to the controls and showed a strong positive correlation with ERVWE1. Interestingly, HTR1B was also correlated with ALKBH5 and Arc. Further analyses confirmed that ALKBH5 may be an independent risk factor for schizophrenia. In vitro studies, we discovered that ERVWE1 enhanced HTR1B expression, thereby activating the ERK-ELK1-Arc pathway and reducing the complexity and spine density of 5-HT neurons. Furthermore, ERVWE1 reduced m6A levels through ALKBH5 demethylation. ERVWE1 induced HTR1B upregulation by improving its mRNA stability in ALKBH5-m6A-dependent epigenetic mechanisms. Importantly, ALKBH5 mediated the observed alterations in 5-HT neuronal plasticity induced by ERVWE1. CONCLUSIONS Overall, HTR1B, Arc, and ALKBH5 levels were increased in schizophrenia and positively associated with ERVWE1. Moreover, ALKBH5 was a novel risk gene for schizophrenia. ERVWE1 impaired 5-HT neuronal plasticity in ALKBH5-m6A dependent mechanism by the HTR1B-ERK-ELK1-Arc pathway, which may be an important contributor to aberrant synaptic plasticity in schizophrenia.
Collapse
Affiliation(s)
- Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | | | - Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiahang Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Ding
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chen Jia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Aparicio GI, León A, Gutiérrez Fuster R, Ravenscraft B, Monje PV, Scorticati C. Endogenous Glycoprotein GPM6a Is Involved in Neurite Outgrowth in Rat Dorsal Root Ganglion Neurons. Biomolecules 2023; 13:biom13040594. [PMID: 37189342 DOI: 10.3390/biom13040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The peripheral nervous system (PNS) has a unique ability for self-repair. Dorsal root ganglion (DRG) neurons regulate the expression of different molecules, such as neurotrophins and their receptors, to promote axon regeneration after injury. However, the molecular players driving axonal regrowth need to be better defined. The membrane glycoprotein GPM6a has been described to contribute to neuronal development and structural plasticity in central-nervous-system neurons. Recent evidence indicates that GPM6a interacts with molecules from the PNS, although its role in DRG neurons remains unknown. Here, we characterized the expression of GPM6a in embryonic and adult DRGs by combining analysis of public RNA-seq datasets with immunochemical approaches utilizing cultures of rat DRG explants and dissociated neuronal cells. M6a was detected on the cell surfaces of DRG neurons throughout development. Moreover, GPM6a was required for DRG neurite elongation in vitro. In summary, we provide evidence on GPM6a being present in DRG neurons for the first time. Data from our functional experiments support the idea that GPM6a could contribute to axon regeneration in the PNS.
Collapse
|
4
|
Abstract
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Collapse
Affiliation(s)
| | - Jiri Novotny
- Jiri Novotny, Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
5
|
Deng Y, Zhu H, Xiao L, Liu C, Liu YL, Gao W. Identification of the function and mechanism of m6A reader IGF2BP2 in Alzheimer's disease. Aging (Albany NY) 2021; 13:24086-24100. [PMID: 34705667 PMCID: PMC8610118 DOI: 10.18632/aging.203652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/03/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer’s disease, the most common form of dementia in the elderly, is a kind of neurodegenerative disease. However, its pathogenesis and diagnosis remain unclear. M6A is related to nervous system development and neurodegenerative diseases. Here in this study, using multiple RNA-seq datasets of Alzheimer’s brain tissues, along with bioinformatic analysis, we innovatively found that m6A reader protein IGF2BP2 was abnormally highly expressed in Alzheimer’s patients. After compared between Alzheimer’s and normal brain samples, and between IGF2BP2- high and IGF2BP2- low subgroups of Alzheimer’s patients, we took the shared differentially expressed genes as the relevant gene sets of IGF2PB2 affecting Alzheimer’s disease occurrence for subsequent analysis. Then, weight gene correlation analysis was conducted and 17 functional modules were identified. The module that most positively correlated with Alzheimer’s disease and IGF2PB2-high subgroups were mainly participated in ECM receptor interaction, focal adhesion, cytokine-cytokine receptor interaction, and TGF-beta signaling pathway. Afterwards, a hub gene-based model including 20 genes was constructed by LASSO regression and validated by ROC curve for Alzheimer diagnosis. Finally, we preliminarily elucidated that IGF2BP2 could bind with mRNAs in a m6A-dependent manner. This study first elucidates the pathogenic role of IGF2BP2 in Alzheimer’s disease. IGF2BP2 and its relevant m6A modifications are potential to be new diagnostic and therapeutic targets for Alzheimer’s patients.
Collapse
Affiliation(s)
- Yanyao Deng
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Le Xiao
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Chao Liu
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Ya-Lin Liu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Tian D, Guo Y, Zhang D, Gao Q, Liu G, Lin J, Chang Z, Wang Y, Su R, Han Z. Shenzhi Jiannao formula ameliorates vascular dementia in vivo and in vitro by inhibition glutamate neurotoxicity via promoting clathrin-mediated endocytosis. Chin Med 2021; 16:65. [PMID: 34321050 PMCID: PMC8317332 DOI: 10.1186/s13020-021-00477-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Synaptic damage and glutamate excitotoxicity have been implicated in the pathogenesis of vascular dementia (VD). Clathrin, RAB5B and N-methyl-D-aspartic acid receptor 1 (NMDAR1) proteins play a vital role in endocytosis of synaptic vesicles in neurons and glutamate over accumulation. Previous researches have been confirmed that Shenzhi Jiannao (SZJN) formula has an anti-apoptotic and neuroprotective effect in VD, but the underlying mechanisms are still unclear. In this study, we aimed to explore the effect of SZJN formula on cognitive impairment and glutamate excitotoxicity via clathrin-mediated endocytosis (CME) in vivo and in vitro. METHODS SZJN formula consists of Panax ginseng C.A.Mey., Anemarrhena asphodeloides Bunge, and Paeonia anomala subsp. veitchii (Lynch) D.Y.Hong & K.Y.Pan. All herbs were prepared into granules. Both common carotid arteries were permanent occluded (2-vessel occlusion, 2VO) in male Sprague Dawley (SD) rats to model VD. One day after operation, the rats began daily treatment with SZJN formula for 2 weeks. The neuroprotective effects of SZJN formula was subsequently assessed by the novel object recognition test, Morris water maze, hematoxylin-eosin (HE) staining and Nissl staining. Glutamate cytotoxicity was assessed by detecting cell viability and cell death of PC12 cells. Immunohistochemistry, immunofluorescence, Western blot, and quantitative real-time PCR were used to detect the expression levels of clathrin, RAB5B, and NMDAR1. RESULTS Administration of SZJN formula effectively improved short-term memory and spatial memory. SZJN formula treatment significantly reduced hippocampal neuronal loss, and recovered the arrangement and morphology of neurons and Nissl bodies. Moreover, SZJN formula promoted the proliferation of PC12 cells and inhibited glutamate-induced cell death. The down-regulation of clathrin and RAB5B, as well as the upregulation of NMDAR1 in the brain induced by 2VO or glutamate was also notably reversed by SZJN formula at both the protein and mRNA levels, which may contribute to SZJN formula induced improved neurological function. CONCLUSIONS Taken together, our findings provide evidence that the neuroprotective effects of SZJN formula in experimental VD maybe mediated through promoting the expression of clathrin-mediated endocytosis and reducing NMDARs-associated glutamate excitotoxicity. SZJN formula serves as a promising alternative therapy and may be a useful herbal medicine for preventing progression of VD.
Collapse
Affiliation(s)
- Danfeng Tian
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yangyang Guo
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dandan Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Gao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ganlu Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingfeng Lin
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ze Chang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuchun Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Su
- Department of Scientific Research, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhenyun Han
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), No. 1 Dayun Road, Longgang District, Shenzhen, 518172, China.
| |
Collapse
|
7
|
Methyltransferase-like 3 contributes to inflammatory pain by targeting TET1 in YTHDF2-dependent manner. Pain 2021; 162:1960-1976. [PMID: 34130310 DOI: 10.1097/j.pain.0000000000002218] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT The methyltransferase-like 3 (Mettl3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for RNA N6-methyladenosine (m6A) modification, which plays an important role in gene post-transcription modulation. Although RNA m6A is enriched in mammalian neurons, its regulatory function in nociceptive information processing remains elusive. Here, we reported that Complete Freund's Adjuvant (CFA)-induced inflammatory pain significantly decreased global m6A level and m6A writer Mettl3 in the spinal cord. Mimicking this decease by knocking down or conditionally deleting spinal Mettl3 elevated the levels of m6A in ten-eleven translocation methylcytosine dioxygenases 1 (Tet1) mRNA and TET1 protein in the spinal cord, leading to production of pain hypersensitivity. By contrast, overexpressing Mettl3 reversed a loss of m6A in Tet1 mRNA and blocked the CFA-induced increase of TET1 in the spinal cord, resulting in the attenuation of pain behavior. Furthermore, the decreased level of spinal YT521-B homology domain family protein 2 (YTHDF2), an RNA m6A reader, stabilized upregulation of spinal TET1 because of the reduction of Tet1 mRNA decay by the binding to m6A in Tet1 mRNA in the spinal cord after CFA. This study reveals a novel mechanism for downregulated spinal cord METTL3 coordinating with YTHDF2 contributes to the modulation of inflammatory pain through stabilizing upregulation of TET1 in spinal neurons.
Collapse
|
8
|
León A, Aparicio GI, Scorticati C. Neuronal Glycoprotein M6a: An Emerging Molecule in Chemical Synapse Formation and Dysfunction. Front Synaptic Neurosci 2021; 13:661681. [PMID: 34017241 PMCID: PMC8129562 DOI: 10.3389/fnsyn.2021.661681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
The cellular and molecular mechanisms underlying neuropsychiatric and neurodevelopmental disorders show that most of them can be categorized as synaptopathies-or damage of synaptic function and plasticity. Synaptic formation and maintenance are orchestrated by protein complexes that are in turn regulated in space and time during neuronal development allowing synaptic plasticity. However, the exact mechanisms by which these processes are managed remain unknown. Large-scale genomic and proteomic projects led to the discovery of new molecules and their associated variants as disease risk factors. Neuronal glycoprotein M6a, encoded by the GPM6A gene is emerging as one of these molecules. M6a has been involved in neuron development and synapse formation and plasticity, and was also recently proposed as a gene-target in various neuropsychiatric disorders where it could also be used as a biomarker. In this review, we provide an overview of the structure and molecular mechanisms by which glycoprotein M6a participates in synapse formation and maintenance. We also review evidence collected from patients carrying mutations in the GPM6A gene; animal models, and in vitro studies that together emphasize the relevance of M6a, particularly in synapses and in neurological conditions.
Collapse
Affiliation(s)
| | | | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas “Rodolfo A. Ugalde”, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBio-UNSAM-CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Xu Q, Jiang M, Gu S, Wang F, Yuan B. Early Life Stress Induced DNA Methylation of Monoamine Oxidases Leads to Depressive-Like Behavior. Front Cell Dev Biol 2020; 8:582247. [PMID: 33015076 PMCID: PMC7505948 DOI: 10.3389/fcell.2020.582247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is coming to be the regarded as one of the leading causes for human disabilities. Due to its complicated pathological process, the etiology is still unclear and the treatment is still targeting at the monoamine neurotransmitters. Early life stress has been known as a major cause for MDD, but how early life stress affects adult monoaminergic activity is not clear either. Recently, DNA methylation is considered to be the key mechanism of epigenetics and might play a role in early life stress induced mental illness. DNA methylation is an enzymatic covalent modification of DNA, has been one of the main epigenetic mechanisms investigated. The metabolic enzyme for the monoamine neurotransmitters, monoamine oxidases A/B (MAO A/MAO B) are the prime candidates for the investigation into the role of DNA methylation in mental disorders. In this review, we will review recent advances about the structure and physiological function of monoamine oxidases (MAO), brief narrative other factors include stress induced changes, early life stress, perinatal depression (PD) relationship with other epigenetic changes, such as DNA methylation, microRNA (miRNA). This review will shed light on the epigenetic changes involved in MDD, which may provide potential targets for future therapeutics in depression pathogenesis.
Collapse
Affiliation(s)
- Qiuyue Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingchen Jiang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yuan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Aparicio GI, Formoso K, León A, Frasch AC, Scorticati C. Identification of Potential Interacting Proteins With the Extracellular Loops of the Neuronal Glycoprotein M6a by TMT/MS. Front Synaptic Neurosci 2020; 12:28. [PMID: 32848694 PMCID: PMC7396582 DOI: 10.3389/fnsyn.2020.00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Nowadays, great efforts are made to gain insight into the molecular mechanisms that underlie structural neuronal plasticity. Moreover, the identification of signaling pathways involved in the development of psychiatric disorders aids the screening of possible therapeutic targets. Genetic variations or alterations in GPM6A expression are linked to neurological disorders such as schizophrenia, depression, and Alzheimer's disease. GPM6A encodes the neuronal surface glycoprotein M6a that promotes filopodia/spine, dendrite, and synapse formation by unknown mechanisms. A substantial body of evidence suggests that the extracellular loops of M6a command its function. However, the proteins that associate with them and that modulate neuronal plasticity have not been determined yet. To address this question, we generated a chimera protein that only contains the extracellular loops of M6a and performed a co-immunoprecipitation with rat hippocampus samples followed by TMT/MS. Here, we report 72 proteins, which are good candidates to interact with M6a's extracellular loops and modify its function. Gene ontology (GO) analysis showed that 63% of the potential M6a's interactor proteins belong to the category "synapse," at both sides of the synaptic cleft, "neuron projections" (51%) and "presynapse" (49%). In this sense, we showed that endogenous M6a interacts with piccolo, synaptic vesicle protein 2B, and synapsin 1 in mature cultured hippocampal neurons. Interestingly, about 28% of the proteins left were related to the "myelin sheath" annotation, suggesting that M6a could interact with proteins at the surface of oligodendrocytes. Indeed, we demonstrated the (cis and trans) interaction between M6a and proteolipid protein (PLP) in neuroblastoma N2a cells. Finally, the 72 proteins were subjected to disease-associated genes and variants screening by DisGeNET. Apart from the diseases that have already been associated with M6a, most of the proteins are also involved in "autistic disorder," "epilepsy," and "seizures" increasing the spectrum of disorders in which M6a could play a role. Data are available via ProteomeXchange with identifier PXD017347.
Collapse
Affiliation(s)
- Gabriela I Aparicio
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Karina Formoso
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.,Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), CONICET, San Martín, Argentina
| | - Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.,Vicerrectorado, Edificio de Gobierno, Universidad Nacional de San Martín (UNSAM), San Martín, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| |
Collapse
|
11
|
Khalid Z, Sezerman OU. A comprehensive study on identifying the structural and functional SNPs of human neuronal membrane glycoprotein M6A (GPM6A). J Biomol Struct Dyn 2020; 39:2693-2701. [PMID: 32248748 DOI: 10.1080/07391102.2020.1751712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycoprotein M6A, a stress related gene, plays an important role in synapse and filopodia formation. Filopodia formation is vital for development, immunity, angiogenesis, wound healing and metastasis. In this study, structural and functional analysis of high-risk SNPs associated with Glycoprotein M6-A were evaluated using six different bioinformatics tools. Results classified T210I, T134I, Y153H, I215T, F156L, T160I, I226T, R247W, R178C, W159R, N157S and P151L as deleterious mutants that are crucial for the structure and function of the protein causing malfunction of M6-a and ultimately leads to disease development. The three-dimensional structure of wild-type M6-a and mutant M6-a were also predicted. Furthermore, the effects of high risk substitutions were also analyzed with interaction with valproic acid. Based on structural models obtained, the binding pocket of ligand bound glycoprotein M6-A structure showed few core interacting residues which are different in the mutant models. Among all substitutions, F156L showed complete loss of binding pocket when interacting with valproic acid as compared to the wild type model. Up to the best of our knowledge this is the first comprehensive study where GPM6A mutations were analyzed. The mechanism of action of GPM6A is still not fully defined which limits the understanding of functional details encoding M6-A. Our results may help enlighten some molecular aspects underlying glycoprotein M6-A. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zoya Khalid
- National University of Computers and Emerging Sciences, FAST-NU, Islamabad, Pakistan
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University, Istanbul, Turkey
| |
Collapse
|
12
|
Petko J, Thileepan M, Sargen M, Canfield V, Levenson R. Alternative splicing of the Wnt trafficking protein, Wntless and its effects on protein-protein interactions. BMC Mol Cell Biol 2019; 20:22. [PMID: 31286866 PMCID: PMC6615345 DOI: 10.1186/s12860-019-0208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background Wntless (Wls) is a protein that regulates secretion of Wnt signaling molecules from Wnt-producing cells. Wnt signaling is known to be critical for several developmental and homeostatic processes. However, Wnt-independent functions of Wls are now being elucidated. Primates express an alternative splice variant of Wls (here termed WlsX). WlsX contains an alternatively spliced COOH-terminus, and does not appear to be able to sustain significant levels of WNT secretion because of its inability to undergo retrograde trafficking to the endoplasmic reticulum. The functional significance for this alternatively spliced form of Wls has not yet been elucidated. We previously identified a cohort of Wls interacting proteins using a combination of yeast 2-hybrid and candidate gene approaches. Results In the present study, we analyzed the interaction of WlsX with previously identified Wls interactors, and additionally screened for novel protein interactors of WlsX utilizing a membrane yeast two hybrid screen. Three novel Wls interactors, Glycoprotein M6A (GPM6A), Alkylglycerol Monooxygenase (AGMO), and ORAI1 were identified. Each of these novel WlsX interactors, as well as all other Wls interacting proteins identified previously, with the exception of the mu-opioid receptor, were found to interact with both Wls and WlsX splice forms. We show that WlsX can form homodimers, but that WlsX may not interact with Wls. Conclusions WlsX has the ability to form homodimers and to interact with most known Wls interacting proteins. Taken together, our results suggest that Wls and WlsX may have overlapping, but distinct functions, including sensitivity to opioid drugs. While studies have focused on the ability of Wls interacting proteins to affect Wnt secretion, future efforts will explore the reciprocal regulation of these proteins by Wls, possibly via Wnt-independent mechanisms.
Collapse
Affiliation(s)
| | | | - Molly Sargen
- Biology Department, Penn State York, York, Pa, USA
| | - Victor Canfield
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
13
|
Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N, Arias C. PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. Int J Mol Sci 2018; 19:ijms19123725. [PMID: 30477115 PMCID: PMC6321294 DOI: 10.3390/ijms19123725] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) signaling contributes to a variety of processes, mediating many aspects of cellular function, including nutrient uptake, anabolic reactions, cell growth, proliferation, and survival. Less is known regarding its critical role in neuronal physiology, neuronal metabolism, tissue homeostasis, and the control of gene expression in the central nervous system in healthy and diseased states. The aim of the present work is to review cumulative evidence regarding the participation of PI3K pathways in neuronal function, focusing on their role in neuronal metabolism and transcriptional regulation of genes involved in neuronal maintenance and plasticity or on the expression of pathological hallmarks associated with neurodegeneration.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Evangelina Avila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Nelly Rodríguez-Corona
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| |
Collapse
|
14
|
Rosas NM, Alvarez Juliá A, Alzuri SE, Frasch AC, Fuchsova B. Alanine Scanning Mutagenesis of the C-Terminal Cytosolic End of Gpm6a Identifies Key Residues Essential for the Formation of Filopodia. Front Mol Neurosci 2018; 11:314. [PMID: 30233315 PMCID: PMC6131581 DOI: 10.3389/fnmol.2018.00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal membrane glycoprotein M6a (Gpm6a) is a protein with four transmembrane regions and the N- and the C-ends facing the cytosol. It functions in processes of neuronal development, outgrowth of neurites, and formation of filopodia, spines, and synapsis. Molecular mechanisms by which Gpm6a acts in these processes are not fully comprehended. Structural similarities of Gpm6a with tetraspanins led us to hypothesize that, similarly to tetraspanins, the cytoplasmic tails function as connections with cytoskeletal and/or signaling proteins. Here, we demonstrate that the C- but not the N-terminal cytosolic end of Gpm6a is required for the formation of filopodia by Gpm6a in cultured neurons from rat hippocampus and in neuroblastoma cells N2a. Further immunofluorescence microcopy and flow cytometry analysis show that deletion of neither the N- nor the C-terminal intracellular domains interferes with the recognition of Gpm6a by the function-blocking antibody directed against the extracellular part of Gpm6a. Expression levels of both truncation mutants were not affected but we observed decrease in the amount of both truncated proteins on cell surface suggesting that the incapacity of the Gpm6a lacking C-terminus to induce filopodium formation is not due to the lower amount of Gpm6a on cell surface. Following colocalization assays shows that deletion of the C- but not the N-terminus diminishes the association of Gpm6a with clathrin implying involvement of clathrin-mediated trafficking events. Next, using comprehensive alanine scanning mutagenesis of the C-terminus we identify K250, K255, and E258 as the key residues for the formation of filopodia by Gpm6a. Substitution of these charged residues with alanine also diminishes the amount of Gpm6a on cell surface and in case of K255 and E258 leads to the lower amount of total expressed protein. Subsequent bioinformatic analysis of Gpm6a amino acid sequence reveals that highly conserved and functional residues cluster preferentially within the C- and not within the N-terminus and that K250, K255, and E258 are predicted as part of sorting signals of transmembrane proteins. Altogether, our results provide evidence that filopodium outgrowth induced by Gpm6a requires functionally critical residues within the C-terminal cytoplasmic tail.
Collapse
Affiliation(s)
- Nicolás M Rosas
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Anabel Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Sofia E Alzuri
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| |
Collapse
|
15
|
Li P, Xu J, Rao HM, Li X, Zhang YK, Jiang F, Wu WX. Mechanism of Apoptosis Induction by Mycoplasmal Nuclease MGA_0676 in Chicken Embryo Fibroblasts. Front Cell Infect Microbiol 2018; 8:105. [PMID: 29670864 PMCID: PMC5893762 DOI: 10.3389/fcimb.2018.00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
MGA_0676 has been characterized as a Mycoplasma gallisepticum nuclease that can induce apoptosis of chicken cells. However, the mechanism by which MGA_0676 induces apoptosis has remained unclear. In this study, we evaluated MGA_0676-induced apoptosis and internalization in immortalized chicken embryo fibroblasts (DF-1) and cancer cell lines. The internalization of MGA_0676 was proven through caveolin-mediated endocytosis by blocking the endocytosis with specific inhibitors or with siRNA. We identified the Thif domain of NEDD8-activating enzyme E1 regulatory subunit (NAE) in DF-1 as the target region interacting with the SNC domain of MGA_0676. The interaction between the Thif and SNC domains was observed co-located in the perinuclear and nuclear of DF-1. We found that the interaction between NAE and MGA_0676 increased the ability of apoptosis and accelerated the process of cullin neddylation in DF-1 cells, in turn activating NF-κB. This resulted in the observed aggregation of NF-κB in the nuclei of DF-1 cells. Moreover, the apoptosis induced by MGA_0676 decreased significantly when NF-κB was inhibited by siRNA or BAY 11-7082 or when NAE was silenced by siRNA. Overall, our results demonstrate that MGA_0676 is internalized through caveolin-mediated endocytosis, interacts with SNC-dependent Thif to accelerate the process of cullin neddylation and activates NF-κB in DF-1 cells, ultimately playing a key role in apoptosis in chicken cells. Our results indicate MGA_0676 constitutes a critical etiological virulence factor of the respiratory disease caused by M. gallisepticum. This study also opens a venue to investigate MGA_0676 as a potential candidate as pro-apoptotic drug in cancer studies.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Hong-Mei Rao
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xia Li
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yun-Ke Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fei Jiang
- Veterinary Diagnostic Laboratory, China Animal Disease Control Center, Beijing, China
| | - Wen-Xue Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|