1
|
Olsson PO, Yeonwoo J, Park K, Yoo YM, Hwang WS. Live births from urine derived cells. PLoS One 2023; 18:e0278607. [PMID: 36696395 PMCID: PMC9876353 DOI: 10.1371/journal.pone.0278607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Here we report urine-derived cell (UDC) culture and subsequent use for cloning which resulted in the successful development of cloned canine pups, which have remained healthy into adulthood. Bovine UDCs were used in vitro to establish comparative differences between cell sources. UDCs were chosen as a readily available and noninvasive source for obtaining cells. We analyzed the viability of cells stored in urine over time and could consistently culture cells which had remained in urine for 48hrs. Cells were shown to be viable and capable of being transfected with plasmids. Although primarily of epithelial origin, cells were found from multiple lineages, indicating that they enter the urine from more than one source. Held in urine, at 4°C, the majority of cells maintained their membrane integrity for several days. When compared to in vitro fertilization (IVF) derived embryos or those from traditional SCNT, UDC derived embryos did not differ in total cell number or in the number of DNA breaks, measured by TUNEL stain. These results indicate that viable cells can be obtained from multiple species' urine, capable of being used to produce live offspring at a comparable rate to other cell sources, evidenced by a 25% pregnancy rate and 2 live births with no losses in the canine UDC cloning trial. This represents a noninvasive means to recover the breeding capacity of genetically important or infertile animals. Obtaining cells in this way may provide source material for human and animal studies where cells are utilized.
Collapse
Affiliation(s)
| | | | - Kyumi Park
- Department of Companion Animal & Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeong-Min Yoo
- Lab of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - W. S. Hwang
- UAE Biotech Research Center, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
2
|
Lam-Ubol A, Phattarataratip E. Distinct histone H3 modification profiles correlate with aggressive characteristics of salivary gland neoplasms. Sci Rep 2022; 12:15063. [PMID: 36064736 PMCID: PMC9445049 DOI: 10.1038/s41598-022-19174-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Post-translational modification of histones is the crucial event that affect many tumor-specific traits. A diverse type of histone modifications had been reported in different cancers with prognostic implications. This study aimed to examine the degree of histone H3 modifications in salivary gland neoplasms and their associations with tumor pathologic characteristics and proliferative activity. The expression of H3K9Ac, H3K18Ac, H3K9Me3 and Ki-67 in 70 specimens of salivary gland neoplasms, consisting of 30 mucoepidermoid carcinoma (MEC), 20 adenoid cystic carcinoma (ACC) and 20 pleomorphic adenoma (PA), were investigated immunohistochemically. The immunohistochemical scoring of 3 histone modification types and Ki-67 labeling index were determined. Overall, MEC demonstrated elevated H3K9Ac level compared with benign PA. Increased H3K9Me3 in MEC was positively correlated with small nest invasion at tumor front, advanced pathologic grade, and elevated proliferative index. In addition, the significant upregulation of all 3 types of histone H3 modification was noted in solid subtype of ACC and associated with increased cell proliferation. This study indicates that salivary gland neoplasms differentially acquire distinct patterns of histone H3 modification, which impact prognostically relevant cancer phenotypes. The hyperacetylation and methylation of histone H3 could be underpinning the prognostically worsen solid type of ACC, and the trimethylation of H3K9 may be involved in aggressive characteristics of MEC.
Collapse
Affiliation(s)
- Aroonwan Lam-Ubol
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, 114 Sukhumvit 23 Wattana, Bangkok, 10110, Thailand
| | - Ekarat Phattarataratip
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Characterization of Acetylation of Histone H3 at Lysine 9 in the Trigeminal Ganglion of a Rat Trigeminal Neuralgia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1300387. [PMID: 35571235 PMCID: PMC9095355 DOI: 10.1155/2022/1300387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder characterized by spontaneous and elicited paroxysms of electric-shock-like or stabbing pain in a region of the face. The epigenetic regulation of TN is still obscure. In current study, a rat TN model subject to carbamazepine (CBZ) treatment was established, and transcriptome- and genome-scale profiling of H3K9ac and HDAC3 was performed by RNA-seq and ChIP-seq. We observed that H3K9ac levels in the trigeminal ganglion were lower in the TN rats compared with those in the control, and CBZ treatment led to recovery of H3K9ac levels. Further, we found that HDAC3 was overactivated, which interfered with H3K9 acetylation due to higher phosphorylation in TN compared with that in the control. Finally, the phosphokinase leucine-rich repeat kinase 2 (LRRK2) was demonstrated to contribute to HDAC3 activity via the MAPK signaling pathway. Taken together, we identified a regulatory mechanism in which the phosphate groups transferred from activated ERK and LRRK2 to HDAC3 caused genome-scale deacetylation at H3K9 and resulted in the silencing of a large number of genes in TN. The kinases or important enzymes within this regulatory axis may represent important targets for TN therapy and prevention.
Collapse
|
4
|
Sun C, An Q, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci Ther 2021; 27:1409-1424. [PMID: 34397151 PMCID: PMC8504526 DOI: 10.1111/cns.13720] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Aims Calcitonin gene‐related peptide (CGRP) as a regulator of astrocyte activation may facilitate spinal nociceptive processing. Histone H3 lysine 9 acetylation (H3K9ac) is considered an important regulator of cytokine and chemokine gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K9ac in the activation of astrocytes, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. Methods Astroglial cells (C6) were treated with CGRP and differentially enrichments of H3K9ac on gene promoters were examined using ChIP‐seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on astrocyte activation and H3K9ac signaling in CCI‐induced neuropathic pain. Specific inhibitors were employed to delineate the involved signaling. Results Intrathecal injection of CGRP and CCI increased the number of astrocytes displaying H3K9ac in the spinal dorsal horn of rats. Treatment of CGRP was able to up‐regulate H3K9ac and glial fibrillary acidic protein (GFAP) expression in astroglial cells. ChIP‐seq data indicated that CGRP significantly altered H3K9ac enrichments on gene promoters in astroglial cells following CGRP treatment, including 151 gaining H3K9ac and 111 losing this mark, which mostly enriched in proliferation, autophagy, and macrophage chemotaxis processes. qRT‐PCR verified expressions of representative candidate genes (ATG12, ATG4C, CX3CR1, MMP28, MTMR14, HMOX1, RET) and RTCA verified astrocyte proliferation. Additionally, CGRP treatment increased the expression of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn. CGRP antagonist and HAT inhibitor attenuated mechanical and thermal hyperalgesia in CCI rats. Such analgesic effects were concurrently associated with the reduced levels of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn of CCI rats. Conclusion Our findings highly indicate that CGRP is associated with the development of neuropathic pain through astrocytes‐mediated neuroinflammatory responses via H3K9ac in spinal dorsa horn following nerve injury. This study found that CGRP act on their astrocytic receptors and lead to H3K9 acetylation (H3K9ac), which are mainly associated with proliferation‐, autophagy‐, and inflammation‐related gene expression. The number of astrocytes with H3K9ac expression is increased after nerve injury. Inhibition of CGRP attenuates the development of neuropathic pain, which was accompanied by the suppression of H3K9ac, CX3CR1, and IL‐1β expression in CCI rats.
Collapse
Affiliation(s)
- Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
5
|
CARMA1 is required for Notch1-induced NF-κB activation in SIL-TAL1-negative T cell acute lymphoblastic leukemia. J Mol Med (Berl) 2021; 99:1447-1458. [PMID: 34223928 DOI: 10.1007/s00109-021-02101-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022]
Abstract
The NF-κB signaling pathway is an important downstream pathway of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL) cells. However, the molecular mechanisms underlying the cascade activation of Notch1 in T-ALL cells are poorly understood. Here, we evaluated the role of CARMA1 in Notch1-induced NF-κB activation in T-ALL cells. CARMA1 was highly and specifically expressed in T-ALL cells and correlated with the prognosis of T-ALL patients. Interestingly, CARMA1 knockdown only inhibited the growth and proliferation of SIL-TAL1 fusion gene-negative T-ALL cells. In addition, CARMA1 knockdown arrested T-ALL cells at the G1 phase. Furthermore, CARMA1 knockdown significantly inhibited the proliferation of T-ALL cells in vivo and prolonged the survival of mice. Mechanistically, CARMA1 deficiency abolished Notch1-induced NF-κB transcriptional activation and significantly reduced expression levels of the NF-κB target genes c-Myc, Bcl-2, and CCR7. Taken together, these results of our study identify CARMA1 as one of the crucial mediators of Notch1-induced transformation of T-All cells, suggesting that CARMA1 is a promising therapeutic target for T-ALL due to its specific expression in lymphocytes. KEY MESSAGES: CARMA1 contributes to cell survival only in SIL-TAL1 negative T-ALL cells. CARMA1 is a crucial mediator of Notch1-induced activation of NF-κB pathway. CARMA1 is a promising therapeutic target for T-ALL.
Collapse
|
6
|
Nanduri R. Epigenetic Regulators of White Adipocyte Browning. EPIGENOMES 2021; 5:3. [PMID: 34968255 PMCID: PMC8594687 DOI: 10.3390/epigenomes5010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Adipocytes play an essential role in maintaining energy homeostasis in mammals. The primary function of white adipose tissue (WAT) is to store energy; for brown adipose tissue (BAT), primary function is to release fats in the form of heat. Dysfunctional or excess WAT can induce metabolic disorders such as dyslipidemia, obesity, and diabetes. Preadipocytes or adipocytes from WAT possess sufficient plasticity as they can transdifferentiate into brown-like beige adipocytes. Studies in both humans and rodents showed that brown and beige adipocytes could improve metabolic health and protect from metabolic disorders. Brown fat requires activation via exposure to cold or β-adrenergic receptor (β-AR) agonists to protect from hypothermia. Considering the fact that the usage of β-AR agonists is still in question with their associated side effects, selective induction of WAT browning is therapeutically important instead of activating of BAT. Hence, a better understanding of the molecular mechanisms governing white adipocyte browning is vital. At the same time, it is also essential to understand the factors that define white adipocyte identity and inhibit white adipocyte browning. This literature review is a comprehensive and focused update on the epigenetic regulators crucial for differentiation and browning of white adipocytes.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Liu Y, Fan H, Li X, Liu J, Qu X, Wu X, Liu M, Liu Z, Yao R. Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1α pathway in a cuprizone-induced mouse model of demyelination. Exp Neurol 2020; 337:113593. [PMID: 33387462 DOI: 10.1016/j.expneurol.2020.113593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/28/2020] [Accepted: 12/27/2020] [Indexed: 12/29/2022]
Abstract
Increasing evidence has demonstrated that the Nod-like receptor pyrin domain containing 3 (Nlrp3) inflammasome overactivated during demyelinating disorders. It has been implicated that transient receptor potential type 4 (Trpv4) is regarded as a polymodal ionotropic receptor that plays an important role in a multitude of pathological conditions, including inflammation. The aim of this study was to investigate whether the Trpv4 channel regulates Nlrp3 inflammasome in the corpus callosum of mice with demyelination. Our results showed that CPZ treatment significantly increased the expression of Trpv4, activated Nlrp3 inflammasome, reduced peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and decreased mitochondrial function. siRNA-mediated Nlrp3 knockdown inhibited glial activation and alleviated demyelination. Whereas knockdown of Trpv4 by siRNA markedly ameliorated Nlrp3 inflammasome activation and restored mitochondrial function as well as reducing the level of reactive oxygen species (ROS). Meanwhile, glial activation, demyelination and behavioral impairment induced by CPZ were also alleviated by siRNA-mediated Trpv4 knockdown. Furthermore, immunoprecipitation and use of a lysine acetylation assay showed that Sirtuin1 (SIRT1) mediated the PGC-1α deacetylation, which is involved in Nlrp3 inflammasome activation. These findings suggest that Trpv4 regulates mitochondrial function through the SIRT1/PGC-1α pathway, which further trigger Nlrp3 inflammasome activation in the CPZ-induced demyelination in mice.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Hongbin Fan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xinyu Li
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Xiuxiang Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Meiying Liu
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Zhian Liu
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
8
|
Zhang B, Han X, Gao Q, Liu J, Li S, Zha W, Wang X, Guo X, Gao D. Enhancer II-targeted dsRNA decreases GDNF expression via histone H3K9 trimethylation to inhibit glioblastoma progression. Brain Res Bull 2020; 167:22-32. [PMID: 33278485 DOI: 10.1016/j.brainresbull.2020.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is expressed in both astrocytes and glioblastoma (GBM) cells. GDNF expression is significantly increased in GBM, and inhibiting its expression can retard GBM progression. However, there is no known method for specific inhibition of GDNF in GBM cells. METHODS Promoter-targeted dsRNA-induced transcriptional gene silencing or activation was recently achieved in human cells. This approach has the potential to specifically regulate gene transcription via epigenetic modifications. In this study, we designed six candidate dsRNAs targeting the enhancer or silencer in GDNF gene promoter II to check their effects on GDNF transcription and GBM progression. RESULTS Among these dsRNAs, enhancer II-targeted dsRNA significantly inhibited U251 GBM progression by downregulating GDNF (P < 0.05), while silencer II-targeted dsRNA exerted an opposite effect. Moreover, enhancer II-targeted dsRNA did not significantly change GDNF expression in human astrocytes (HA) and the proliferation and migration of HA cells (P > 0.05). Bisulfate PCR and chromatin immunoprecipitation analyses revealed that both DNA methylation and trimethylation of histone 3 at lysine 9 (H3K9me3) at silencer II-targeted region significantly increased, and H3K9me3 at enhancer II-targeted region significantly decreased, in U251 cells compared with HA cells in non-intervention condition (P < 0.05). Both enhancer II- and silencer II-targeted dsRNA significantly increased H3K9me3 methylation rather than DNA at the targeted site in U251 cells (P < 0.05). The expression and activity of histone methyltransferase SETDB1 increased dramatically in U251 cells compared with HA cells, and it was recruited to enhancer II targeting region after enhancer II-targeted dsRNA treatment in U251 cells (P < 0.05). CONCLUSIONS Our results demonstrate that a promoter-targeted dsRNA can silence or promote gene transcription depending on its targeted site in different cis-acting elements in the gene promoter. Targeted inhibition of GDNF by enhancer II-targeted dsRNA may be explored as a novel treatment for GBM.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Saisai Li
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Wei Zha
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoyu Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
9
|
Dong F, Liu D, Jiang F, Liu Y, Wu X, Qu X, Liu J, Chen Y, Fan H, Yao R. Conditional Deletion of Foxg1 Alleviates Demyelination and Facilitates Remyelination via the Wnt Signaling Pathway in Cuprizone-Induced Demyelinated Mice. Neurosci Bull 2020; 37:15-30. [PMID: 33015737 PMCID: PMC7811968 DOI: 10.1007/s12264-020-00583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
The massive loss of oligodendrocytes caused by various pathological factors is a basic feature of many demyelinating diseases of the central nervous system (CNS). Based on a variety of studies, it is now well established that impairment of oligodendrocyte precursor cells (OPCs) to differentiate and remyelinate axons is a vital event in the failed treatment of demyelinating diseases. Recent evidence suggests that Foxg1 is essential for the proliferation of certain precursors and inhibits premature neurogenesis during brain development. To date, very little attention has been paid to the role of Foxg1 in the proliferation and differentiation of OPCs in demyelinating diseases of the CNS. Here, for the first time, we examined the effects of Foxg1 on demyelination and remyelination in the brain using a cuprizone (CPZ)-induced mouse model. In this work, 7-week-old Foxg1 conditional knockout and wild-type (WT) mice were fed a diet containing 0.2% CPZ w/w for 5 weeks, after which CPZ was withdrawn to enable remyelination. Our results demonstrated that, compared with WT mice, Foxg1-knockout mice exhibited not only alleviated demyelination but also accelerated remyelination of the demyelinated corpus callosum. Furthermore, we found that Foxg1 knockout decreased the proliferation of OPCs and accelerated their differentiation into mature oligodendrocytes both in vivo and in vitro. Wnt signaling plays a critical role in development and in a variety of diseases. GSK-3β, a key regulatory kinase in the Wnt pathway, regulates the ability of β-catenin to enter nuclei, where it activates the expression of Wnt target genes. We then used SB216763, a selective inhibitor of GSK-3β activity, to further demonstrate the regulatory mechanism by which Foxg1 affects OPCs in vitro. The results showed that SB216763 clearly inhibited the expression of GSK-3β, which abolished the effect of the proliferation and differentiation of OPCs caused by the knockdown of Foxg1. These results suggest that Foxg1 is involved in the proliferation and differentiation of OPCs through the Wnt signaling pathway. The present experimental results are some of the first to suggest that Foxg1 is a new therapeutic target for the treatment of demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dajin Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Feiyu Jiang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaping Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiuxiang Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
10
|
Armenta-Castro E, Reyes-Vallejo T, Máximo-Sánchez D, Herrera-Camacho I, López-López G, Reyes-Carmona S, Conde-Rodríguez I, Ramírez-Díaz I, Aguilar-Lemarroy A, Jave-Suárez LF, Milflores-Flores L, Santos-Lopez G, Reyes-Leyva J, Vallejo-Ruiz V. Histone H3K9 and H3K14 acetylation at the promoter of the LGALS9 gene is associated with mRNA levels in cervical cancer cells. FEBS Open Bio 2020; 10:2305-2315. [PMID: 32902187 PMCID: PMC7609790 DOI: 10.1002/2211-5463.12973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Galectin‐9 levels have been reported to be altered in several cancer types, but the mechanism that regulates the expression of Galectin‐9 has not been clarified. Galectin‐9 is encoded by the LGALS9 gene, which gives rise to eight mRNA variants. The aims of this study were: (a) to identify the mRNA variants of LGALS9, (b) to characterize CpG methylation and H3K9 and H3K14 histone acetylation at the promoter of the LGALS9 gene, and (c) to characterize the relationship between these modifications and LGALS9 expression level in cervical cancer cells. All mRNA variants were detected in HaCaT (nontumoural keratinocytes) and SiHa cells, and seven were observed in HeLa cells. The promoter region of LGALS9 contains eight CpG dinucleotides. No hypermethylation pattern related to low LGALS9 expression was identified in tumour cells. Chromatin immunoprecipitation analysis demonstrated higher acetylation of H3K9ac and H3K14ac in HaCaT cells, which was related to higher mRNA levels. The presence of the mRNA variants suggests that alternative splicing may regulate the expression of galectin‐9 isoforms. The results of this study suggest that histone acetylation, but not promoter CpG methylation, may be involved in the transcriptional regulation of the LGALS9 gene.
Collapse
Affiliation(s)
- Erick Armenta-Castro
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México.,Posgrado en Ciencias Químicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Tania Reyes-Vallejo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla, México
| | - Daniel Máximo-Sánchez
- Posgrado en Ciencias Químicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Irma Herrera-Camacho
- Posgrado en Ciencias Químicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Gustavo López-López
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sandra Reyes-Carmona
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ileana Conde-Rodríguez
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México.,Posgrado en Ciencias Químicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ivonne Ramírez-Díaz
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México.,Posgrado en Ciencias Químicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Adriana Aguilar-Lemarroy
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Luis Felipe Jave-Suárez
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | | | - Gerardo Santos-Lopez
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| | - Verónica Vallejo-Ruiz
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| |
Collapse
|
11
|
Smalley JP, Adams GE, Millard CJ, Song Y, Norris JKS, Schwabe JWR, Cowley SM, Hodgkinson JT. PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes. Chem Commun (Camb) 2020; 56:4476-4479. [PMID: 32201871 PMCID: PMC7610821 DOI: 10.1039/d0cc01485k] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have identified a proteolysis targeting chimera (PROTAC) of class I HDACs 1, 2 and 3. The most active degrader consists of a benzamide HDAC inhibitor, an alkyl linker, and the von Hippel-Lindau E3 ligand. Our PROTAC increased histone acetylation levels and compromised colon cancer HCT116 cell viability, establishing a degradation strategy as an alternative to class I HDAC inhibition.
Collapse
Affiliation(s)
- Joshua P Smalley
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Grace E Adams
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK.
| | - Christopher J Millard
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK.
| | - Yun Song
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK.
| | - James K S Norris
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK.
| | - Shaun Michael Cowley
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK.
| | - James T Hodgkinson
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
12
|
Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T, Gao D. Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics 2020; 12:47. [PMID: 32183903 PMCID: PMC7079383 DOI: 10.1186/s13148-020-00835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is highly expressed in glioblastoma (GBM) and blocking its expression can inhibit the initiation and development of GBM. GDNF is a dual promoter gene, and the promoter II with two enhancers and two silencers plays a major role in transcription initiation. We had previously reported that histone hyperacetylation and DNA hypermethylation in GDNF promoter II region result in high transcription of GDNF in GBM cells, but the mechanism remains unclear. In this study, we investigated whether these modifications synergistically regulate high GDNF transcription in GBM. RESULTS Cyclic AMP response element binding protein (CREB) expression and phosphorylation at S133 were significantly increased in human GBM tissues and GBM cell lines (U251 and U343). In U251 GBM cells, high expressed CREB significantly enhanced GDNF transcription and promoter II activity. CREB regulated GDNF transcription via the cyclic AMP response elements (CREs) in enhancer II and silencer II of GDNF promoter II. However, the two CREs played opposite regulatory roles. Interestingly, hypermethylation of CRE in silencer II occurred in GBM tissues and cells which led to decreased and increased phosphorylated CREB (pCREB) binding to silencer II and enhancer II, respectively. Moreover, pCREB recruited CREB binding protein (CBP) with histone acetylase activity to the CRE of GDNF enhancer II, thereby increasing histone H3 acetylation and RNA polymerase II recruitment there and at the transcription start site (TSS), and promoted GDNF high transcription in U251 cells. The results indicated that high GDNF transcription was attributable to DNA hypermethylation in CRE of GDNF silencer II increasing pCREB binding to CRE in enhancer II, which enhanced CBP recruitment, histone H3 acetylation, and RNA polymerase II recruitment there and at the TSS. CONCLUSIONS Our results demonstrate that pCREB-induced crosstalk between DNA methylation and histone acetylation at the GDNF promoter II enhanced GDNF high transcription, providing a new perspective for GBM treatment.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiaohe Gu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tingwen Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Ornelas IM, Khandker L, Wahl SE, Hashimoto H, Macklin WB, Wood TL. The mechanistic target of rapamycin pathway downregulates bone morphogenetic protein signaling to promote oligodendrocyte differentiation. Glia 2020; 68:1274-1290. [PMID: 31904150 DOI: 10.1002/glia.23776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) differentiate and mature into oligodendrocytes, which produce myelin in the central nervous system. Prior studies have shown that the mechanistic target of rapamycin (mTOR) is necessary for proper myelination of the mouse spinal cord and that bone morphogenetic protein (BMP) signaling inhibits oligodendrocyte differentiation, in part by promoting expression of inhibitor of DNA binding 2 (Id2). Here we provide evidence that mTOR functions specifically in the transition from early stage OPC to immature oligodendrocyte by downregulating BMP signaling during postnatal spinal cord development. When mTOR is deleted from the oligodendrocyte lineage, expression of the FK506 binding protein 1A (FKBP12), a suppressor of BMP receptor activity, is reduced, downstream Smad activity is increased and Id2 expression is elevated. Additionally, mTOR inhibition with rapamycin in differentiating OPCs alters the transcriptional complex present at the Id2 promoter. Deletion of mTOR in oligodendroglia in vivo resulted in fewer late stage OPCs and fewer newly formed oligodendrocytes in the spinal cord with no effect on OPC proliferation or cell cycle exit. Finally, we demonstrate that inhibiting BMP signaling rescues the rapamycin-induced deficit in myelin protein expression. We conclude that mTOR promotes early oligodendrocyte differentiation by suppressing BMP signaling in OPCs.
Collapse
Affiliation(s)
- Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Stacey E Wahl
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Hirokazu Hashimoto
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
14
|
Zhang Q, Pei LG, Liu M, Lv F, Chen G, Wang H. Reduced testicular steroidogenesis in rat offspring by prenatal nicotine exposure: Epigenetic programming and heritability via nAChR/HDAC4. Food Chem Toxicol 2019; 135:111057. [PMID: 31846720 DOI: 10.1016/j.fct.2019.111057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Prenatal nicotine exposure (PNE) may lead to offspring's testicular dysplasia. Here, we confirmed the intergenerational effect of PNE on testosterone synthetic function and explored its epigenetic programming mechanism. Pregnant Wistar rats were injected subcutaneously with nicotine (2 mg/kg.d) from gestational day 9-20. Some dams were anesthetized to obtain fetal rats, the rest were allowed to spontaneous labor to generate F1 and F2 generation. In utero, PNE impaired testicular development and testosterone production. Meanwhile, the expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were decreased both in F1 and F2 generations. Furthermore, PNE enhanced the expression of fetal testicular nicotinic acetylcholine receptors (nAChRs) and histone deacetylase 4 (HDAC4), while obviously weakened histone 3 lysine 9 acetylation (H3K9ac) level of StAR/3β-HSD promoter from GD20 to postnatal week 12 and even in F2 generation. In vitro, nicotine increased nAChRs and HDAC4 expression, and decreased the StAR/3β-HSD H3K9ac level and expression, as well as the testosterone production in Leydig cells. Antagonism of nAChRs and inhibition of HDAC4 reversed the aforementioned changes. In conclusion, PNE programmed testicular low steroidogenesis and its heritability in male offspring rats. The underlying mechanism was associated to the low-level programming of StAR/3β-HSD H3K9ac via nAChR/HDAC4.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lin-Guo Pei
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Basic Medical College of Nanyang Medical University, Nanyang, 473041, China
| | - Min Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Feng Lv
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
15
|
Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Suppresses Human Adenovirus Gene Expression and Replication. J Virol 2019; 93:JVI.00088-19. [PMID: 30944181 DOI: 10.1128/jvi.00088-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Human adenovirus (HAdV) causes minor illnesses in most patients but can lead to severe disease and death in pediatric, geriatric, and immunocompromised individuals. No approved antiviral therapy currently exists for the treatment of these severe HAdV-induced diseases. In this study, we show that the pan-histone deacetylase (HDAC) inhibitor SAHA reduces HAdV-5 gene expression and DNA replication in tissue culture, ultimately decreasing virus yield from infected cells. Importantly, SAHA also reduced gene expression from more virulent and clinically relevant serotypes, including HAdV-4 and HAdV-7. In addition to SAHA, several other HDAC inhibitors (e.g., trichostatin A, apicidin, and panobinostat) also affected HAdV gene expression. We determined that loss of class I HDAC activity, mainly HDAC2, impairs efficient expression of viral genes, and that E1A physically interacts with HDAC2. Our results suggest that HDAC activity is necessary for HAdV replication, which may represent a novel pharmacological target in HAdV-induced disease.IMPORTANCE Although human adenovirus (HAdV) can cause severe diseases that can be fatal in some populations, there are no effective treatments to combat HAdV infection. In this study, we determined that the pan-histone deacetylase (HDAC) inhibitor SAHA has inhibitory activity against several clinically relevant serotypes of HAdV. This U.S. Food and Drug Administration-approved compound affects various stages of the virus lifecycle and reduces virus yield even at low concentrations. We further report that class I HDAC activity, particularly HDAC2, is required for efficient expression of viral genes during lytic infection. Investigation of the mechanism underlying SAHA-mediated suppression of HAdV gene expression and replication will enhance current knowledge of virus-cell interaction and may aid in the development of more effective antivirals with lower toxicity for the treatment of HAdV infections.
Collapse
|
16
|
Radoul M, Najac C, Viswanath P, Mukherjee J, Kelly M, Gillespie AM, Chaumeil MM, Eriksson P, Santos RD, Pieper RO, Ronen SM. HDAC inhibition in glioblastoma monitored by hyperpolarized 13 C MRSI. NMR IN BIOMEDICINE 2019; 32:e4044. [PMID: 30561869 PMCID: PMC6545173 DOI: 10.1002/nbm.4044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 05/20/2023]
Abstract
Vorinostat is a histone deacetylase (HDAC) inhibitor that inhibits cell proliferation and induces apoptosis in solid tumors, and is in clinical trials for the treatment of glioblastoma (GBM). The goal of this study was to assess whether hyperpolarized 13 C MRS and magnetic resonance spectroscopic imaging (MRSI) can detect HDAC inhibition in GBM models. First, we confirmed HDAC inhibition in U87 GBM cells and evaluated real-time dynamic metabolic changes using a bioreactor system with live vorinostat-treated or control cells. We found a significant 40% decrease in the 13 C MRS-detectable ratio of hyperpolarized [1-13 C]lactate to hyperpolarized [1-13 C]pyruvate, [1-13 C]Lac/Pyr, and a 37% decrease in the pseudo-rate constant, kPL , for hyperpolarized [1-13 C]lactate production, in vorinostat-treated cells compared with controls. To understand the underlying mechanism for this finding, we assessed the expression and activity of lactate dehydrogenase (LDH) (which catalyzes the pyruvate to lactate conversion), its associated cofactor nicotinamide adenine dinucleotide, the expression of monocarboxylate transporters (MCTs) MCT1 and MCT4 (which shuttle pyruvate and lactate in and out of the cell) and intracellular lactate levels. We found that the most likely explanation for our finding that hyperpolarized lactate is reduced in treated cells is a 30% reduction in intracellular lactate levels that occurs as a result of increased expression of both MCT1 and MCT4 in vorinostat-treated cells. In vivo 13 C MRSI studies of orthotopic tumors in mice also showed a significant 52% decrease in hyperpolarized [1-13 C]Lac/Pyr when comparing vorinostat-treated U87 GBM tumors with controls, and, as in the cell studies, this metabolic finding was associated with increased MCT1 and MCT4 expression in HDAC-inhibited tumors. Thus, the 13 C MRSI-detectable decrease in hyperpolarized [1-13 C]lactate production could serve as a biomarker of response to HDAC inhibitors.
Collapse
Affiliation(s)
- Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Mark Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
- Department of Physical Therapy and Rehabilitation Science and Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Russell O. Pieper
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
17
|
Tian P, Zhu Y, Zhang C, Guo X, Zhang P, Xue H. Ras-ERK1/2 signaling contributes to the development of colorectal cancer via regulating H3K9ac. BMC Cancer 2018; 18:1286. [PMID: 30577849 PMCID: PMC6303919 DOI: 10.1186/s12885-018-5199-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS/AIMS Ras is a control switch of ERK1/2 pathway, and hyperactivation of Ras-ERK1/2 signaling appears frequently in human cancers. However, the molecular regulation following by Ras-ERK1/2 activation is still unclear. This work aimed to reveal whether Ras-ERK1/2 promoted the development of colorectal cancer via regulating H3K9ac. METHODS A vector for expression of K-Ras mutated at G12 V and T35S was transfected into SW48 cells, and the acetylation of H3K9 was measured by Western blot analysis. MTT assay, colony formation assay, transwell assay, chromatin immunoprecipitation and RT-qPCR were performed to detect whether H3K9ac was contributed to K-Ras-mediated cell growth and migration. Furthermore, whether HDAC2 and PCAF involved in modification of H3K9ac following Ras-ERK1/2 activation were studied. RESULTS K-Ras mutated at G12 V and T35S induced a significant activation of ERK1/2 signaling and a significant down-regulation of H3K9ac. Recovering H3K9 acetylation by using a mimicked H3K9ac expression vector attenuated the promoting effects of Ras-ERK1/2 on tumor cells growth and migration. Besides, H3K9ac can be deacetylated by HDAC2 and MDM2-depedent degradation of PCAF. CONCLUSION H3K9ac was a specific target for Ras-ERK1/2 signaling pathway. H3K9 acetylation can be modulated by HDAC2 and MDM2-depedent degradation of PCAF. The revealed regulation provides a better understanding of Ras-ERK1/2 signaling in tumorigenesis.
Collapse
Affiliation(s)
- Peng Tian
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Yanfei Zhu
- Department of General Surgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Chao Zhang
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Xinyu Guo
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Huanzhou Xue
- Department of General Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), No.7, Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
18
|
Liu M, Liu X, Wang L, Wang Y, Dong F, Wu J, Qu X, Liu Y, Liu Z, Fan H, Yao R. TRPV4 Inhibition Improved Myelination and Reduced Glia Reactivity and Inflammation in a Cuprizone-Induced Mouse Model of Demyelination. Front Cell Neurosci 2018; 12:392. [PMID: 30455633 PMCID: PMC6230558 DOI: 10.3389/fncel.2018.00392] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022] Open
Abstract
The inhibition of demyelination and the promotion of remyelination are both considerable challenges in the therapeutic process for many central nervous system (CNS) diseases. Increasing evidence has demonstrated that neuroglial activation and neuroinflammation are responsible for myelin sheath damage during demyelinating disorders. It has been revealed that the nonselective cation channel transient receptor potential vanilloid 4 (TRPV4) profoundly affects a variety of physiological processes, including inflammation. However, its roles and mechanisms in demyelination have remained unclear. Here, for the first time, we found that there was a significant increase in TRPV4 in the corpus callosum in a demyelinated mouse model induced by cuprizone (CPZ). RN-1734, a TRPV4-antagonist, clearly alleviated demyelination and inhibited glial activation and the production of tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) without altering the number of olig2-positive cells. In vitro, RN-1734 treatment clearly inhibited the influx of calcium and decreased the levels of IL-1β and TNF-α in lipopolysaccharide (LPS)-activated microglial cells by suppressing NF-κB P65 phosphorylation. Apoptosis of oligodendrocyte induced by LPS-activated microglia was also alleviated by RN-1734. The results suggest that activation of TRPV4 in microglia is involved in oligodendrocyte apoptosis through the activation of the NF-κB signaling pathway, thus revealing a new mechanism of CNS demyelination.
Collapse
Affiliation(s)
- Meiying Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Xuan Liu
- Department of Rheumatology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lei Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jian Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanan Liu
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Zhian Liu
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Hongbin Fan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Bhat SA, Vedpathak DM, Chiplunkar SV. Checkpoint Blockade Rescues the Repressive Effect of Histone Deacetylases Inhibitors on γδ T Cell Function. Front Immunol 2018; 9:1615. [PMID: 30072989 PMCID: PMC6060239 DOI: 10.3389/fimmu.2018.01615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDAC) are one of the key epigenetic modifiers that control chromatin accessibility and gene expression. Their role in tumorigenesis is well established and HDAC inhibitors have emerged as an effective treatment modality. HDAC inhibitors have been investigated for their specific antitumor activities and also clinically evaluated in treatment of various malignancies. In the present study, we have investigated the effect of HDAC inhibitors on the effector functions of human γδ T cells. HDAC inhibitors inhibit the antigen-specific proliferative response of γδ T cells and cell cycle progression. In antigen-activated γδ T cells, the expression of transcription factors (Eomes and Tbet) and effector molecules (perforin and granzyme B) were decreased upon treatment with HDAC inhibitors. Treatment with HDAC inhibitors attenuated the antitumor cytotoxic potential of γδ T cells, which correlated with the enhanced expression of immune checkpoints programmed death-1 (PD-1) and programmed death ligand-1 in γδ T cells. Interestingly, PD-1 blockade improves the antitumor effector functions of HDAC inhibitor-treated γδ T cells, which is reflected in the increased expression of Granzyme B and Lamp-1. This study provides a rationale for designing HDAC inhibitor and immune check point blockade as a combinatorial treatment modality for cancer.
Collapse
Affiliation(s)
- Sajad A Bhat
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,HomiBhabha National Institute, Mumbai, India
| | - Disha Mohan Vedpathak
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,HomiBhabha National Institute, Mumbai, India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,HomiBhabha National Institute, Mumbai, India
| |
Collapse
|