1
|
Mendez-Otalvaro E, Kopec W, de Groot BL. Effect of two activators on the gating of a K 2P channel. Biophys J 2024; 123:3408-3420. [PMID: 39161093 PMCID: PMC11480771 DOI: 10.1016/j.bpj.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
TWIK-related potassium channel 1 (TREK1), a two-pore-domain mammalian potassium (K+) channel, regulates the resting potential across cell membranes, presenting a promising therapeutic target for neuropathy treatment. The gating of this channel converges in the conformation of the narrowest part of the pore: the selectivity filter (SF). Various hypotheses explain TREK1 gating modulation, including the dynamics of loops connecting the SF with transmembrane helices and the stability of hydrogen bond (HB) networks adjacent to the SF. Recently, two small molecules (Q6F and Q5F) were reported as activators that affect TREK1 by increasing its open probability in single-channel current measurements. Here, using molecular dynamics simulations, we investigate the effect of these ligands on the previously proposed modulation mechanisms of TREK1 gating compared to the apo channel. Our findings reveal that loop dynamics at the upper region of the SF exhibit only a weak correlation with permeation events/nonpermeation periods, whereas the HB network behind the SF appears more correlated. These nonpermeation periods arise from both distinct mechanisms: a C-type inactivation (resulting from dilation at the top of the SF), which has been described previously, and a carbonyl flipping in an SF binding site. We find that, besides the prevention of C-type inactivation in the channel, the ligands increase the probability of permeation by modulating the dynamics of the carbonyl flipping, influenced by a threonine residue at the bottom of the SF. These results offer insights for rational ligand design to optimize the gating modulation of TREK1 and related K+ channels.
Collapse
Affiliation(s)
- Edward Mendez-Otalvaro
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Chemistry, Queen Mary University of London, London, United Kingdom.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Türkaydin B, Schewe M, Riel EB, Schulz F, Biedermann J, Baukrowitz T, Sun H. Atomistic mechanism of coupling between cytosolic sensor domain and selectivity filter in TREK K2P channels. Nat Commun 2024; 15:4628. [PMID: 38821927 PMCID: PMC11143257 DOI: 10.1038/s41467-024-48823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
The two-pore domain potassium (K2P) channels TREK-1 and TREK-2 link neuronal excitability to a variety of stimuli including mechanical force, lipids, temperature and phosphorylation. This regulation involves the C-terminus as a polymodal stimulus sensor and the selectivity filter (SF) as channel gate. Using crystallographic up- and down-state structures of TREK-2 as a template for full atomistic molecular dynamics (MD) simulations, we reveal that the SF in down-state undergoes inactivation via conformational changes, while the up-state structure maintains a stable and conductive SF. This suggests an atomistic mechanism for the low channel activity previously assigned to the down state, but not evident from the crystal structure. Furthermore, experimentally by using (de-)phosphorylation mimics and chemically attaching lipid tethers to the proximal C-terminus (pCt), we confirm the hypothesis that moving the pCt towards the membrane induces the up-state. Based on MD simulations, we propose two gating pathways by which movement of the pCt controls the stability (i.e., conductivity) of the filter gate. Together, these findings provide atomistic insights into the SF gating mechanism and the physiological regulation of TREK channels by phosphorylation.
Collapse
Affiliation(s)
- Berke Türkaydin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Insitute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Marcus Schewe
- Institute of Physiology, Kiel University, Kiel, Germany.
| | - Elena Barbara Riel
- Institute of Physiology, Kiel University, Kiel, Germany
- Department of Anesthesiology, Weill Cornell Medical College, New York, USA
| | | | - Johann Biedermann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Insitute of Chemistry, Technical University of Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Panasawatwong A, Pipatpolkai T, Tucker SJ. Transition between conformational states of the TREK-1 K2P channel promoted by interaction with PIP 2. Biophys J 2022; 121:2380-2388. [PMID: 35596528 DOI: 10.1016/j.bpj.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Members of the TREK family of two-pore domain (K2P) potassium channels are highly sensitive to regulation by membrane lipids, including phosphatidylinositol-4,5-bisphosphate (PIP2). Previous studies have demonstrated that PIP2 increases TREK1 channel activity, however, the mechanistic understanding of the conformational transitions induced by PIP2 remain unclear. Here, we used coarse-grained molecular dynamics (CG-MD) and atomistic MD simulations to model the PIP2 binding site on both the up and down state conformations of TREK-1. We also calculated the free energy of PIP2 binding relative to other anionic phospholipids in both conformational states using potential of mean force (PMF) and free energy perturbation (FEP) calculations. Our results identify state-dependent binding of PIP2 to sites involving the proximal C-terminus and we show that PIP2 promotes a conformational transition from a down state towards an intermediate that resembles the up state. These results are consistent with functional data for PIP2 regulation and together provide evidence for a structural mechanism of TREK-1 channel activation by phosphoinositides.
Collapse
Affiliation(s)
| | - Tanadet Pipatpolkai
- Department of Physiology Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, U.K.; Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K..
| | - Stephen J Tucker
- Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K.; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K..
| |
Collapse
|
4
|
Pope L, Minor DL. The Polysite Pharmacology of TREK K 2P Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:51-65. [PMID: 35138610 DOI: 10.1007/978-981-16-4254-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
K2P (KCNK) potassium channels form "background" or "leak" currents that have critical roles in cell excitability control in the brain, cardiovascular system, and somatosensory neurons. Similar to many ion channel families, studies of K2Ps have been limited by poor pharmacology. Of six K2P subfamilies, the thermo- and mechanosensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) are the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that underlie K2P function and have uncovered sites residing at every level of the channel structure with respect to the membrane where small molecules or lipids can control channel function. This polysite pharmacology within a relatively small (~70 kDa) ion channel comprises four structurally defined modulator binding sites that occur above (Keystone inhibitor site), at the level of (K2P modulator pocket), and below (Fenestration and Modulatory lipid sites) the C-type selectivity filter gate that is at the heart of K2P function. Uncovering this rich structural landscape provides the framework for understanding and developing subtype-selective modulators to probe K2P function that may provide leads for drugs for anesthesia, pain, arrhythmia, ischemia, and migraine.
Collapse
Affiliation(s)
- Lianne Pope
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US. .,Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA. .,California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA. .,Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Riel EB, Jürs BC, Cordeiro S, Musinszki M, Schewe M, Baukrowitz T. The versatile regulation of K2P channels by polyanionic lipids of the phosphoinositide and fatty acid metabolism. J Gen Physiol 2022; 154:212926. [PMID: 34928298 PMCID: PMC8693234 DOI: 10.1085/jgp.202112989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Work over the past three decades has greatly advanced our understanding of the regulation of Kir K+ channels by polyanionic lipids of the phosphoinositide (e.g., PIP2) and fatty acid metabolism (e.g., oleoyl-CoA). However, comparatively little is known regarding the regulation of the K2P channel family by phosphoinositides and by long-chain fatty acid–CoA esters, such as oleoyl-CoA. We screened 12 mammalian K2P channels and report effects of polyanionic lipids on all tested channels. We observed activation of members of the TREK, TALK, and THIK subfamilies, with the strongest activation by PIP2 for TRAAK and the strongest activation by oleoyl-CoA for TALK-2. By contrast, we observed inhibition for members of the TASK and TRESK subfamilies. Our results reveal that TASK-2 channels have both activatory and inhibitory PIP2 sites with different affinities. Finally, we provided evidence that PIP2 inhibition of TASK-1 and TASK-3 channels is mediated by closure of the recently identified lower X-gate as critical mutations within the gate (i.e., L244A, R245A) prevent PIP2-induced inhibition. Our findings establish that K+ channels of the K2P family are highly sensitive to polyanionic lipids, extending our knowledge of the mechanisms of lipid regulation and implicating the metabolism of these lipids as possible effector pathways to regulate K2P channel activity.
Collapse
Affiliation(s)
- Elena B Riel
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Björn C Jürs
- Institute of Physiology, Kiel University, Kiel, Germany.,Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | | | | | - Marcus Schewe
- Institute of Physiology, Kiel University, Kiel, Germany
| | | |
Collapse
|
6
|
García-Fernández MD, Chatelain FC, Nury H, Moroni A, Moreau CJ. Distinct classes of potassium channels fused to GPCRs as electrical signaling biosensors. CELL REPORTS METHODS 2021; 1:None. [PMID: 34977850 PMCID: PMC8688152 DOI: 10.1016/j.crmeth.2021.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
Ligand-gated ion channels (LGICs) are natural biosensors generating electrical signals in response to the binding of specific ligands. Creating de novo LGICs for biosensing applications is technically challenging. We have previously designed modified LGICs by linking G protein-coupled receptors (GPCRs) to the Kir6.2 channel. In this article, we extrapolate these design concepts to other channels with different structures and oligomeric states, namely a tetrameric viral Kcv channel and the dimeric mouse TREK-1 channel. After precise engineering of the linker regions, the two ion channels were successfully regulated by a GPCR fused to their N-terminal domain. Two-electrode voltage-clamp recordings showed that Kcv and mTREK-1 fusions were inhibited and activated by GPCR agonists, respectively, and antagonists abolished both effects. Thus, dissimilar ion channels can be allosterically regulated through their N-terminal domains, suggesting that this is a generalizable approach for ion channel engineering.
Collapse
Affiliation(s)
| | - Franck C. Chatelain
- Université Côte d’Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles, 06650 Valbonne, France
| | - Hugues Nury
- Université Grenoble Alpes, CNRS, CEA, IBS, 71, av. Martyrs, CS10090, 38044 Grenoble Cedex9, France
| | - Anna Moroni
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milano, Italy
| | - Christophe J. Moreau
- Université Grenoble Alpes, CNRS, CEA, IBS, 71, av. Martyrs, CS10090, 38044 Grenoble Cedex9, France
| |
Collapse
|
7
|
Oliveira‐Mendes B, Feliciangeli S, Ménard M, Chatelain F, Alameh M, Montnach J, Nicolas S, Ollivier B, Barc J, Baró I, Schott J, Probst V, Kyndt F, Denjoy I, Lesage F, Loussouarn G, De Waard M. A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity. Clin Transl Med 2021; 11:e609. [PMID: 34841674 PMCID: PMC8609418 DOI: 10.1002/ctm2.609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life-threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. METHODS We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC-rich sequences. A pH-sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35-s patch-clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. RESULTS In the present work, we observed a good correlation between cell surface expression, assessed by the pH-sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. CONCLUSIONS Fast-track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch-clamp system.
Collapse
Affiliation(s)
| | - Sylvain Feliciangeli
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | - Mélissa Ménard
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Frank Chatelain
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | - Malak Alameh
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Jérôme Montnach
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | | | | | - Julien Barc
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Isabelle Baró
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | | | - Vincent Probst
- CHU Nantes, l'Institut du Thorax, INSERM, CNRSUNIV NantesNantesFrance
| | - Florence Kyndt
- CHU Nantes, l'Institut du Thorax, INSERM, CNRSUNIV NantesNantesFrance
| | - Isabelle Denjoy
- Service de Cardiologie et CNMR Maladies Cardiaques Héréditaires RaresHôpital BichatParisFrance
| | - Florian Lesage
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | | | - Michel De Waard
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| |
Collapse
|
8
|
Activity of TREK-2-like Channels in the Pyramidal Neurons of Rat Medial Prefrontal Cortex Depends on Cytoplasmic Calcium. BIOLOGY 2021; 10:biology10111119. [PMID: 34827112 PMCID: PMC8614805 DOI: 10.3390/biology10111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The pyramidal neurons of rat prefrontal cortex express potassium channels identified as a non-canonical splice variant of the TREK-2 channel. The main function of TREK channels is to regulate the resting membrane potential. We showed that cytoplasmic Ca2+ upregulates the activity of TREK-2-like channels. Previous studies have indicated that the activation of TREK-2 channels is mediated by PI(4,5)P2, a polyanionic lipid in the inner leaflet of the plasma membrane. While TREK channels are believed to not be regulated by calcium, our work shows otherwise. We propose a model in which calcium ions enable the formation of PI(4,5)P2 nanoclusters, which stabilize active conformation of the channel. Abstract TREK-2-like channels in the pyramidal neurons of rat prefrontal cortex are characterized by a wide range of spontaneous activity—from very low to very high—independent of the membrane potential and the stimuli that are known to activate TREK-2 channels, such as temperature or membrane stretching. The aim of this study was to discover what factors are involved in high levels of TREK-2-like channel activity in these cells. Our research focused on the PI(4,5)P2-dependent mechanism of channel activity. Single-channel patch clamp recordings were performed on freshly dissociated pyramidal neurons of rat prefrontal cortexes in both the cell-attached and inside-out configurations. To evaluate the role of endogenous stimulants, the activity of the channels was recorded in the presence of a PI(4,5)P2 analogue (PI(4,5)P2DiC8) and Ca2+. Our research revealed that calcium ions are an important factor affecting TREK-2-like channel activity and kinetics. The observation that calcium participates in the activation of TREK-2-like channels is a new finding. We showed that PI(4,5)P2-dependent TREK-2 activity occurs when the conditions for PI(4,5)P2/Ca2+ nanocluster formation are met. We present a possible model explaining the mechanism of calcium action.
Collapse
|
9
|
Choveau FS, Ben Soussia I, Bichet D, Franck CC, Feliciangeli S, Lesage F. Convergence of Multiple Stimuli to a Single Gate in TREK1 and TRAAK Potassium Channels. Front Pharmacol 2021; 12:755826. [PMID: 34658895 PMCID: PMC8514629 DOI: 10.3389/fphar.2021.755826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Inhibitory potassium channels of the TREK1/TRAAK family are integrators of multiple stimuli, including temperature, membrane stretch, polyunsaturated fatty acids and pH. How these signals affect the gating of these channels is the subject of intense research. We have previously identified a cytoplasmic domain, pCt, which plays a major role in controlling channel activity. Here, we use pharmacology to show that the effects of pCt, arachidonic acid, and extracellular pH converge to the same gate within the channel. Using a state-dependent inhibitor, fluoxetine, as well as natural and synthetic openers, we provide further evidence that the “up” and “down” conformations identified by crystallography do not correspond to open and closed states of these channels.
Collapse
Affiliation(s)
- Frank S Choveau
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Ismail Ben Soussia
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Delphine Bichet
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Chatelain C Franck
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Sylvain Feliciangeli
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Florian Lesage
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| |
Collapse
|
10
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
11
|
Proks P, Schewe M, Conrad LJ, Rao S, Rathje K, Rödström KEJ, Carpenter EP, Baukrowitz T, Tucker SJ. Norfluoxetine inhibits TREK-2 K2P channels by multiple mechanisms including state-independent effects on the selectivity filter gate. J Gen Physiol 2021; 153:212184. [PMID: 34032848 PMCID: PMC8155809 DOI: 10.1085/jgp.202012812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/06/2021] [Indexed: 12/25/2022] Open
Abstract
The TREK subfamily of two-pore domain K+ (K2P) channels are inhibited by fluoxetine and its metabolite, norfluoxetine (NFx). Although not the principal targets of this antidepressant, TREK channel inhibition by NFx has provided important insights into the conformational changes associated with channel gating and highlighted the role of the selectivity filter in this process. However, despite the availability of TREK-2 crystal structures with NFx bound, the precise mechanisms underlying NFx inhibition remain elusive. NFx has previously been proposed to be a state-dependent inhibitor, but its binding site suggests many possible ways in which this positively charged drug might inhibit channel activity. Here we show that NFx exerts multiple effects on single-channel behavior that influence both the open and closed states of the channel and that the channel can become highly activated by 2-APB while remaining in the down conformation. We also show that the inhibitory effects of NFx are unrelated to its positive charge but can be influenced by agonists which alter filter stability, such as ML335, as well as by an intrinsic voltage-dependent gating process within the filter. NFx therefore not only inhibits channel activity by altering the equilibrium between up and down conformations but also can directly influence filter gating. These results provide further insight into the complex allosteric mechanisms that modulate filter gating in TREK K2P channels and highlight the different ways in which filter gating can be regulated to permit polymodal regulation.
Collapse
Affiliation(s)
- Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Department of Physiology, University of Kiel, Kiel, Germany
| | - Linus J Conrad
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kristin Rathje
- Department of Physiology, University of Kiel, Kiel, Germany
| | | | - Elisabeth P Carpenter
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.,Centre for Medicines Discovery, University of Oxford, UK
| | | | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Natale AM, Deal PE, Minor DL. Structural Insights into the Mechanisms and Pharmacology of K 2P Potassium Channels. J Mol Biol 2021; 433:166995. [PMID: 33887333 PMCID: PMC8436263 DOI: 10.1016/j.jmb.2021.166995] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023]
Abstract
Leak currents, defined as voltage and time independent flows of ions across cell membranes, are central to cellular electrical excitability control. The K2P (KCNK) potassium channel class comprises an ion channel family that produces potassium leak currents that oppose excitation and stabilize the resting membrane potential in cells in the brain, cardiovascular system, immune system, and sensory organs. Due to their widespread tissue distribution, K2Ps contribute to many physiological and pathophysiological processes including anesthesia, pain, arrythmias, ischemia, hypertension, migraine, intraocular pressure regulation, and lung injury responses. Structural studies of six homomeric K2Ps have established the basic architecture of this channel family, revealed key moving parts involved in K2P function, uncovered the importance of asymmetric pinching and dilation motions in the K2P selectivity filter (SF) C-type gate, and defined two K2P structural classes based on the absence or presence of an intracellular gate. Further, a series of structures characterizing K2P:modulator interactions have revealed a striking polysite pharmacology housed within a relatively modestly sized (~70 kDa) channel. Binding sites for small molecules or lipids that control channel function are found at every layer of the channel structure, starting from its extracellular side through the portion that interacts with the membrane bilayer inner leaflet. This framework provides the basis for understanding how gating cues sensed by different channel parts control function and how small molecules and lipids modulate K2P activity. Such knowledge should catalyze development of new K2P modulators to probe function and treat a wide range of disorders.
Collapse
Affiliation(s)
- Andrew M Natale
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Parker E Deal
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience University of California, San Francisco, CA 94158, USA; Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Wague A, Joseph TT, Woll KA, Bu W, Vaidya KA, Bhanu NV, Garcia BA, Nimigean CM, Eckenhoff RG, Riegelhaupt PM. Mechanistic insights into volatile anesthetic modulation of K2P channels. eLife 2020; 9:59839. [PMID: 33345771 PMCID: PMC7781597 DOI: 10.7554/elife.59839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023] Open
Abstract
K2P potassium channels are known to be modulated by volatile anesthetic (VA) drugs and play important roles in clinically relevant effects that accompany general anesthesia. Here, we utilize a photoaffinity analog of the VA isoflurane to identify a VA-binding site in the TREK1 K2P channel. The functional importance of the identified site was validated by mutagenesis and biochemical modification. Molecular dynamics simulations of TREK1 in the presence of VA found multiple neighboring residues on TREK1 TM2, TM3, and TM4 that contribute to anesthetic binding. The identified VA-binding region contains residues that play roles in the mechanisms by which heat, mechanical stretch, and pharmacological modulators alter TREK1 channel activity and overlaps with positions found to modulate TASK K2P channel VA sensitivity. Our findings define molecular contacts that mediate VA binding to TREK1 channels and suggest a mechanistic basis to explain how K2P channels are modulated by VAs.
Collapse
Affiliation(s)
- Aboubacar Wague
- Department of Anesthesiology, Weill Cornell Medical College, New York City, United States
| | - Thomas T Joseph
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, United States
| | - Kellie A Woll
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, United States
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, United States
| | - Kiran A Vaidya
- Department of Anesthesiology, Weill Cornell Medical College, New York City, United States
| | - Natarajan V Bhanu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York City, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, United States.,Department of Biochemistry, Weill Cornell Medical College, New York City, United States
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, United States
| | - Paul M Riegelhaupt
- Department of Anesthesiology, Weill Cornell Medical College, New York City, United States
| |
Collapse
|
14
|
Thompson MJ, Baenziger JE. Ion channels as lipid sensors: from structures to mechanisms. Nat Chem Biol 2020; 16:1331-1342. [PMID: 33199909 DOI: 10.1038/s41589-020-00693-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
Abstract
Ion channels play critical roles in cellular function by facilitating the flow of ions across the membrane in response to chemical or mechanical stimuli. Ion channels operate in a lipid bilayer, which can modulate or define their function. Recent technical advancements have led to the solution of numerous ion channel structures solubilized in detergent and/or reconstituted into lipid bilayers, thus providing unprecedented insight into the mechanisms underlying ion channel-lipid interactions. Here, we describe how ion channel structures have evolved to respond to both lipid modulators and lipid activators to control the electrical activities of cells, highlighting diverse mechanisms and common themes.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Kim SE, Kim MH, Woo J, Kim SJ. Dual regulatory effects of PI(4,5)P 2 on TREK-2 K + channel through antagonizing interaction between the alkaline residues (K 330 and R 355-357) in the cytosolic C-terminal helix. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:555-561. [PMID: 33093276 PMCID: PMC7585596 DOI: 10.4196/kjpp.2020.24.6.555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/15/2022]
Abstract
TWIK-related two-pore domain K+ channel-2 (TREK-2) has voltageindependent activity and shows additional activation by acidic intracellular pH (pHi) via neutralizing the E332 in the cytoplasmic C terminal (Ct). We reported opposite regulations of TREK-2 by phosphatidylinositol 4,5-bisphosphate (PIP2) via the alkaline K330 and triple Arg residues (R355-357); inhibition and activation, respectively. The G334 between them appeared critical because its mutation (G334A) endowed hTREK-2 with tonic activity, similar to the mutation of the inhibitory K330 (K330A). To further elucidate the role of putative bent conformation at G334, we compared the dual mutation forms, K330A/G334A and G334A/R355-7A, showing higher and lower basal activity, respectively. The results suggested that the tonic activity of G334A owes to a dominant influence from R355-7. Since there are additional triple Arg residues (R377-9) distal to R355-7, we also examined the triple mutant (G334A/R355-7A/R377-9A) that showed tonic inhibition same with G334A/R355-7A. Despite the state of tonic inhibition, the activation by acidic pHi was preserved in both G334A/R355-7A and G334A/R355-7A/R377-9A, similar to the R355-7A. Also, the inhibitory effect of ATP could be commonly demonstrated under the activation by acidic pHi in R355-7A, G334A/R355-7A, and G334A/R355-7A/R377-9A. These results suggest that the putative bent conformation at G334 is important to set the tug-of-war between K330 and R355-7 in the PIP2-dependent regulation of TREK-2.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, Seoul National University College of Medicine, Gyeongju 38066, Korea
| | - Myoung-Hwan Kim
- Department of Physiology, Seoul National University College of Medicine, Gyeongju 38066, Korea
| | - Joohan Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Gyeongju 38066, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
16
|
Pappa AM, Liu HY, Traberg-Christensen W, Thiburce Q, Savva A, Pavia A, Salleo A, Daniel S, Owens RM. Optical and Electronic Ion Channel Monitoring from Native Human Membranes. ACS NANO 2020; 14:12538-12545. [PMID: 32469490 DOI: 10.1021/acsnano.0c01330] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transmembrane proteins represent a major target for modulating cell activity, both in terms of therapeutics drugs and for pathogen interactions. Work on screening such therapeutics or identifying toxins has been severely limited by the lack of available methods that would give high content information on functionality (ideally multimodal) and that are suitable for high-throughput. Here, we have demonstrated a platform that is capable of multimodal (optical and electronic) screening of ligand gated ion-channel activity in human-derived membranes. The TREK-1 ion-channel was expressed within supported lipid bilayers, formed via vesicle fusion of blebs obtained from the HEK cell line overexpressing TREK-1. The resulting reconstituted native membranes were confirmed via fluorescence recovery after photobleaching to form mobile bilayers on top of films of the polymeric electroactive transducer poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). PEDOT:PSS electrodes were then used for quantitative electrochemical impedance spectroscopy measurements of ligand-mediated TREK-1 interactions with two compounds, spadin and arachidonic acid, known to suppress and activate TREK-1 channels, respectively. PEDOT:PSS-based organic electrochemical transistors were then used for combined optical and electronic measurements of TREK-1 functionality. The technology demonstrated here is highly promising for future high-throughput screening of transmembrane protein modulators owing to the robust nature of the membrane integrated device and the highly quantitative electrical signals obtained. This is in contrast with live-cell-based electrophysiology assays (e.g., patch clamp) which compare poorly in terms of cost, usability, and compatibility with optical transduction.
Collapse
Affiliation(s)
- Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Han-Yuan Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| | - Walther Traberg-Christensen
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Aimie Pavia
- Department of Flexible Electronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, 13541 Gardanne, France
- Panaxium SAS, 13100 Aix-en-Provence, France
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| |
Collapse
|
17
|
Arazi E, Blecher G, Zilberberg N. A regulatory domain in the K 2P2.1 (TREK-1) carboxyl-terminal allows for channel activation by monoterpenes. Mol Cell Neurosci 2020; 105:103496. [PMID: 32320829 DOI: 10.1016/j.mcn.2020.103496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022] Open
Abstract
Potassium K2P ('leak') channels conduct current across the entire physiological voltage range and carry leak or 'background' currents that are, in part, time- and voltage-independent. K2P2.1 channels (i.e., TREK-1, KCNK2) are highly expressed in excitable tissues, where they play a key role in the cellular mechanisms of neuroprotection, anesthesia, pain perception, and depression. Here, we report for the first time that human K2P2.1 channel activity is regulated by monoterpenes (MTs). We found that cyclic, aromatic monoterpenes containing a phenol moiety, such as carvacrol, thymol and 4-IPP had the most profound effect on current flowing through the channel (up to a 6-fold increase). By performing sequential truncation of the carboxyl-terminal domain of the channel and testing the activity of several channel regulators, we identified two distinct regulatory domains within this portion of the protein. One domain, as previously reported, was needed for regulation by arachidonic acid, anionic phospholipids, and temperature changes. Within a second domain, a triple arginine residue motif (R344-346), an apparent PIP2-binding site, was found to be essential for regulation by holding potential changes and important for regulation by monoterpenes.
Collapse
Affiliation(s)
- Eden Arazi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Galit Blecher
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Noam Zilberberg
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
18
|
Lv J, Liang Y, Zhang S, Lan Q, Xu Z, Wu X, Kang L, Ren J, Cao Y, Wu T, Lin KL, Yung KKL, Cao X, Pang J, Zhou P. DCPIB, an Inhibitor of Volume-Regulated Anion Channels, Distinctly Modulates K2P Channels. ACS Chem Neurosci 2019; 10:2786-2793. [PMID: 30935201 DOI: 10.1021/acschemneuro.9b00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
K2P potassium channels stabilize the resting membrane potential in nearly all cells and have been implicated in several neuronal, cardiovascular, and immune diseases. DCPIB, a known specific and potent inhibitor of volume-regulated anion channels (VRAC), has been reported to activate TREK1 and TREK2 in astrocytes and in vitro recently. In the present study, we demonstrated DCPIB also voltage dependently activated TRAAK besides TREK1/TREK2, showing DCPIB activated all TREK subfamily members. In contrast, the compound potently inhibited several other K2P channels with no voltage dependence, including TRESK, TASK1, and TASK3. DCPIB displayed superior selectivity toward TRESK with an IC50 of 0.14 μM, demonstrating at least 100-fold higher affinity over TREK1/TRAAK channels. Furthermore, the impaired ion selectivity filter region greatly impaired the activating effect of DCPIB on TREK1 but not the inhibitory effect of DCPIB on TRESK. This indicates distinct molecular determinants underlying the effect of DCPIB on TREK1 or TRESK channels. Our results showed that DCPIB played diverse effects on K2P channels and could be a useful tool for further investigating structure-function studies of K2P channels.
Collapse
Affiliation(s)
- Jinyan Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Qunsheng Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lijun Kang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ka Li Lin
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
19
|
Şterbuleac D. Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem Biol Drug Des 2019; 94:1596-1614. [PMID: 31124599 DOI: 10.1111/cbdd.13571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
The K+ ion channels comprising the two-pore domain (K2P) family have specific biophysical roles in generating the critical regulatory K+ current. Ion flow through K2P channels and, implicitly, channel regulation is mediated by diverse metabolic and physical inputs such as mechanical stimulation, interaction with lipids or endogenous regulators, intra- or extracellular pH, and phosphorylation, while their function can be finely tuned by chemical compounds. In the latter category, some drug-channel interactions can lead to side effects or have clinical action, while identifying novel chemical modulators of K2Ps is an area of intense research. Due to their cellular and therapeutic importance, much attention was turned to these channels in recent years and several experimental approaches have pinpointed the molecular determinants of K2P chemical modulation. Given their unique structural features and properties, chemical modulators act on K2P channels in multiple and diverse ways. In this review, the particularities of K2P modulation by chemical compounds, such as binding modality, affinity, or position, are identified, synthesized, and linked to structural and functional properties in order to refer to how activators and blockers modify channel function and vice versa, focusing on specificity related to protein structure (and its modification) and cross-linking information among different subfamilies.
Collapse
Affiliation(s)
- Daniel Şterbuleac
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|
20
|
Lamas JA, Fernández-Fernández D. Tandem pore TWIK-related potassium channels and neuroprotection. Neural Regen Res 2019; 14:1293-1308. [PMID: 30964046 PMCID: PMC6524494 DOI: 10.4103/1673-5374.253506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TWIK-related potassium channels (TREK) belong to a subfamily of the two-pore domain potassium channels family with three members, TREK1, TREK2 and TWIK-related arachidonic acid-activated potassium channels. The two-pore domain potassium channels is the last big family of channels being discovered, therefore it is not surprising that most of the information we know about TREK channels predominantly comes from the study of heterologously expressed channels. Notwithstanding, in this review we pay special attention to the limited amount of information available on native TREK-like channels and real neurons in relation to neuroprotection. Mainly we focus on the role of free fatty acids, lysophospholipids and other neuroprotective agents like riluzole in the modulation of TREK channels, emphasizing on how important this modulation may be for the development of new therapies against neuropathic pain, depression, schizophrenia, epilepsy, ischemia and cardiac complications.
Collapse
Affiliation(s)
- J Antonio Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| | - Diego Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
21
|
Woo J, Jeon YK, Zhang YH, Nam JH, Shin DH, Kim SJ. Triple arginine residues in the proximal C-terminus of TREK K + channels are critical for biphasic regulation by phosphatidylinositol 4,5-bisphosphate. Am J Physiol Cell Physiol 2018; 316:C312-C324. [PMID: 30576235 DOI: 10.1152/ajpcell.00417.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TWIK-related two-pore domain K+ channels (TREKs) are activated by acidic intracellular pH (pHi), membrane stretch, temperature, and arachidonic acid (AA). Phosphatidylinositol 4,5-bisphosphate (PIP2) exerts concentration-dependent biphasic regulations, which have been observed: inhibition by high PIP2, activation by partial decrease of PIP2, and inhibition by depletion of PIP2. Consistently, the stimulation of voltage-sensitive PIP2 phosphatase (Dr-VSP) induces initial activation and subsequent inhibition of TREKs. Lys in the proximal C-terminus (pCt) is responsible for the inhibition by high PIP2, which is generated by phosphatidylinositol kinases with ATP; its neutralizing mutation [K330A of human TREK-2 (hTREK-2)] induces tonic high activity, irrespective of ATP. Here we focus on triple successive Arg in pCt (R3-pCt) as a candidate region for the stimulatory regulation by lower PIP2. Their neutralized mutant (R3A-pCt; RRR340-2A and RRR355-7A in hTREK-1 and -2, respectively) showed negligible basal current and was not affected by ATP removal or by Dr-VSP activation. Phosphatidic acid, a phospholipid agonist of TREKs, did not activate R3A-pCt. In contrast, acidic pHi, AA, and high temperature activated R3A-pCt normally, whereas activation by membrane stretch was attenuated. In hTREK-2, combined neutralizations of the inhibitory K330 and R3-pCt (K330A/RRR355-7A) did not recover the suppressed current. In contrast, combined neutralization of pHi-sensing Glu (E332A/R355-7A) induced tonic high current and no further activation by pHi. Interestingly, when the Gly between K330/E332 and R3-pCt was mutated (G334A), hTREK-2 was tonic activated with reversed responses to ATP and acidic pHi. Therefore, we propose that the PIP2-dependent converse regulation of TREKs by Lys and R3-pCt with Gly implies structural flexibility.
Collapse
Affiliation(s)
- JooHan Woo
- Department of Physiology, Seoul National University College of Medicine , Seoul , South Korea.,Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine , Seoul , South Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine , Seoul , South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine , Seoul , South Korea
| | - Yin-Hua Zhang
- Department of Physiology, Seoul National University College of Medicine , Seoul , South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine , Seoul , South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine , Seoul , South Korea
| | - Joo Hyun Nam
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine , Seoul , South Korea
| | - Dong Hoon Shin
- Department of Pharmacology, Yonsei University College of Medicine , Seoul , South Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine , Seoul , South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine , Seoul , South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine , Seoul , South Korea
| |
Collapse
|