1
|
Shan X, Tao W, Li J, Tao W, Li D, Zhou L, Yang X, Dong C, Huang S, Chu X, Zhang C. Kai-Xin-San ameliorates Alzheimer's disease-related neuropathology and cognitive impairment in APP/PS1 mice via the mitochondrial autophagy-NLRP3 inflammasome pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118145. [PMID: 38582153 DOI: 10.1016/j.jep.2024.118145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai-Xin-San (KXS) is a classic famous prescription that has been utilized for centuries to address dementia. New investigations have shown that the anti-dementia effect of KXS is connected with improved neuroinflammation. Nevertheless, the underlying mechanism is not well elucidated. AIM OF THE STUDY We propose to discover the ameliorative impact of KXS on Alzheimer's disease (AD) and its regulatory role on the mitochondrial autophagy-nod-like receptor protein 3 (NLRP3) inflammasome pathway. MATERIALS AND METHODS The Y maze, Morris water maze, and new objection recognition tests were applied to ascertain the spatial learning and memory capacities of amyloid precursor protein/presenilin 1 (APP/PS1) mice after KXS-treatment. Meanwhile, the biochemical indexes of the hippocampus were detected by reagent kits. The pathological alterations and mitochondrial autophagy in the mice' hippocampus were detected utilizing hematoxylin and eosin (H&E), immunohistochemistry, immunofluorescence staining, and transmission electron microscopy. Besides, the PTEN-induced putative kinase 1 (PINK1)/Parkin and NLRP3 inflammasome pathways protein expressions were determined employing the immunoblot analysis. RESULTS The results of behavioral tests showed that KXS significantly enhanced the AD mice' spatial learning and memory capacities. Furthermore, KXS reversed the biochemical index levels and reduced amyloid-β protein deposition in AD mice brains. Besides, H&E staining showed that KXS remarkably ameliorated the neuronal damage in AD mice. Concurrently, the results of transmission electron microscopy suggest that KXS ameliorated the mitochondrial damage in microglia and promoted mitochondrial autophagy. Moreover, the immunofluorescence outcomes exhibited that KXS promoted the expression of protein 1 light chain 3B (LC3B) associated with microtubule and the generation of autophagic flux. Notably, the immunofluorescence co-localization results confirmed the presence of mitochondrial autophagy in microglia. Finally, KXS promoted the protein expressions of the PINK1/Parkin pathway and reduced the activation of NLRP3 inflammasome. Most importantly, these beneficial effects of KXS were attenuated by the mitochondrial autophagy inhibitor chloroquine. CONCLUSION KXS ameliorates AD-related neuropathology and cognitive impairment in APP/PS1 mice by enhancing the mitochondrial autophagy and suppressing the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China.
| | - Wenwen Tao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China.
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China.
| | - Wenkang Tao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China; Hefei Innovation Pharmaceutical Technology Co.ltd., Hefei, 230031, China.
| | - Dawei Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China; Hefei Innovation Pharmaceutical Technology Co.ltd., Hefei, 230031, China.
| | - Lele Zhou
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China; Hefei Innovation Pharmaceutical Technology Co.ltd., Hefei, 230031, China.
| | - Xuan Yang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China; Hefei Innovation Pharmaceutical Technology Co.ltd., Hefei, 230031, China.
| | - Chong Dong
- Hefei Innovation Pharmaceutical Technology Co.ltd., Hefei, 230031, China.
| | - Shunwang Huang
- Hefei Innovation Pharmaceutical Technology Co.ltd., Hefei, 230031, China.
| | - Xiaoqin Chu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Anhui Academy of Chinese Medicine, China.
| |
Collapse
|
2
|
Wu WF, Chen C, Lin JT, Jiao XH, Dong W, Wan J, Liu Q, Qiu YK, Sun A, Liu YQ, Jin CH, Huang H, Zheng H, Zhou CH, Wu YQ. Impaired synaptic plasticity and decreased glutamatergic neuron excitability induced by SIRT1/BDNF downregulation in the hippocampal CA1 region are involved in postoperative cognitive dysfunction. Cell Mol Biol Lett 2024; 29:79. [PMID: 38783169 PMCID: PMC11112897 DOI: 10.1186/s11658-024-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.
Collapse
Affiliation(s)
- Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ao Sun
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi-Qi Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chun-Hui Jin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - He Huang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Huo QF, Zhu LJ, Guo JW, Jiang YA, Zhao J. Effects of ulinastatin combined with dexmedetomidine on cognitive dysfunction and emergence agitation in elderly patients who underwent total hip arthroplasty. World J Psychiatry 2024; 14:26-35. [PMID: 38327895 PMCID: PMC10845226 DOI: 10.5498/wjp.v14.i1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND With the continuous growth of the modern elderly population, the risk of fracture increases. Hip fracture is a common type of fracture in older people. Total hip arthroplasty (THA) has significant advantages in relieving chronic pain and promoting the recovery of hip joint function. AIM To investigate the effect of ulinastatin combined with dexmedetomidine (Dex) on the incidences of postoperative cognitive dysfunction (POCD) and emergence agitation in elderly patients who underwent THA. METHODS A total of 397 patients who underwent THA from February 2019 to August 2022. We conducted a three-year retrospective cohort study in Shaanxi Provincial People's Hospital. Comprehensive demographic data were obtained from the electronic medical record system. We collected preoperative, intraoperative, and postoperative data. One hundred twenty-nine patients who were administered Dex during the operation were included in the Dex group. One hundred fifty patients who were intravenously injected with ulinastatin 15 min before anesthesia induction were included in the ulinastatin group. One hundred eighteen patients who were administered ulinastatin combined with Dex during the operation were included in the Dex + ulinastatin group. The patients' perioperative conditions, hemodynamic indexes, postoperative Mini-Mental State Examination (MMSE) scores, Ramsay score, incidence of POCD, and serum inflammatory cytokines were evaluated. RESULTS There was a significant difference in the 24 h visual analogue scale score among the three groups, and the score in the Dex + ulinastatin group was the lowest (P < 0.05). Compared with the Dex and ulinastatin group, the MMSE scores of the Dex + ulinastatin group were significantly increased at 1 and 7 d after the operation (all P < 0.05). Compared with those in the Dex and ulinastatin groups, incidence of POCD, levels of serum inflammatory cytokines in the Dex + ulinastatin group were significantly decreased at 1 and 7 d after the operation (all P < 0.05). The observer's assessment of the alertness/sedation score and Ramsay score of the Dex + ulinastatin group were significantly different from those of the Dex and ulinastatin groups on the first day after the operation (all P < 0.05). CONCLUSION Ulinastatin combined with Dex can prevent the occurrence of POCD and emergence agitation in elderly patients undergoing THA.
Collapse
Affiliation(s)
- Qi-Fan Huo
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaanxi Province, China
| | - Li-Juan Zhu
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaanxi Province, China
| | - Jian-Wei Guo
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaanxi Province, China
| | - Yan-An Jiang
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaanxi Province, China
| | - Jing Zhao
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaanxi Province, China
| |
Collapse
|
4
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
5
|
Zhuang Y, Xu J, Zheng K, Zhang H. Research progress of postoperative cognitive dysfunction in cardiac surgery under cardiopulmonary bypass. IBRAIN 2023; 10:290-304. [PMID: 39346790 PMCID: PMC11427806 DOI: 10.1002/ibra.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 10/01/2024]
Abstract
Cardiopulmonary bypass (CPB) is often used in cardiothoracic surgery because its nonphysiological state causes pathophysiological changes in the body, causing multiorgan and multitissue damage to varying degrees. Postoperative cognitive dysfunction (POCD) is a common central nervous system complication after cardiac surgery. The etiology and mechanism of POCD are not clear. Neuroinflammation, brain mitochondrial dysfunction, cerebral embolism, ischemia, hypoxia, and other factors are related to the pathogenesis of POCD. There is a close relationship between CPB and POCD, as CPB can cause inflammation, hypoxia and reperfusion injury, and microemboli formation, all of which can trigger POCD. POCD increases medical costs, seriously affects patients' quality of life, and increases mortality. Currently, there is a lack of effective treatment methods for POCD. Commonly used methods include preoperative health management, reducing inflammation response during surgery, preventing microemboli formation, and implementing individualized rehabilitation programs after surgery. Strengthening preventive measures can minimize the occurrence of POCD and its adverse effects.
Collapse
Affiliation(s)
- Yi‐Ming Zhuang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Ji‐Yang Xu
- Department of AnesthesiologyJudicial Police Hospital of Guizhou ProvinceGuiyangChina
| | - Kun Zheng
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Hong Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
6
|
Wang L, Peng G, Chen L, Guo M, Wang B, Zhang Y, Zhou J, Zhong M, Ye J. Icariin reduces cognitive dysfunction induced by surgical trauma in aged rats by inhibiting hippocampal neuroinflammation. Front Behav Neurosci 2023; 17:1162009. [PMID: 37351155 PMCID: PMC10282654 DOI: 10.3389/fnbeh.2023.1162009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postsurgical complication in elderly individuals, significantly impacting the quality of life of patients; however, there is currently no effective clinical treatment for POCD. Recent studies have shown that Icariin (ICA) has antiaging effects and improves cognitive function, but its effect in POCD has not been studied. In this study, we investigated the influence of ICA on cognitive function and the TLR4/NF-κB signaling pathway in a POCD rat model. We found that ICA reduced surgery-induced memory impairment, decreased hippocampal inflammatory responses, ameliorated neuronal injury in the hippocampus and inhibited microglial activation. In addition, we also observed that ICA inhibited activation of the TLR4/NF-κB signaling pathway. In summary, our research suggest that ICA can ameliorate surgery-induced memory impairment and that the improvements resulting from administration of ICA may be associated with inhibition of hippocampal neuroinflammation. Our research findings also provide insight into potential therapeutic targets and methods for POCD.
Collapse
|
7
|
Torrente D, Su EJ, Schielke GP, Warnock M, Mann K, Lawrence DA. Opposing effects of β-2 and β-1 adrenergic receptor signaling on neuroinflammation and dopaminergic neuron survival in α-synuclein-mediated neurotoxicity. J Neuroinflammation 2023; 20:56. [PMID: 36864439 PMCID: PMC9983231 DOI: 10.1186/s12974-023-02748-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Noradrenergic neurons in the locus coeruleus (LC) are the primary source of norepinephrine (NE) in the brain and degeneration of these neurons is reported in the early stages of Parkinson's disease (PD), even prior to dopaminergic neuron degeneration in the substantia nigra (SN), which is a hallmark of PD pathology. NE depletion is generally associated with increased PD pathology in neurotoxin-based PD models. The effect of NE depletion in other models of PD-like α-synuclein-based models is largely unexplored. In PD models and in human patients, β-adrenergic receptors' (AR) signaling is associated with a reduction of neuroinflammation and PD pathology. However, the effect of NE depletion in the brain and the extent of NE and β-ARs signaling involvement in neuroinflammation, and dopaminergic neuron survival is poorly understood. METHODS Two mouse models of PD, a 6OHDA neurotoxin-based model and a human α-synuclein (hα-SYN) virus-based model of PD, were used. DSP-4 was used to deplete NE levels in the brain and its effect was confirmed by HPLC with electrochemical detection. A pharmacological approach was used to mechanistically understand the impact of DSP-4 in the hα-SYN model of PD using a norepinephrine transporter (NET) and a β-AR blocker. Epifluorescence and confocal imaging were used to study changes in microglia activation and T-cell infiltration after β1-AR and β2-AR agonist treatment in the hα-SYN virus-based model of PD. RESULTS Consistent with previous studies, we found that DSP-4 pretreatment increased dopaminergic neuron loss after 6OHDA injection. In contrast, DSP-4 pretreatment protected dopaminergic neurons after hα-SYN overexpression. DSP-4-mediated protection of dopaminergic neurons after hα-SYN overexpression was dependent on β-AR signaling since using a β-AR blocker prevented DSP-4-mediated dopaminergic neuron protection in this model of PD. Finally, we found that the β-2AR agonist, clenbuterol, reduced microglia activation, T-cell infiltration, and dopaminergic neuron degeneration, whereas xamoterol a β-1AR agonist showed increased neuroinflammation, blood brain barrier permeability (BBB), and dopaminergic neuron degeneration in the context of hα-SYN-mediated neurotoxicity. CONCLUSIONS Our data demonstrate that the effects of DSP-4 on dopaminergic neuron degeneration are model specific, and suggest that in the context of α-SYN-driven neuropathology, β2-AR specific agonists may have therapeutic benefit in PD.
Collapse
Affiliation(s)
- Daniel Torrente
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gerald P Schielke
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kris Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel A Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA.
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Li G, Zhou J, Wei J, Liu B. Dexmedetomidine Ameliorated Cognitive Dysfunction Induced by Intestinal Ischemia Reperfusion in Mice with Possible Relation to the Anti-inflammatory Effect Through the Locus Coeruleus Norepinephrine System. Neurochem Res 2022; 47:3440-3453. [PMID: 35945306 PMCID: PMC9546995 DOI: 10.1007/s11064-022-03706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cognitive impairment is a common central nervous system complication that occurs following surgery or organs damage outside the nervous system. Neuroinflammation plays a key role in the molecular mechanisms of cognitive impairment. Dexmedetomidine alleviates neuroinflammation and reduces cognitive dysfunction incidence; however, the mechanism by which dexmedetomidine alleviates cognitive dysfunction remains unclear. This study evaluated the effect of dexmedetomidine on attenuation of early cognitive impairment induced by intestinal ischemia–reperfusion in mice and examined whether the locus coeruleus norepinephrine (LCNE) system participates in the anti-inflammatory effect of dexmedetomidine. The superior mesenteric artery was clamped for 45 min to induce intestinal ischemia reperfusion injury. Dexmedetomidine alone or combined with DSP-4, a selective locus coeruleus noradrenergic neurotoxin, was used for pretreatment. Postoperative cognition was assessed using the Morris water maze. Serum and hippocampal levels of IL-1β, TNF-α, norepinephrine (NE), and malondialdehyde (MDA) were assessed by enzyme-linked immunosorbent assay. Immunofluorescence, immunohistochemistry, and hematoxylin and eosin staining were used to evaluate the expression of tyrosine hydroxylase (TH) in the locus coeruleus, hippocampal microglia, and intestinal injury. Pretreatment with dexmedetomidine alleviated intestinal injury and decreased the serum and hippocampal levels of NE, IL-1β, TNF-α, and MDA at 24 h after intestinal ischemia reperfusion, decreased TH-positive neurons in the locus coeruleus, and ameliorated cognitive impairment. Similarly, DSP-4 pre-treatment alleviated neuroinflammation and improved cognitive function. Furthermore, α2-adrenergic receptor antagonist atipamezole or yohimbine administration diminished the neuroprotective effects and improved cognitive function with dexmedetomidine. Therefore, dexmedetomidine attenuated early cognitive dysfunction induced by intestinal ischemia–reperfusion injury in mice, which may be related to its anti-inflammatory effects through the LCNE system.
Collapse
Affiliation(s)
- Gang Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jicheng Wei
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Gutiérrez IL, Dello Russo C, Novellino F, Caso JR, García-Bueno B, Leza JC, Madrigal JLM. Noradrenaline in Alzheimer's Disease: A New Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms23116143. [PMID: 35682822 PMCID: PMC9181823 DOI: 10.3390/ijms23116143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence demonstrates the important role of the noradrenergic system in the pathogenesis of many neurodegenerative processes, especially Alzheimer’s disease, due to its ability to control glial activation and chemokine production resulting in anti-inflammatory and neuroprotective effects. Noradrenaline involvement in this disease was first proposed after finding deficits of noradrenergic neurons in the locus coeruleus from Alzheimer’s disease patients. Based on this, it has been hypothesized that the early loss of noradrenergic projections and the subsequent reduction of noradrenaline brain levels contribute to cognitive dysfunctions and the progression of neurodegeneration. Several studies have focused on analyzing the role of noradrenaline in the development and progression of Alzheimer’s disease. In this review we summarize some of the most relevant data describing the alterations of the noradrenergic system normally occurring in Alzheimer’s disease as well as experimental studies in which noradrenaline concentration was modified in order to further analyze how these alterations affect the behavior and viability of different nervous cells. The combination of the different studies here presented suggests that the maintenance of adequate noradrenaline levels in the central nervous system constitutes a key factor of the endogenous defense systems that help prevent or delay the development of Alzheimer’s disease. For this reason, the use of noradrenaline modulating drugs is proposed as an interesting alternative therapeutic option for Alzheimer’s disease.
Collapse
Affiliation(s)
- Irene L. Gutiérrez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3GL, UK
| | - Fabiana Novellino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council, 88100 Catanzaro, Italy
| | - Javier R. Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Juan C. Leza
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - José L. M. Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Correspondence: ; Tel.: +34-91-394-1463
| |
Collapse
|