1
|
Lőrincz B, Motýl J, Friedová L, Hrych D, Kubala Havrdová E, Krásenský J, Urban T, Kober T, Maréchal B, Vaněčková M, Horákova D, Vrablik M, Uher T. Lipid measures are associated with cognitive functioning in multiple sclerosis patients. Mult Scler Relat Disord 2024; 91:105879. [PMID: 39270535 DOI: 10.1016/j.msard.2024.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND An association between lipid measures and cognitive decline in patients with multiple sclerosis (MS) has been suggested. OBJECTIVES This study aimed to investigate relationships between lipid profile and cognitive performance in a large observational cohort of MS patients. MATERIALS AND METHODS We included 211 patients with 316 available pairs of lipid and cognitive measures performed over follow-up. The time between lipid and cognitive measures did not exceed 90 days. Baseline data were analyzed by non-parametric Spearman rank correlation test. Repeated measures were analyzed using linear mixed models adjusted for sex, age, education level, disease-modifying therapy status, and depression. RESULTS Baseline analyses showed a correlation between higher low-density lipoprotein cholesterol (LDL-C) and lower Categorical Verbal Learning Test (CVLT) (rho=-0.15; p = 0.04), lower Symbol Digit Modalities Test (SDMT) (rho=-0.16; p = 0.02) and lower Brief Visuospatial Memory Test-Revised (BVMT-R) scores (rho=-0.12; p = 0.04). Higher high-density lipoprotein cholesterol (HDL-C) was negatively correlated with lower SDMT scores (rho=-0.16; p = 0.02) and lower Paced Auditory Serial Addition Test-3 (PASAT-3) scores (rho=-0.24; p = 0.03). Mixed model analyses of repeated measures showed a negative association between higher LDL-C and lower CVLT (B=-0.02; p < 0.001, Cohen´s d = 0.08) and lower BVMT-R (B=-0.01; p = 0.03, Cohen´s d=-0.12). Also, the negative association between HDL-C and PASAT-3 was confirmed in the mixed model analysis (B=-0.18; p = 0.01, Cohen´s d = 0.07). Additional adjustments of the models for disability assessed by Expanded Disability Status Scale or Normalized Brain Volume did not change the results of the models substantially. CONCLUSIONS Our results suggest a mild negative impact of dyslipidemia on cognitive performance in patients with MS. We propose that dyslipidemia contributes, at least in part, to cognitive decline in MS patients, independent of brain atrophy.
Collapse
Affiliation(s)
- Balázs Lőrincz
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Jiří Motýl
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Lucie Friedová
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Daniel Hrych
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Jan Krásenský
- Department of Radiology, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Tadeáš Urban
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne CH-1015, Switzerland
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne CH-1015, Switzerland
| | - Manuela Vaněčková
- Department of Radiology, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Dana Horákova
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Michal Vrablik
- Third Department of Internal Medicine, Department of Endocrinology and Metabolism, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Tomáš Uher
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic.
| |
Collapse
|
2
|
Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev 2024; 101:102533. [PMID: 39368666 DOI: 10.1016/j.arr.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, Naples 80138, Italy; UOC Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naple 80138, Italy
| | - Francesco Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
3
|
Yasa S, Butz ES, Colombo A, Chandrachud U, Montore L, Tschirner S, Prestel M, Sheridan SD, Müller SA, Groh J, Lichtenthaler SF, Tahirovic S, Cotman SL. Loss of CLN3 in microglia leads to impaired lipid metabolism and myelin turnover. Commun Biol 2024; 7:1373. [PMID: 39438652 PMCID: PMC11496662 DOI: 10.1038/s42003-024-07057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Loss-of-function mutations in CLN3 cause juvenile Batten disease, featuring neurodegeneration and early-stage neuroinflammation. How loss of CLN3 function leads to early neuroinflammation is not yet understood. Here, we have comprehensively studied microglia from Cln3∆ex7/8 mice, a genetically accurate disease model. Loss of CLN3 function in microglia leads to lysosomal storage material accumulation and abnormal morphology of subcellular organelles. Moreover, pathological proteomic signatures are indicative of defects in lysosomal function and abnormal lipid metabolism. Consistent with these findings, CLN3-deficient microglia are unable to efficiently turnover myelin and metabolize the associated lipids, showing defects in lipid droplet formation and cholesterol accumulation. Accordingly, we also observe impaired myelin integrity in aged Cln3∆ex7/8 mouse brain. Autophagy inducers and cholesterol-lowering drugs correct the observed microglial phenotypes. Taken together, these data implicate a cell-autonomous defect in CLN3-deficient microglia that impacts their ability to support neuronal cell health, suggesting microglial targeted therapies should be considered for CLN3 disease.
Collapse
Affiliation(s)
- Seda Yasa
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Elisabeth S Butz
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Luca Montore
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sarah Tschirner
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Prestel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Steven D Sheridan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Janos Groh
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Susan L Cotman
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Bu L, He L, Wang X, Du G, Wu R, Liu W. Proteomic Analysis Provides a New Sight Into the CRABP1 Expression in the Pathogenesis of Hirschsprung Disease. Biochem Genet 2024:10.1007/s10528-024-10913-3. [PMID: 39298027 DOI: 10.1007/s10528-024-10913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Hirschsprung's disease (HSCR) is the most common developmental disorder of the enteric nervous system and its etiology and pathogenesis remain largely unknown. This study aims to identify the differential proteomic patterns linked to the occurrence and development of Hirschsprung disease in colonic tissues. Biopsies were obtained from the aganglionic colon in human HSCR and the corresponding ganglionic colon segments for direct quantitative determination of the data-independent acquisition (DIA) followed by bioinformatics analysis. The differentially expressed main proteins were confirmed by Western blot and immunostaining. A total of 5832 proteins were identified in human colon tissues. Among them, 97 differentially expressed proteins (DEP) with fold change (FC) > 1.2 were screened, including 18 upregulated proteins and 79 downregulated proteins, and GO and KEGG enrichment analyses were performed on differential proteins. By comparing down-regulated proteins with highly connected protein nodes in the PPI network with those related to intracellular metabolic processes in the above analysis, we identified cellular retinoic acid binding protein 1(CRABP1). Its expression was verified in the aganglionic part of the colon by western blotting in an expanded sample set (P = 0.0031). The immunostaining results revealed that CRABP1 was highly expressed in the myenteric plexus ganglion in ganglionic colons compared to aganglionic segments (P = 0.0004). This study demonstrated the down-regulation of CRABP1 in the aganglionic hindgut of HSCR, which could provide potential markers or promising new candidate actors for the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Lingyun Bu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Lingxiao He
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Rongde Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China.
| |
Collapse
|
5
|
Le Bars S, Glaab E. Single-Cell Cortical Transcriptomics Reveals Common and Distinct Changes in Cell-Cell Communication in Alzheimer's and Parkinson's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04419-7. [PMID: 39143450 DOI: 10.1007/s12035-024-04419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) cause significant neuronal loss and severely impair daily living. Despite different clinical manifestations, these disorders share common pathological molecular hallmarks, including mitochondrial dysfunction and synaptic degeneration. A detailed comparison of molecular changes at single-cell resolution in the cortex, as one of the main brain regions affected in both disorders, may reveal common susceptibility factors and disease mechanisms. We performed single-cell transcriptomic analyses of post-mortem cortical tissue from AD and PD subjects and controls to identify common and distinct disease-associated changes in individual genes, cellular pathways, molecular networks, and cell-cell communication events, and to investigate common mechanisms. The results revealed significant disease-specific, shared, and opposing gene expression changes, including cell type-specific signatures for both diseases. Hypoxia signaling and lipid metabolism emerged as significantly modulated cellular processes in both AD and PD, with contrasting expression alterations between the two diseases. Furthermore, both pathway and cell-cell communication analyses highlighted shared significant alterations involving the JAK-STAT signaling pathway, which has been implicated in the inflammatory response in several neurodegenerative disorders. Overall, the analyses revealed common and distinct alterations in gene signatures, pathway activities, and gene regulatory subnetworks in AD and PD. The results provide insights into coordinated changes in pathway activity and cell-cell communication that may guide future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sophie Le Bars
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
6
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Xin Y, Guan ST, Ren K, Wang H, Dong J, Wang HY, Zhang J, Xu XP, Yao BW, Zhao L, Shi CX, Peng RY. Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus. Metabolites 2024; 14:354. [PMID: 39057677 PMCID: PMC11278544 DOI: 10.3390/metabo14070354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC-MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in the microwave radiation group were exposed to 2.856 GHz for 15 min for three times, with 5 min intervals. The rats in the sham group were not exposed. Transmission electron microscope revealed blurring of the synaptic cleft and postsynaptic dense thickening in hippocampal neurons after microwave radiation. Metabolomic analysis revealed 38, 24, and 39 differentially abundant metabolites at 3, 7, and 14 days after radiation, respectively, and the abundance of 9 metabolites, such as argininosuccinic acid, was continuously decreased. After microwave radiation, the abundance of metabolites such as argininosuccinic acid was successively decreased, indicating that these metabolites could be potential biomarkers for hippocampal tissue injury.
Collapse
Affiliation(s)
- Yu Xin
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Shu-Ting Guan
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Ke Ren
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Hui Wang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Ji Dong
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Hao-Yu Wang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Jing Zhang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Xin-Ping Xu
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Bin-Wei Yao
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Li Zhao
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Chang-Xiu Shi
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
| | - Rui-Yun Peng
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| |
Collapse
|
8
|
Su H, Masters CL, Bush AI, Barnham KJ, Reid GE, Vella LJ. Exploring the significance of lipids in Alzheimer's disease and the potential of extracellular vesicles. Proteomics 2024; 24:e2300063. [PMID: 37654087 DOI: 10.1002/pmic.202300063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin J Barnham
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura J Vella
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Weber CM, Moiz B, Clyne AM. Brain microvascular endothelial cell metabolism and its ties to barrier function. VITAMINS AND HORMONES 2024; 126:25-75. [PMID: 39029976 DOI: 10.1016/bs.vh.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Brain microvascular endothelial cells, which lie at the interface between blood and brain, are critical to brain energetics. These cells must precisely balance metabolizing nutrients for their own demands with transporting nutrients into the brain to sustain parenchymal cells. It is essential to understand this integrated metabolism and transport so that we can develop better diagnostics and therapeutics for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, and traumatic brain injury. In this chapter, we first describe brain microvascular endothelial cell metabolism and how these cells regulate both blood flow and nutrient transport. We then explain the impact of brain microvascular endothelial cell metabolism on the integrity of the blood-brain barrier, as well as how metabolites produced by the endothelial cells impact other brain cells. We detail some ways that cell metabolism is typically measured experimentally and modeled computationally. Finally, we describe changes in brain microvascular endothelial cell metabolism in aging and neurodegenerative diseases. At the end of the chapter, we highlight areas for future research in brain microvascular endothelial cell metabolism. The goal of this chapter is to underscore the importance of nutrient metabolism and transport at the brain endothelium for cerebral health and neurovascular disease treatment.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States.
| |
Collapse
|
10
|
Viegas A, Araújo R, Ramalhete L, Von Rekowski C, Fonseca TAH, Bento L, Calado CRC. Discovery of Delirium Biomarkers through Minimally Invasive Serum Molecular Fingerprinting. Metabolites 2024; 14:301. [PMID: 38921436 PMCID: PMC11205956 DOI: 10.3390/metabo14060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Delirium presents a significant clinical challenge, primarily due to its profound impact on patient outcomes and the limitations of the current diagnostic methods, which are largely subjective. During the COVID-19 pandemic, this challenge was intensified as the frequency of delirium assessments decreased in Intensive Care Units (ICUs), even as the prevalence of delirium among critically ill patients increased. The present study evaluated how the serum molecular fingerprint, as acquired by Fourier-Transform InfraRed (FTIR) spectroscopy, can enable the development of predictive models for delirium. A preliminary univariate analysis of serum FTIR spectra indicated significantly different bands between 26 ICU patients with delirium and 26 patients without, all of whom were admitted with COVID-19. However, these bands resulted in a poorly performing Naïve-Bayes predictive model. Considering the use of a Fast-Correlation-Based Filter for feature selection, it was possible to define a new set of spectral bands with a wider coverage of molecular functional groups. These bands ensured an excellent Naïve-Bayes predictive model, with an AUC, a sensitivity, and a specificity all exceeding 0.92. These spectral bands, acquired through a minimally invasive analysis and obtained rapidly, economically, and in a high-throughput mode, therefore offer significant potential for managing delirium in critically ill patients.
Collapse
Affiliation(s)
- Ana Viegas
- ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Avenida D. João II, Lote 4.58.01, 1990-096 Lisbon, Portugal;
- Neurosciences Area, Clinical Neurophysiology Unit, ULSSJ—Unidade Local de Saúde São José, Rua José António Serrano, 1150-199 Lisbon, Portugal
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (R.A.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Rúben Araújo
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (R.A.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Luís Ramalhete
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, n° 117, 1769-001 Lisboa, Portugal
- iNOVA4Health—Advancing Precision Medicine, RG11: Reno-Vascular Diseases Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Cristiana Von Rekowski
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (R.A.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Tiago A. H. Fonseca
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (R.A.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
| | - Luís Bento
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Intensive Care Department, ULSSJ—Unidade Local de Saúde São José, Rua José António Serrano, 1150-199 Lisbon, Portugal
- Integrated Pathophysiological Mechanisms, CHRC—Comprehensive Health Research Centre, NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Cecília R. C. Calado
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
11
|
Marshall KE, Mengham K, Spink MC, Vania L, Pollard HJ, Darrow MC, Duke E, Harkiolaki M, Serpell LC. Correlative cryo-soft X-ray tomography and cryo-structured illumination microscopy reveal changes to lysosomes in amyloid-β-treated neurons. Structure 2024; 32:585-593.e3. [PMID: 38471506 DOI: 10.1016/j.str.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Protein misfolding is common to neurodegenerative diseases (NDs) including Alzheimer's disease (AD), which is partly characterized by the self-assembly and accumulation of amyloid-beta in the brain. Lysosomes are a critical component of the proteostasis network required to degrade and recycle material from outside and within the cell and impaired proteostatic mechanisms have been implicated in NDs. We have previously established that toxic amyloid-beta oligomers are endocytosed, accumulate in lysosomes, and disrupt the endo-lysosomal system in neurons. Here, we use pioneering correlative cryo-structured illumination microscopy and cryo-soft X-ray tomography imaging techniques to reconstruct 3D cellular architecture in the native state revealing reduced X-ray density in lysosomes and increased carbon dense vesicles in oligomer treated neurons compared with untreated cells. This work provides unprecedented visual information on the changes to neuronal lysosomes inflicted by amyloid beta oligomers using advanced methods in structural cell biology.
Collapse
Affiliation(s)
- Karen E Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - Kurtis Mengham
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK
| | - Matthew C Spink
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Lyra Vania
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK
| | - Hannah Jane Pollard
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK
| | - Michele C Darrow
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Elizabeth Duke
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Maria Harkiolaki
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| |
Collapse
|
12
|
Hack W, Gladen-Kolarsky N, Chatterjee S, Liang Q, Maitra U, Ciesla L, Gray NE. Gardenin A treatment attenuates inflammatory markers, synuclein pathology and deficits in tyrosine hydroxylase expression and improves cognitive and motor function in A53T-α-syn mice. Biomed Pharmacother 2024; 173:116370. [PMID: 38458012 PMCID: PMC11017674 DOI: 10.1016/j.biopha.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6J mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced pSyn levels in both the cortex and hippocampus and attenuated the reduction in TH expression in the striatum seen in A53Tsyn mice. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models.
Collapse
Affiliation(s)
- Wyatt Hack
- Oregon Health & Science University, Neurology, Portland, United States
| | | | | | - Qiaoli Liang
- University of Alabama, Mass spectrometry facility, Chemistry and Biochemistry, Tuscaloosa, United States
| | - Urmila Maitra
- University of Alabama, Biological Sciences, Tuscaloosa, United States
| | - Lukasz Ciesla
- University of Alabama, Biological Sciences, Tuscaloosa, United States.
| | - Nora E Gray
- Oregon Health & Science University, Neurology, Portland, United States.
| |
Collapse
|
13
|
Li H, Zeng F, Huang C, Pu Q, Thomas ER, Chen Y, Li X. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14411. [PMID: 37577934 PMCID: PMC10848100 DOI: 10.1111/cns.14411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Hangzhen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Cancan Huang
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiqi Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | | | - Yan Chen
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
14
|
Langbøl M, Rovelt J, Saruhanian A, Saruhanian S, Tiedemann D, Baskaran T, Bocca C, Vohra R, Cvenkel B, Lenaers G, Kolko M. Distinct Metabolic Profiles of Ocular Hypertensives in Response to Hypoxia. Int J Mol Sci 2023; 25:195. [PMID: 38203366 PMCID: PMC10779258 DOI: 10.3390/ijms25010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs). The main risk factor is elevated intraocular pressure (IOP), but the actual cause of the disease remains unknown. Emerging evidence indicates that metabolic dysfunction plays a central role. The aim of the current study was to determine and compare the effect of universal hypoxia on the metabolomic signature in plasma samples from healthy controls (n = 10), patients with normal-tension glaucoma (NTG, n = 10), and ocular hypertension (OHT, n = 10). By subjecting humans to universal hypoxia, we aim to mimic a state in which the mitochondria in the body are universally stressed. Participants were exposed to normobaric hypoxia for two hours, followed by a 30 min recovery period in normobaric normoxia. Blood samples were collected at baseline, during hypoxia, and in recovery. Plasma samples were analyzed using a non-targeted metabolomics approach based on liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Multivariate analyses were conducted using principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), and univariate analysis using the Wilcoxon signed-rank test and false discovery rate (FDR) correction. Unique metabolites involved in fatty acid biosynthesis and ketone body metabolism were upregulated, while metabolites of the kynurenine pathway were downregulated in OHT patients exposed to universal hypoxia. Differential affection of metabolic pathways may explain why patients with OHT initially do not suffer or are more resilient from optic nerve degeneration. The metabolomes of NTG and OHT patients are regulated differently from control subjects and show dysregulation of metabolites important for energy production. These dysregulated processes may potentially contribute to the elevation of IOP and, ultimately, cell death of the RGCs.
Collapse
Affiliation(s)
- Mia Langbøl
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
| | - Jens Rovelt
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Arevak Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Veterinary & Animal Sciences, University of Copenhagen, 2000 Frederiksberg, Denmark
| | - Daniel Tiedemann
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Thisayini Baskaran
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
| | - Cinzia Bocca
- Faculté de Santé, Institut MITOVASC, UMR CNRS 6015, INSERM U1083, Université d’Angers, 49933 Angers, France; (C.B.); (G.L.)
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France
| | - Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Guy Lenaers
- Faculté de Santé, Institut MITOVASC, UMR CNRS 6015, INSERM U1083, Université d’Angers, 49933 Angers, France; (C.B.); (G.L.)
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| |
Collapse
|
15
|
Cao THM, Le APH, Tran TT, Huynh VK, Pham BH, Le TM, Nguyen QL, Tran TC, Tong TM, Than THN, Nguyen TTT, Ha HTT. Plasma cell-free RNA profiling of Vietnamese Alzheimer's patients reveals a linkage with chronic inflammation and apoptosis: a pilot study. Front Mol Neurosci 2023; 16:1308610. [PMID: 38178908 PMCID: PMC10764507 DOI: 10.3389/fnmol.2023.1308610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Circulating cell-free RNA (cfRNA) is a potential hallmark for early diagnosis of Alzheimer's Disease (AD) as it construes the genetic expression level, giving insights into the pathological progress from the outset. Profiles of cfRNA in Caucasian AD patients have been investigated thoroughly, yet there was no report exploring cfRNAs in the ASEAN groups. This study examined the gap, expecting to support the development of point-of-care AD diagnosis. Methods cfRNA profiles were characterized from 20 Vietnamese plasma samples (10 probable AD and 10 age-matched controls). RNA reads were subjected to differential expression (DE) analysis. Weighted gene correlation network analysis (WGCNA) was performed to identify gene modules that were significantly co-expressed. These modules' expression profiles were then correlated with AD status to identify relevant modules. Genes with the highest intramodular connectivity (module membership) were selected as hub genes. Transcript counts of differentially expressed genes were correlated with key AD measures-MMSE and MTA scores-to identify potential biomarkers. Results 136 genes were identified as significant AD hallmarks (p < 0.05), with 52 downregulated and 84 upregulated in the AD cohort. 45.6% of these genes are highly expressed in the hippocampus, cerebellum, and cerebral cortex. Notably, all markers related to chronic inflammation were upregulated, and there was a significant shift in all apoptotic markers. Three co-expressed modules were found to be significantly correlated with Alzheimer's status (p < 0.05; R2> 0.5). Functional enrichment analysis on these modules reveals an association with focal adhesion, nucleocytoplasmic transport, and metal ion response leading to apoptosis, suggesting the potential participation of these pathways in AD pathology. 47 significant hub genes were found to be differentially expressed genes with the highest connectivity. Six significant hub genes (CREB1, YTHDC1, IL1RL1, PHACTR2, ANKRD36B, RNF213) were found to be significantly correlated with MTA and MMSE scores. Other significant transcripts (XRN1, UBB, CHP1, THBS1, S100A9) were found to be involved in inflammation and neuronal death. Overall, we have identified candidate transcripts in plasma cf-RNA that are differentially expressed and are implicated in inflammation and apoptosis, which can jumpstart further investigations into applying cf-RNA as an AD biomarker in Vietnam and ASEAN countries.
Collapse
Affiliation(s)
- Thien Hoang Minh Cao
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Phuc Hoang Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tai Tien Tran
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vy Kim Huynh
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Bao Hoai Pham
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thao Mai Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Quang Lam Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thang Cong Tran
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Trang Mai Tong
- Department of Neurology, University Medical Center, Ho Chi Minh City, Vietnam
| | - The Ha Ngoc Than
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Geriatrics and Palliative Care, University Medical Center, Ho Chi Minh City, Vietnam
| | - Tran Tran To Nguyen
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thi Thanh Ha
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Mondal S, Ghosh S. Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers? Cell Mol Neurobiol 2023; 44:9. [PMID: 38123863 DOI: 10.1007/s10571-023-01443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.
Collapse
Affiliation(s)
- Sourav Mondal
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sourish Ghosh
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
17
|
Ravagnani FG, Valerio HP, Maués JHS, de Oliveira AN, Puga RD, Griesi-Oliveira K, Picosse FR, Ferraz HB, Catharino RR, Ronsein GE, de Carvalho Aguiar P. Omics profile of iPSC-derived astrocytes from Progressive Supranuclear Palsy (PSP) patients. Parkinsonism Relat Disord 2023; 116:105847. [PMID: 37844348 DOI: 10.1016/j.parkreldis.2023.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Progressive Supranuclear Palsy (PSP) is a neurodegenerative tauopathy and, to date, the pathophysiological mechanisms in PSP that lead to Tau hyperphosphorylation and neurodegeneration are not clear. In some brain areas, Tau pathology in glial cells appears to precede Tau aggregation in neurons. The development of a model using astrocyte cell lines derived from patients has the potential to identify molecules and pathways that contribute to early events of neurodegeneration. We developed a model of induced pluripotent stem cells (iPSC)-derived astrocytes to investigate the pathophysiology of PSP, particularly early events that might contribute to Tau hyperphosphorylation, applying omics approach to detect differentially expressed genes, metabolites, and proteins, including those from the secretome. METHODS Skin fibroblasts from PSP patients (without MAPT mutations) and controls were reprogrammed to iPSCs, further differentiated into neuroprogenitor cells (NPCs) and astrocytes. In the 5th passage, astrocytes were harvested for total RNA sequencing. Intracellular and secreted proteins were processed for proteomics experiments. Metabolomics profiling was obtained from supernatants only. RESULTS We identified hundreds of differentially expressed genes. The main networks were related to cell cycle re-activation in PSP. Several proteins were found exclusively secreted by the PSP group. The cellular processes related to the cell cycle and mitotic proteins, TriC/CCT pathway, and redox signaling were enriched in the secretome of PSP. Moreover, we found distinct sets of metabolites between PSP and controls. CONCLUSION Our iPSC-derived astrocyte model can provide distinct molecular signatures for PSP patients and it is useful to elucidate the initial stages of PSP pathogenesis.
Collapse
Affiliation(s)
| | - Hellen P Valerio
- Institute of Chemistry, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Jersey H S Maués
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arthur N de Oliveira
- Innovare Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Fabíola R Picosse
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Henrique B Ferraz
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo R Catharino
- Innovare Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Patrícia de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
18
|
Zeng Y, Cao S, Li N, Tang J, Lin G. Identification of key lipid metabolism-related genes in Alzheimer's disease. Lipids Health Dis 2023; 22:155. [PMID: 37736681 PMCID: PMC10515010 DOI: 10.1186/s12944-023-01918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) represents profound degenerative conditions of the brain that cause significant deterioration in memory and cognitive function. Despite extensive research on the significant contribution of lipid metabolism to AD progression, the precise mechanisms remain incompletely understood. Hence, this study aimed to identify key differentially expressed lipid metabolism-related genes (DELMRGs) in AD progression. METHODS Comprehensive analyses were performed to determine key DELMRGs in AD compared to controls in GSE122063 dataset from Gene Expression Omnibus. Additionally, the ssGSEA algorithm was utilized for estimating immune cell levels. Subsequently, correlations between key DELMRGs and each immune cell were calculated specifically in AD samples. The key DELMRGs expression levels were validated via two external datasets. Furthermore, gene set enrichment analysis (GSEA) was utilized for deriving associated pathways of key DELMRGs. Additionally, miRNA-TF regulatory networks of the key DELMRGs were constructed using the miRDB, NetworkAnalyst 3.0, and Cytoscape software. Finally, based on key DELMRGs, AD samples were further segmented into two subclusters via consensus clustering, and immune cell patterns and pathway differences between the two subclusters were examined. RESULTS Seventy up-regulated and 100 down-regulated DELMRGs were identified. Subsequently, three key DELMRGs (DLD, PLPP2, and PLAAT4) were determined utilizing three algorithms [(i) LASSO, (ii) SVM-RFE, and (iii) random forest]. Specifically, PLPP2 and PLAAT4 were up-regulated, while DLD exhibited downregulation in AD cerebral cortex tissue. This was validated in two separate external datasets (GSE132903 and GSE33000). The AD group exhibited significantly altered immune cell composition compared to controls. In addition, GSEA identified various pathways commonly associated with three key DELMRGs. Moreover, the regulatory network of miRNA-TF for key DELMRGs was established. Finally, significant differences in immune cell levels and several pathways were identified between the two subclusters. CONCLUSION This study identified DLD, PLPP2, and PLAAT4 as key DELMRGs in AD progression, providing novel insights for AD prevention/treatment.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Nannan Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Juan Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Guoxin Lin
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
19
|
Angst G, Tang X, Wang C. Functional Analysis of a Novel Immortalized Murine Microglia Cell Line in 3D Spheroid Model. Neurochem Res 2023; 48:2857-2869. [PMID: 37195378 PMCID: PMC10694847 DOI: 10.1007/s11064-023-03952-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Microglia are the residential immune cells of central nervous system and they are crucial for brain development and homeostasis, as well as the progression of inflammatory brain diseases. To study microglia's physiological and pathological functions, one of the most widely used models is primary microglia culture from neonatal rodents. However, primary microglia culture is time consuming and needs a great number of animals. In our microglia culture, we found a strain of spontaneously immortalized microglia that continued to divide without any known genetic intervention. We confirmed the immortalization of these cells for uninterrupted thirty passages and we named them as immortalized microglia like-1 cells (iMG-1). The iMG-1 cells kept their microglia morphology, and they expressed macrophage/microglia-specific proteins of CD11b, CD68, P2RY12, and IBA1 in vitro. iMG-1 cells were responsive to inflammatory stimulations with lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (pIpC), triggering increased mRNA/protein levels of IL1-β, IL-6, TNF-α, and interferons. LPS and pIpC treated iMG-1 cells also significantly increased their accumulation of lipid droplets (LDs). We also generated a 3D spheroid model using immortalized neural progenitor cells and iMG-1 cells with defined percentages to study neuroinflammation. The iMG-1 cells distributed evenly in spheroids, and they regulated the basal mRNA levels of cytokines of neural progenitors in 3D spheroid. iMG-1 cells were responsive to LPS by increased expression of IL-6 and IL1-β in spheroids. Together, this study indicated the reliability of iMG-1 which could be readily available to study the physiological and pathological functions of microglia.
Collapse
Affiliation(s)
- Gabrielle Angst
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, 45267, USA
| | - Xin Tang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, 45267, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
20
|
Flores-Leon M, Outeiro TF. More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol 2023; 146:369-385. [PMID: 37421475 PMCID: PMC10412683 DOI: 10.1007/s00401-023-02601-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The accumulation of proteinaceous inclusions in the brain is a common feature among neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The main neuropathological hallmark of PD and DLB are inclusions, known as Lewy bodies (LBs), enriched not only in α-synuclein (aSyn), but also in lipid species, organelles, membranes, and even nucleic acids. Furthermore, several genetic risk factors for PD are mutations in genes involved in lipid metabolism, such as GBA1, VSP35, or PINK1. Thus, it is not surprising that mechanisms that have been implicated in PD, such as inflammation, altered intracellular and vesicular trafficking, mitochondrial dysfunction, and alterations in the protein degradation systems, may be also directly or indirectly connected through lipid homeostasis. In this review, we highlight and discuss the recent evidence that suggests lipid biology as important drivers of PD, and which require renovated attention by neuropathologists. Particularly, we address the implication of lipids in aSyn accumulation and in the spreading of aSyn pathology, in mitochondrial dysfunction, and in ER stress. Together, this suggests we should broaden the view of PD not only as a proteinopathy but also as a lipidopathy.
Collapse
Affiliation(s)
- Manuel Flores-Leon
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
21
|
Zafarullah M, Li J, Salemi MR, Phinney BS, Durbin-Johnson BP, Hagerman R, Hessl D, Rivera SM, Tassone F. Blood Proteome Profiling Reveals Biomarkers and Pathway Alterations in Fragile X PM at Risk for Developing FXTAS. Int J Mol Sci 2023; 24:13477. [PMID: 37686279 PMCID: PMC10488017 DOI: 10.3390/ijms241713477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder associated with the FMR1 premutation. Currently, it is not possible to determine when and if individual premutation carriers will develop FXTAS. Thus, with the aim to identify biomarkers for early diagnosis, development, and progression of FXTAS, along with associated dysregulated pathways, we performed blood proteomic profiling of premutation carriers (PM) who, as part of an ongoing longitudinal study, emerged into two distinct groups: those who developed symptoms of FXTAS (converters, CON) over time (at subsequent visits) and those who did not (non-converters, NCON). We compared these groups to age-matched healthy controls (HC). We assessed CGG repeat allele size by Southern blot and PCR analysis. The proteomic profile was obtained by liquid chromatography mass spectrometry (LC-MS/MS). We identified several significantly differentiated proteins between HC and the PM groups at Visit 1 (V1), Visit 2 (V2), and between the visits. We further reported the dysregulated protein pathways, including sphingolipid and amino acid metabolism. Our findings are in agreement with previous studies showing that pathways involved in mitochondrial bioenergetics, as observed in other neurodegenerative disorders, are significantly altered and appear to contribute to the development of FXTAS. Lastly, we compared the blood proteome of the PM who developed FXTAS over time with the CSF proteome of the FXTAS patients recently reported and found eight significantly differentially expressed proteins in common. To our knowledge, this is the first report of longitudinal proteomic profiling and the identification of unique biomarkers and dysregulated protein pathways in FXTAS.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Jie Li
- Genome Center, Bioinformatics Core, University of California Davis, Davis, CA 95616, USA;
| | - Michelle R. Salemi
- Genome Center, Proteomics Core, Genome and Biomedical Sciences Facility, University of California Davis, Davis, CA 95616, USA; (M.R.S.); (B.S.P.)
| | - Brett S. Phinney
- Genome Center, Proteomics Core, Genome and Biomedical Sciences Facility, University of California Davis, Davis, CA 95616, USA; (M.R.S.); (B.S.P.)
| | - Blythe P. Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.H.); (D.H.); (S.M.R.)
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.H.); (D.H.); (S.M.R.)
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.H.); (D.H.); (S.M.R.)
- Department of Psychology, University of California Davis, Davis, CA 95616, USA
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.H.); (D.H.); (S.M.R.)
| |
Collapse
|
22
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
23
|
Dong X, Dong JF, Zhang J. Roles and therapeutic potential of different extracellular vesicle subtypes on traumatic brain injury. Cell Commun Signal 2023; 21:211. [PMID: 37596642 PMCID: PMC10436659 DOI: 10.1186/s12964-023-01165-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/13/2023] [Indexed: 08/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-related disability and death around the world, but the clinical stratification, diagnosis, and treatment of complex TBI are limited. Due to their unique properties, extracellular vesicles (EVs) are emerging candidates for being biomarkers of traumatic brain injury as well as serving as potential therapeutic targets. However, the effects of different extracellular vesicle subtypes on the pathophysiology of traumatic brain injury are very different, or potentially even opposite. Before extracellular vesicles can be used as targets for TBI therapy, it is necessary to classify different extracellular vesicle subtypes according to their functions to clarify different strategies for EV-based TBI therapy. The purpose of this review is to discuss contradictory effects of different EV subtypes on TBI, and to propose treatment ideas based on different EV subtypes to maximize their benefits for the recovery of TBI patients. Video Abstract.
Collapse
Affiliation(s)
- Xinlong Dong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, China.
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Ruiz-Pozo VA, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Guevara-Ramírez P, Paz-Cruz E, Chapela S, Montalván M, Morales-López T, Simancas-Racines D, Zambrano AK. The Molecular Mechanisms of the Relationship between Insulin Resistance and Parkinson's Disease Pathogenesis. Nutrients 2023; 15:3585. [PMID: 37630775 PMCID: PMC10458139 DOI: 10.3390/nu15163585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative condition resulting from the loss of dopaminergic neurons. This neuronal loss leads to motor and non-motor neurological symptoms. Most PD cases are idiopathic, and no cure is available. Recently, it has been proposed that insulin resistance (IR) could be a central factor in PD development. IR has been associated with PD neuropathological features like α-synuclein aggregation, dopaminergic neuronal loss, neuroinflammation, mitochondrial dysfunction, and autophagy. These features are related to impaired neurological metabolism, neuronal death, and the aggravation of PD symptoms. Moreover, pharmacological options that involve insulin signaling improvement and dopaminergic and non-dopaminergic strategies have been under development. These drugs could prevent the metabolic pathways involved in neuronal damage. All these approaches could improve PD outcomes. Also, new biomarker identification may allow for an earlier PD diagnosis in high-risk individuals. This review describes the main pathways implicated in PD development involving IR. Also, it presents several therapeutic options that are directed at insulin signaling improvement and could be used in PD treatment. The understanding of IR molecular mechanisms involved in neurodegenerative development could enhance PD therapeutic options and diagnosis.
Collapse
Affiliation(s)
- Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Tania Morales-López
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
25
|
Capo X, Galmes-Panades AM, Navas-Enamorado C, Ortega-Moral A, Marín S, Cascante M, Sánchez-Polo A, Masmiquel L, Torrens-Mas M, Gonzalez-Freire M. Circulating Neurofilament Light Chain Levels Increase with Age and Are Associated with Worse Physical Function and Body Composition in Men but Not in Women. Int J Mol Sci 2023; 24:12751. [PMID: 37628936 PMCID: PMC10454444 DOI: 10.3390/ijms241612751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to assess the relationship between age-related changes in Neurofilament Light Chain (NFL), a marker of neuronal function, and various factors including muscle function, body composition, and metabolomic markers. The study included 40 participants, aged 20 to 85 years. NFL levels were measured, and muscle function, body composition, and metabolomic markers were assessed. NFL levels increased significantly with age, particularly in men. Negative correlations were found between NFL levels and measures of muscle function, such as grip strength, walking speed, and chair test performance, indicating a decline in muscle performance with increasing NFL. These associations were more pronounced in men. NFL levels also negatively correlated with muscle quality in men, as measured by 50 kHz phase angle. In terms of body composition, NFL was positively correlated with markers of fat mass and negatively correlated with markers of muscle mass, predominantly in men. Metabolomic analysis revealed significant associations between NFL levels and specific metabolites, with gender-dependent relationships observed. This study provides insights into the relationship between circulating serum NFL, muscle function, and aging. Our findings hint at circulating NFL as a potential early marker of age-associated neurodegenerative processes, especially in men.
Collapse
Affiliation(s)
- Xavier Capo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (X.C.); (A.M.G.-P.); (C.N.-E.); (A.O.-M.); (A.S.-P.); (M.T.-M.)
| | - Aina Maria Galmes-Panades
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (X.C.); (A.M.G.-P.); (C.N.-E.); (A.O.-M.); (A.S.-P.); (M.T.-M.)
- Physical Activity and Sport Sciences Research Group (GICAFE), Institute for Educational Research and Innovation (IRIE), University of the Balearic Islands, 07120 Palma de Mallorca, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cayetano Navas-Enamorado
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (X.C.); (A.M.G.-P.); (C.N.-E.); (A.O.-M.); (A.S.-P.); (M.T.-M.)
| | - Ana Ortega-Moral
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (X.C.); (A.M.G.-P.); (C.N.-E.); (A.O.-M.); (A.S.-P.); (M.T.-M.)
| | - Silvia Marín
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.); (M.C.)
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- CIBEREHD, Network Center for Hepatic and Digestive Diseases, National Spanish Health Institute Carlos III (ISCIII), 28029 Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.); (M.C.)
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- CIBEREHD, Network Center for Hepatic and Digestive Diseases, National Spanish Health Institute Carlos III (ISCIII), 28029 Madrid, Spain
| | - Andrés Sánchez-Polo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (X.C.); (A.M.G.-P.); (C.N.-E.); (A.O.-M.); (A.S.-P.); (M.T.-M.)
| | - Luis Masmiquel
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain;
| | - Margalida Torrens-Mas
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (X.C.); (A.M.G.-P.); (C.N.-E.); (A.O.-M.); (A.S.-P.); (M.T.-M.)
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Marta Gonzalez-Freire
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (X.C.); (A.M.G.-P.); (C.N.-E.); (A.O.-M.); (A.S.-P.); (M.T.-M.)
- Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain
| |
Collapse
|
26
|
Chiurchiù V. Lipids in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11523. [PMID: 37511282 PMCID: PMC10380295 DOI: 10.3390/ijms241411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Lipids are undoubtedly the major constituents of the cell membranes of all living organisms, and the most efficient source of energy [...].
Collapse
Affiliation(s)
- Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
27
|
Ng EL, Reed AL, O'Connell CB, Alder NN. Using Live Cell STED Imaging to Visualize Mitochondrial Inner Membrane Ultrastructure in Neuronal Cell Models. J Vis Exp 2023:10.3791/65561. [PMID: 37458423 PMCID: PMC11067429 DOI: 10.3791/65561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mitochondria play many essential roles in the cell, including energy production, regulation of Ca2+ homeostasis, lipid biosynthesis, and production of reactive oxygen species (ROS). These mitochondria-mediated processes take on specialized roles in neurons, coordinating aerobic metabolism to meet the high energy demands of these cells, modulating Ca2+ signaling, providing lipids for axon growth and regeneration, and tuning ROS production for neuronal development and function. Mitochondrial dysfunction is therefore a central driver in neurodegenerative diseases. Mitochondrial structure and function are inextricably linked. The morphologically complex inner membrane with structural infolds called cristae harbors many molecular systems that perform the signature processes of the mitochondrion. The architectural features of the inner membrane are ultrastructural and therefore, too small to be visualized by traditional diffraction-limited resolved microscopy. Thus, most insights on mitochondrial ultrastructure have come from electron microscopy on fixed samples. However, emerging technologies in super-resolution fluorescence microscopy now provide resolution down to tens of nanometers, allowing visualization of ultrastructural features in live cells. Super-resolution imaging therefore offers an unprecedented ability to directly image fine details of mitochondrial structure, nanoscale protein distributions, and cristae dynamics, providing fundamental new insights that link mitochondria to human health and disease. This protocol presents the use of stimulated emission depletion (STED) super-resolution microscopy to visualize the mitochondrial ultrastructure of live human neuroblastoma cells and primary rat neurons. This procedure is organized into five sections: (1) growth and differentiation of the SH-SY5Y cell line, (2) isolation, plating, and growth of primary rat hippocampal neurons, (3) procedures for staining cells for live STED imaging, (4) procedures for live cell STED experiments using a STED microscope for reference, and (5) guidance for segmentation and image processing using examples to measure and quantify morphological features of the inner membrane.
Collapse
Affiliation(s)
- Emery L Ng
- Center for Open Research Resources and Equipment, University of Connecticut
| | - Ashley L Reed
- Department of Molecular and Cell Biology, University of Connecticut
| | | | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut;
| |
Collapse
|
28
|
Impaired Extracellular Proteostasis in Patients with Heart Failure. Arch Med Res 2023; 54:211-222. [PMID: 36797157 DOI: 10.1016/j.arcmed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Proteostasis impairment and the consequent increase of amyloid burden in the myocardium have been associated with heart failure (HF) development and poor prognosis. A better knowledge of the protein aggregation process in biofluids could assist the development and monitoring of tailored interventions. AIM To compare the proteostasis status and protein's secondary structures in plasma samples of patients with HF with preserved ejection fraction (HFpEF), patients with HF with reduced ejection fraction (HFrEF), and age-matched individuals. METHODS A total of 42 participants were enrolled in 3 groups: 14 patients with HFpEF, 14 patients with HFrEF, and 14 age-matched individuals. Proteostasis-related markers were analyzed by immunoblotting techniques. Fourier Transform Infrared (FTIR) Spectroscopy in Attenuated Total Reflectance (ATR) was applied to assess changes in the protein's conformational profile. RESULTS Patients with HFrEF showed an elevated concentration of oligomeric proteic species and reduced clusterin levels. ATR-FTIR spectroscopy coupled with multivariate analysis allowed the discrimination of HF patients from age-matched individuals in the protein amide I absorption region (1700-1600 cm-1), reflecting changes in protein conformation, with a sensitivity of 73 and a specificity of 81%. Further analysis of FTIR spectra showed significantly reduced random coils levels in both HF phenotypes. Also, compared to the age-matched group, the levels of structures related to fibril formation were significantly increased in patients with HFrEF, whereas the β-turns were significantly increased in patients with HFpEF. CONCLUSION Both HF phenotypes showed a compromised extracellular proteostasis and different protein conformational changes, suggesting a less efficient protein quality control system.
Collapse
|
29
|
Ameen AO, Freude K, Aldana BI. Fats, Friends or Foes: Investigating the Role of Short- and Medium-Chain Fatty Acids in Alzheimer's Disease. Biomedicines 2022; 10:2778. [PMID: 36359298 PMCID: PMC9687972 DOI: 10.3390/biomedicines10112778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
Characterising Alzheimer's disease (AD) as a metabolic disorder of the brain is gaining acceptance based on the pathophysiological commonalities between AD and major metabolic disorders. Therefore, metabolic interventions have been explored as a strategy for brain energetic rescue. Amongst these, medium-chain fatty acid (MCFA) supplementations have been reported to rescue the energetic failure in brain cells as well as the cognitive decline in patients. Short-chain fatty acids (SCFA) have also been implicated in AD pathology. Due to the increasing therapeutic interest in metabolic interventions and brain energetic rescue in neurodegenerative disorders, in this review, we first summarise the role of SCFAs and MCFAs in AD. We provide a comparison of the main findings regarding these lipid species in established AD animal models and recently developed human cell-based models of this devastating disorder.
Collapse
Affiliation(s)
- Aishat O. Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Blanca I. Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Relationship between Nutrition, Lifestyle, and Neurodegenerative Disease: Lessons from ADH1B, CYP1A2 and MTHFR. Genes (Basel) 2022; 13:genes13081498. [PMID: 36011409 PMCID: PMC9408177 DOI: 10.3390/genes13081498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
In the present review, the main features involved in the susceptibility and progression of neurodegenerative disorders (NDDs) have been discussed, with the purpose of highlighting their potential application for promoting the management and treatment of patients with NDDs. In particular, the impact of genetic and epigenetic factors, nutrients, and lifestyle will be presented, with particular emphasis on Alzheimer’s disease (AD) and Parkinson’s disease (PD). Metabolism, dietary habits, physical exercise and microbiota are part of a complex network that is crucial for brain function and preservation. This complex equilibrium can be disrupted by genetic, epigenetic, and environmental factors causing perturbations in central nervous system homeostasis, contributing thereby to neuroinflammation and neurodegeneration. Diet and physical activity can directly act on epigenetic modifications, which, in turn, alter the expression of specific genes involved in NDDs onset and progression. On this subject, the introduction of nutrigenomics shed light on the main molecular players involved in the modulation of health and disease status. In particular, the review presents data concerning the impact of ADH1B, CYP1A2, and MTHFR on the susceptibility and progression of NDDs (especially AD and PD) and how they may be exploited for developing precision medicine strategies for the disease treatment and management.
Collapse
|
31
|
Kou Y, Geng F, Guo D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines 2022; 10:1943. [PMID: 36009491 PMCID: PMC9405736 DOI: 10.3390/biomedicines10081943] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor. With limited therapeutic options, novel therapies are desperately needed. Recent studies have shown that GBM acquires large amounts of lipids for rapid growth through activation of sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor that regulates fatty acid and cholesterol synthesis, and cholesterol uptake. Interestingly, GBM cells divert substantial quantities of lipids into lipid droplets (LDs), a specific storage organelle for neutral lipids, to prevent lipotoxicity by increasing the expression of diacylglycerol acyltransferase 1 (DGAT1) and sterol-O-acyltransferase 1 (SOAT1), which convert excess fatty acids and cholesterol to triacylglycerol and cholesteryl esters, respectively. In this review, we will summarize recent progress on our understanding of lipid metabolism regulation in GBM to promote tumor growth and discuss novel strategies to specifically induce lipotoxicity to tumor cells through disrupting lipid storage, a promising new avenue for treating GBM.
Collapse
Affiliation(s)
- Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Mass Spectrometry-Based Analysis of Lipid Involvement in Alzheimer’s Disease Pathology—A Review. Metabolites 2022; 12:metabo12060510. [PMID: 35736443 PMCID: PMC9228715 DOI: 10.3390/metabo12060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Irregularities in lipid metabolism have been linked to numerous neurodegenerative diseases. The roles of abnormal brain, plasma, and cerebrospinal fluid (CSF) lipid levels in Alzheimer’s disease (AD) onset and progression specifically have been described to a great extent in the literature. Apparent hallmarks of AD include, but are not limited to, genetic predisposition involving the APOE Ɛ4 allele, oxidative stress, and inflammation. A common culprit tied to many of these hallmarks is disruption in brain lipid homeostasis. Therefore, it is important to understand the roles of lipids, under normal and abnormal conditions, in each process. Lipid influences in processes such as inflammation and blood–brain barrier (BBB) disturbance have been primarily studied via biochemical-based methods. There is a need, however, for studies focused on uncovering the relationship between lipid irregularities and AD by molecular-based quantitative analysis in transgenic animal models and human samples alike. In this review, mass spectrometry as it has been used as an analytical tool to address the convoluted relationships mentioned above is discussed. Additionally, molecular-based mass spectrometry strategies that should be used going forward to further relate structure and function relationships of lipid irregularities and hallmark AD pathology are outlined.
Collapse
|
33
|
Baryła I, Kośla K, Bednarek AK. WWOX and metabolic regulation in normal and pathological conditions. J Mol Med (Berl) 2022; 100:1691-1702. [PMID: 36271927 PMCID: PMC9691486 DOI: 10.1007/s00109-022-02265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
WW domain-containing oxidoreductase (WWOX) spans the common fragile site FRA16D. There is evidence that translocations and deletions affecting WWOX accompanied by loss of expression are frequent in many cancers and often correlate with a worse prognosis. Additionally, WWOX germline mutations were also found to be the cause of pathologies of brain development. Because WWOX binds to some transcription factors, it is a modulator of many cellular processes, including metabolic processes. Recently, studies have linked WWOX to familial dyslipidemias, osteopenia, metabolic syndrome, and gestational diabetes, confirming its role as a regulator of steroid, cholesterol, glucose, and normal bone metabolism. The WW domain of WWOX is directly engaged in the control of the activity of transcription factors such as HIF1α and RUNX2; therefore, WWOX gene alterations are associated with some metabolic abnormalities. Presently, most interest is devoted to the associations between WWOX and glucose and basic energy metabolism disturbances. In particular, its involvement in the initiation of the Warburg effect in cancer or gestational diabetes and type II diabetes is of interest. This review is aimed at systematically and comprehensively presenting the current state of knowledge about the participation of WWOX in the metabolism of healthy and diseased organisms.
Collapse
Affiliation(s)
- Izabela Baryła
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K. Bednarek
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|