1
|
Kose S, Cinar E, Akyel H, Cakir-Aktas C, Tel BC, Karatas H, Kelicen-Ugur P. Cerliponase alfa decreases Aβ load and alters autophagy- related pathways in mouse hippocampal neurons exposed to fAβ 1-42. Life Sci 2024; 357:123105. [PMID: 39362589 DOI: 10.1016/j.lfs.2024.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Extracellular aggregation of amyloid-beta (Aβ) in the brain plays a central role in the onset and progression of Alzheimer's disease (AD). Moreover, intraneuronal accumulation of Aβ via oligomer internalization might play an important role in the progression of AD. Deficient autophagy, which is a lysosomal degradation process, occurs during the early stages of AD. Tripeptidyl peptidase-1 (TPP1) functions as a lysosomal enzyme, and TPP1 gene mutations are associated with type 2 late infantile neuronal ceroid lipofuscinosis (LINCL). Nevertheless, there is little information about the role of TPP1 in the pathogenesis of AD; therefore, the present study aimed to measure the decrease in intraneuronal Aβ accumulation by a recombinant analog of the TPP1 enzyme, cerliponase alfa (CER) (Brineura®), and to determine whether autophagy pathways play a role in this decrease. In this study, endogenous Aβ accumulation was induced by fAβ1-42 (a toxic fragment of full-length Aβ) exposure, and mouse hippocampal neuronal cells (HT-22) were treated with CER (human recombinant rhTPP1 1 mg mL-1). Soluble Aβ, TPP1, and the proteins involved in autophagy, including mammalian target of rapamycin (p-mTOR/mTOR), p62/sequestosome-1 (p62/SQSTM1), and microtubule-associated protein 1 A/1B-light chain 3 (LC3), were evaluated using western blotting. The sirtuin-1, beclin-1, and Atg5 genes were also studied using RT-PCR. Aβ and TPP1 localizations were observed via immunocytochemistry. CER reduced the Aβ load in HT-22 cells by inducing TPP1 expression and converting pro-TPP1 into the mature form. Furthermore, exposure to CER and fAβ1-42 induced the autophagy-regulatory/related pathways in HT-22 cells and exposure to CER alone increased sirtuin-1 activity. Based on the present findings, we suggest that augmentation of TPP1 with enzyme replacement therapy may be a potential therapeutic option for the treatment of AD.
Collapse
Affiliation(s)
- Selma Kose
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye
| | - Elif Cinar
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkiye.
| | - Hilal Akyel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye; Baskent University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkiye
| | - Canan Cakir-Aktas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Sihhiye, Ankara, Turkiye.
| | - Banu Cahide Tel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye.
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Sihhiye, Ankara, Turkiye.
| | - Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye.
| |
Collapse
|
2
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
3
|
Piccioni G, Maisto N, d'Ettorre A, Strimpakos G, Nisticò R, Triaca V, Mango D. Switch to phagocytic microglia by CSFR1 inhibition drives amyloid-beta clearance from glutamatergic terminals rescuing LTP in acute hippocampal slices. Transl Psychiatry 2024; 14:338. [PMID: 39179543 PMCID: PMC11344079 DOI: 10.1038/s41398-024-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Microglia, traditionally regarded as innate immune cells in the brain, drive neuroinflammation and synaptic dysfunctions in the early phases of Alzheimer disease (AD), acting upstream to Aβ accumulation. Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its levels are significantly increased in neurodegenerative diseases, possibly contributing to the chronic inflammatory microglial response. On the other hand, CSF-1R inhibitors confer neuroprotection in preclinical models of neurodegenerative diseases. Here, we determined the effects of the CSF-1R inhibitor PLX3397 on the Aβ-mediated synaptic alterations in ex vivo hippocampal slices. Electrophysiological findings show that PLX3397 rescues LTP impairment and neurotransmission changes induced by Aβ. In addition, using confocal imaging experiments, we demonstrate that PLX3397 stimulates a microglial transition toward a phagocytic phenotype, which in turn promotes the clearance of Aβ from glutamatergic terminals. We believe that the selective pruning of Aβ-loaded synaptic terminals might contribute to the restoration of LTP and excitatory transmission alterations observed upon acute PLX3397 treatment. This result is in accordance with the mechanism proposed for CSF1R inhibitors, that is to eliminate responsive microglia and replace it with newly generated, homeostatic microglia, capable of promoting brain repair. Overall, our findings identify a connection between the rapid microglia adjustments and the early synaptic alterations observed in AD, possibly highlighting a novel disease-modifying target.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Nunzia Maisto
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Asia d'Ettorre
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy.
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
4
|
Ismail M, Kanapathipillai M. Novel Ultrasound-Responsive Amyloid Formulation. Pharmaceuticals (Basel) 2024; 17:777. [PMID: 38931443 PMCID: PMC11206591 DOI: 10.3390/ph17060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Amyloid aggregates have attracted significant interest in regard to diverse biomedical applications, particularly in the field of drug delivery. Here, we report novel amyloid aggregates based on a 12-amino-acid peptide from the amyloidogenic region of the receptor-interacting kinase 3 (RIP3) protein and a thermoresponsive triblock copolymer, namely, Pluronic F127 (RIP3/F127). Physicochemical characterization was performed to determine the aggregation size, morphology, and stimuli-responsive properties. The potential of the aggregates as a drug depot was assessed in lung cancer cells, using Doxorubicin (Dox) as a model drug. The results show that RIP3 and RIP3/F127 exhibit amyloidogenic properties. Further, the RIP3/F127 amyloids exhibited significant ultrasound-responsive properties compared to amyloid aggregates without Pluronic F127. Moreover, the RIP3/F127/Dox amyloid formulations that were subjected to ultrasound treatment exhibited greater toxicity to lung cancer cells compared to that of Dox alone at equal concentrations. Overall, the results from this proof-of-concept study show that amyloidogenic peptide aggregates with stimuli-responsive properties can be utilized as efficient drug delivery depots.
Collapse
|
5
|
Nguyen DLB, Okolicsanyi RK, Haupt LM. Heparan sulfate proteoglycans: Mediators of cellular and molecular Alzheimer's disease pathogenic factors via tunnelling nanotubes? Mol Cell Neurosci 2024; 129:103936. [PMID: 38750678 DOI: 10.1016/j.mcn.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid β proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Duy L B Nguyen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
6
|
Rabanal-Ruiz Y, Pedrero-Prieto CM, Sanchez-Rodriguez L, Flores-Cuadrado A, Saiz-Sanchez D, Frontinan-Rubio J, Ubeda-Banon I, Duran Prado M, Martinez-Marcos A, Peinado JR. Differential accumulation of human β-amyloid and tau from enriched extracts in neuronal and endothelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167204. [PMID: 38679217 DOI: 10.1016/j.bbadis.2024.167204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
While Aβ and Tau cellular distribution has been largely studied, the comparative internalization and subcellular accumulation of Tau and Aβ isolated from human brain extracts in endothelial and neuronal cells has not yet been unveiled. We have previously demonstrated that controlled enrichment of Aβ from human brain extracts constitutes a valuable tool to monitor cellular internalization in vitro and in vivo. Herein, we establish an alternative method to strongly enrich Aβ and Tau aggregates from human AD brains, which has allowed us to study and compare the cellular internalization, distribution and toxicity of both proteins within brain barrier endothelial (bEnd.3) and neuronal (Neuro2A) cells. Our findings demonstrate the suitability of human enriched brain extracts to monitor the intracellular distribution of human Aβ and Tau, which, once internalized, show dissimilar sorting to different organelles within the cell and differential toxicity, exhibiting higher toxic effects on neuronal cells than on endothelial cells. While tau is strongly concentrated preferentially in mitochondria, Aβ is distributed predominantly within the endolysosomal system in endothelial cells, whereas the endoplasmic reticulum was its preferential location in neurons. Altogether, our findings display a picture of the interactions that human Aβ and Tau might establish in these cells.
Collapse
Affiliation(s)
- Y Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - C M Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - L Sanchez-Rodriguez
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - A Flores-Cuadrado
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - D Saiz-Sanchez
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - J Frontinan-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - I Ubeda-Banon
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - M Duran Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - A Martinez-Marcos
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Juan R Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain.
| |
Collapse
|
7
|
Kot K, Kot Y, Kurbanov R, Andriiash H, Tigunova O, Blume Y, Shulga S. The effect of human PBMCs immobilization on their Аβ42 aggregates-dependent proinflammatory state on a cellular model of Alzheimer's disease. Front Neurosci 2024; 18:1325287. [PMID: 38406587 PMCID: PMC10884286 DOI: 10.3389/fnins.2024.1325287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
The leading pathological mechanisms of Alzheimer's disease are amyloidosis and inflammation. The presented work was aimed to study the effect of human peripheral blood mononuclear cells (hPBMcs) cells-matrix adhesion on their pro-inflammatory state in vitro. Although direct interaction of Аβ42 to PBMC is not a cellular model of Alzheimer's disease, PBMCs may serve as test cells to detect Аβ42-dependent molecular effects in monitoring disease progression. Peripheral blood mononuclear cells (PBMCs) are used to assess changes in cytokines released in response to diseases or Alzheimer's disease-specific cytotoxic molecules such as Aβ42. The effect of recombinant amyloid β-peptide rАβ42 on the concentration of endogenous amyloid β-peptide Aβ40 and pro-inflammatory cytokines TNFα and IL-1β in human peripheral blood mononuclear cells that were cultured in suspension and immobilized in alginate microcarriers for 24 h were investigated. The localization and accumulation of Aβ40 and rAβ42 peptides in cells, as well as quantitative determination of the concentration of Aβ40 peptide, TNFα and IL-1β cytokines, was performed by intravital fluorescence imaging. The results were qualitatively similar for both cell models. It was determined that the content of TNFα and Aβ40 in the absence of rAβ42 in the incubation medium did not change for 24 h after incubation, and the content of IL-1β was lower compared to the cells that were not incubated. Incubation of cells in vitro with exogenous rAβ42 led to an increase in the intracellular content of TNFα and Aβ40, and no accumulation of IL-1β in cells was observed. The accumulation of Aβ40 in the cytoplasm was accompanied by the aggregation of rAβ42 on the outer surface of the cell plasma membrane. It was shown that the basic levels of indicators and the intensity of the response of immobilized cells to an exogenous stimulus were significantly greater than those of cells in suspension. To explore whether non-neuronal cells effects in alginate microcarriers were cell-matrix adhesion mediated, we tested the effect of blocking β1 integrins on proamyloidogenic and proinflammation cellular state. Immobilization within alginate hydrogels after incubation with the β1 integrins blocking antibodies showed a remarkable inhibition of TNFα and Aβ40 accumulation in rAβ42-treated cells. It can be concluded that activation of signal transduction and synthesizing activity of a portion of mononuclear cells of human peripheral blood is possible (can significantly increase) in the presence of cell-matrix adhesion.
Collapse
Affiliation(s)
- Kateryna Kot
- Biochemistry Department, V. N. Karazin Kharkiv National University of Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
| | - Yurii Kot
- Biochemistry Department, V. N. Karazin Kharkiv National University of Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
| | - Rustam Kurbanov
- Biochemistry Department, V. N. Karazin Kharkiv National University of Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
| | - Hanna Andriiash
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Olena Tigunova
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Yaroslav Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Sergiy Shulga
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Jafni S, Sathya S, Arunkumar M, Kiruthiga C, Jeyakumar M, Murugesh E, Devi KP. Hesperidin Methyl Chalcone reduces extracellular Aβ (25-35) peptide aggregation and fibrillation and also protects Neuro 2a cells from Aβ (25-35) induced neuronal dysfunction. Bioorg Med Chem 2023; 96:117536. [PMID: 38016411 DOI: 10.1016/j.bmc.2023.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
In the present study, we evaluated the neuroprotective potential of Hesperidin Methyl Chalcone (HMC) against the neurotoxicity induced by Aβ(25-35) peptide. HMC demonstrated higher free-radical scavenging activity than Hesperidin in initial cell-free studies. Investigations using the fluorescent dye thioflavin T with Aβ(25-35) peptide showed that HMC has the ability to combat extracellular amyloid aggregation by possessing anti-aggregation property against oligomers and by disaggregating mature fibrils. Also, the results of the molecular simulation studies show that HMC ameliorated oligomer formation. Further, the anti-Alzheimer's property of HMC was investigated in in vitro cell conditions by pre-treating the neuro 2a (N2a) cells with HMC before inducing Aβ(25-35) toxicity. The findings demonstrate that HMC increased cell viability, reduced oxidative stress, prevented macromolecular damage, allayed mitochondrial dysfunction, and exhibited anticholinesterase activity. HMC also reduced Aβ induced neuronal cell death by modulating caspase-3 activity, Bax expression and Bcl2 overexpression, demonstrating that HMC pre-treatment reduced mitochondrial damage and intrinsic apoptosis induced by Aβ(25-35).In silico evaluation against potential AD targets reveal that HMC could be a potent inhibitor of BACE-1, inhibiting the formation of toxic Aβ peptides. Overall, the findings imply that the neuroprotective efficacy of HMC has high prospects for addressing a variety of pathogenic consequences caused by amyloid beta in AD situations and alleviating cognitive impairments.
Collapse
Affiliation(s)
- Sakthivel Jafni
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | | | - Mahalingam Jeyakumar
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Easwaran Murugesh
- Research Scientist, Bioinformatics Centre, GRC - Ganga Hospital, Coimbatore, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
9
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|