1
|
Maleki MH, Omidi F, Javanshir Z, Bagheri M, Tanhadoroodzani Z, Dastghaib S, Shams M, Akbari M, Dastghaib S. β-Hydroxybutyrate and melatonin suppress maladaptive UPR, excessive autophagy and pyroptosis in Aβ 1-42 and LPS-Induced SH-SY5Y cells. Mol Biol Rep 2024; 51:802. [PMID: 39001949 DOI: 10.1007/s11033-024-09754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Alzheimer's disease is a neurological disease characterized by the build-up of amyloid beta peptide (Aβ) and lipopolysaccharide (LPS), which causes synapse dysfunction, cell death, and neuro-inflammation. A maladaptive unfolded protein response (UPR), excessive autophagy, and pyroptosis aggravate the disease. Melatonin (MEL) and hydroxybutyrate (BHB) have both shown promise in terms of decreasing Aβ pathology. The goal of this study was to see how BHB and MEL affected the UPR, autophagy, and pyroptosis pathways in Aβ1-42 and LPS-induced SH-SY5Y cells. MATERIALS AND METHODS Human neuroblastoma SH-SY5Y cells were treated with BHB, MEL, or a combination of the two after being exposed to A β1-42 and LPS. Cell viability was determined using the MTT test, and gene expression levels of UPR (ATF6, PERK, and CHOP), autophagy (Beclin-1, LC3II, P62, and Atg5), and pyroptosis-related markers (NLRP3, TXNIP, IL-1β, and NFκB1) were determined using quantitative Real-Time PCR (qRT-PCR). For statistical analysis, one-way ANOVA was employed, followed by Tukey's post hoc test. RESULTS BHB and MEL significantly increased SH-SY5Y cell viability in the presence of A β1-42 and LPS. Both compounds inhibited the expression of maladaptive UPR and autophagy-related genes, as well as inflammatory and pyroptotic markers caused by Aβ1-42 and LPS-induced SH-SY5Y cells. CONCLUSION BHB and MEL rescue neurons in A β1-42 and LPS-induced SH-SY5Y cells by reducing maladaptive UPR, excessive autophagy, and pyroptosis. More research is needed to fully comprehend the processes behind their beneficial effects and to discover their practical applications in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Hasan Maleki
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Omidi
- Students Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Javanshir
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahla Bagheri
- Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sahar Dastghaib
- School of Neurobiology Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadarian Akbari
- Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Telsi Academy, Tehran, Iran.
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Autophagy research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Banerjee R, Zhu Y, Brownrigg GP, Moravcova R, Rogalski JC, Foster LJ, Johnson JD, Kolic J. Beta-Hydroxybutyrate Promotes Basal Insulin Secretion While Decreasing Glucagon Secretion in Mouse and Human Islets. Endocrinology 2024; 165:bqae079. [PMID: 38970533 PMCID: PMC11264143 DOI: 10.1210/endocr/bqae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Dietary carbohydrates raise blood glucose levels, and limiting carbohydrate intake improves glycemia in patients with type 2 diabetes. Low carbohydrate intake (< 25 g) allows the body to utilize fat as its primary fuel. As a consequence of increased fatty acid oxidation, the liver produces ketones to serve as an alternative energy source. β-Hydroxybutyrate (βHB) is the most abundant ketone. While βHB has a wide range of functions outside of the pancreas, its direct effects on islet cell function remain understudied. We examined human islet secretory response to acute racemic βHB treatment and observed increased insulin secretion at a low glucose concentration of 3 mM. Because βHB is a chiral molecule, existing as both R and S forms, we further studied insulin and glucagon secretion following acute treatment with individual βHB enantiomers in human and C57BL/6J mouse islets. We found that acute treatment with R-βHB increased insulin secretion and decreased glucagon secretion at physiological glucose concentrations in both human and mouse islets. Proteomic analysis of human islets treated with R-βHB over 72 hours showed altered abundance of proteins that may promote islet cell health and survival. Collectively, our data show that physiological concentrations of βHB influence hormone secretion and signaling within pancreatic islets.
Collapse
Affiliation(s)
- Risha Banerjee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Ying Zhu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Renata Moravcova
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Jason C Rogalski
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| |
Collapse
|
3
|
Wang T, Zhuang Y, Yu C, Wang Z, Liu Y, Xu Q, Liu K, Li Y. D-beta-hydroxybutyrate up-regulates Claudin-1 and alleviates the intestinal hyperpermeability in lipopolysaccharide-treated mice. Tissue Cell 2024; 87:102343. [PMID: 38442546 DOI: 10.1016/j.tice.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
The hyperpermeability of intestinal epithelium is a key contributor to the occurrence and development of systemic inflammation. Although D-beta-hydroxybutyrate (BHB) exhibits various protective effects, whether it affects the permeability of intestinal epithelium in systemic inflammation has not been clarified. In this study, we investigated the effects of BHB on the intestinal epithelial permeability, the epithelial marker E-cadherin and the tight junction protein Claudin-1 in colon in the lipopolysaccharide (LPS)-induced systemic inflammation mouse model. Intraperitoneal injection of LPS was used to induce systemic inflammation and BHB was given by oral administration. The permeability of intestinal epithelium, the morphological changes of colonic epithelium, the distribution and generation of colon E-cadherin, and the Claudin-1 generation and its epithelial distribution in colon were detected. The results confirmed the intestinal epithelial hyperpermeability and inflammatory changes in colonic epithelium, with disturbed E-cadherin distribution in LPS-treated mice. Besides, colon Claudin-1 generation was decreased and its epithelial distribution in colon was weakened in LPS-treated mice. However, BHB treatments alleviated the LPS-induced hyperpermeability of intestinal epithelium, attenuated the colonic epithelial morphological changes and promoted orderly distribution of E-cadherin in colon. Furthermore, BHB up-regulated colon Claudin-1 generation and promoted its colonic epithelial distribution and content in LPS-treated mice. In conclusion, BHB may alleviate the hyperpermeability of intestinal epithelium via up-regulation of Claudin-1 in colon in LPS-treated mice.
Collapse
Affiliation(s)
- Ting Wang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Yuchen Zhuang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Chenglong Yu
- Teaching laboratory center, Hebei Medical University, Hebei, People's Republic of China
| | - Zhaobo Wang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Yuan Liu
- Department of Ophthalmology, First Central Hospital of Baoding, Hebei, People's Republic of China
| | - Qian Xu
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Kun Liu
- Teaching laboratory center, Hebei Medical University, Hebei, People's Republic of China.
| | - Yanning Li
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China.
| |
Collapse
|
4
|
Roohy F, Siri M, Kohansal K, Ghalandari A, Rezaei R, Maleki MH, Shams M, Monsef A, Dastghaib S. Targeting apoptosis and unfolded protein response: the impact of β-hydroxybutyrate in clear cell renal cell carcinoma under glucose-deprived conditions. Mol Biol Rep 2024; 51:168. [PMID: 38252187 DOI: 10.1007/s11033-023-08977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) plays a significant role in the mortality associated with kidney cancer. Targeting biological processes that inhibit cancer growth opens up new treatment possibilities. The unfolded protein response (UPR) and apoptosis have crucial roles in RCC progression. This study investigates the impact of β-hydroxybutyrate (BHB) on ccRCC cells under glucose deprivation resembling as a ketogenic diet. METHOD Caki-1 ccRCC cells were exposed to decreasing glucose concentrations alone or in combination with 10 or 25 mM BHB during 48 and 72 h. Cell viability was determined using MTT assay. The mRNA expression level of apoptosis-and UPR-related markers (Bcl-2, Bax, caspase 3, XBP1s, BIP, CHOP, ATF4, and ATF6) were assayed by qRT-PCR. RESULTS Cell viability experiments demonstrated that combining different doses of BHB with decreasing glucose levels initially improved cell viability after 48 h. Nevertheless, this trend reversed after 72 h, with higher impacts disclosed at 25 mM BHB. Apoptosis was induced in BHB-treated cells as caspase-3 and Bax were increased and Bcl-2 was downregulated. BHB supplementation reduced UPR-related gene expression (XBP1s, BIP, CHOP, ATF4, and ATF6), revealing a possible mechanism by which BHB affects cell survival. CONCLUSION This research emphasizes the dual effect of BHB, initially suppressing cell- survival under glucose deprivation but eventually triggering apoptosis and suppressing UPR signaling. These data highlight the intricate connection between metabolic reprogramming and cellular stress response in ccRCC. Further research is recommended to explore the potential of BHB as a therapeutic strategy for managing ccRCC.
Collapse
Affiliation(s)
- Fatemeh Roohy
- Department of Genetics, Islamic Azad University, Kazerun, Iran
| | - Morvarid Siri
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiarash Kohansal
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Afsane Ghalandari
- Student Research Committee, Sari Branch, Islamic Azad University, Sari, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|