1
|
Homma NY, See JZ, Atencio CA, Hu C, Downer JD, Beitel RE, Cheung SW, Najafabadi MS, Olsen T, Bigelow J, Hasenstaub AR, Malone BJ, Schreiner CE. Receptive-field nonlinearities in primary auditory cortex: a comparative perspective. Cereb Cortex 2024; 34:bhae364. [PMID: 39270676 PMCID: PMC11398879 DOI: 10.1093/cercor/bhae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Cortical processing of auditory information can be affected by interspecies differences as well as brain states. Here we compare multifeature spectro-temporal receptive fields (STRFs) and associated input/output functions or nonlinearities (NLs) of neurons in primary auditory cortex (AC) of four mammalian species. Single-unit recordings were performed in awake animals (female squirrel monkeys, female, and male mice) and anesthetized animals (female squirrel monkeys, rats, and cats). Neuronal responses were modeled as consisting of two STRFs and their associated NLs. The NLs for the STRF with the highest information content show a broad distribution between linear and quadratic forms. In awake animals, we find a higher percentage of quadratic-like NLs as opposed to more linear NLs in anesthetized animals. Moderate sex differences of the shape of NLs were observed between male and female unanesthetized mice. This indicates that the core AC possesses a rich variety of potential computations, particularly in awake animals, suggesting that multiple computational algorithms are at play to enable the auditory system's robust recognition of auditory events.
Collapse
Affiliation(s)
- Natsumi Y Homma
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Jermyn Z See
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Craig A Atencio
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Congcong Hu
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joshua D Downer
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Center of Neuroscience, University of California Davis, Newton Ct, Davis, CA, USA
| | - Ralph E Beitel
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Steven W Cheung
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mina Sadeghi Najafabadi
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Timothy Olsen
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - James Bigelow
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andrea R Hasenstaub
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian J Malone
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Center of Neuroscience, University of California Davis, Newton Ct, Davis, CA, USA
| | - Christoph E Schreiner
- John & Edward Coleman Memorial Laboratory, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Yi HG, Leonard MK, Chang EF. The Encoding of Speech Sounds in the Superior Temporal Gyrus. Neuron 2019; 102:1096-1110. [PMID: 31220442 PMCID: PMC6602075 DOI: 10.1016/j.neuron.2019.04.023] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
The human superior temporal gyrus (STG) is critical for extracting meaningful linguistic features from speech input. Local neural populations are tuned to acoustic-phonetic features of all consonants and vowels and to dynamic cues for intonational pitch. These populations are embedded throughout broader functional zones that are sensitive to amplitude-based temporal cues. Beyond speech features, STG representations are strongly modulated by learned knowledge and perceptual goals. Currently, a major challenge is to understand how these features are integrated across space and time in the brain during natural speech comprehension. We present a theory that temporally recurrent connections within STG generate context-dependent phonological representations, spanning longer temporal sequences relevant for coherent percepts of syllables, words, and phrases.
Collapse
Affiliation(s)
- Han Gyol Yi
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Holdgraf CR, Rieger JW, Micheli C, Martin S, Knight RT, Theunissen FE. Encoding and Decoding Models in Cognitive Electrophysiology. Front Syst Neurosci 2017; 11:61. [PMID: 29018336 PMCID: PMC5623038 DOI: 10.3389/fnsys.2017.00061] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of "Encoding" models, in which stimulus features are used to model brain activity, and "Decoding" models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses.
Collapse
Affiliation(s)
- Christopher R. Holdgraf
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Office of the Vice Chancellor for Research, Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, United States
| | - Jochem W. Rieger
- Department of Psychology, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Cristiano Micheli
- Department of Psychology, Carl-von-Ossietzky University, Oldenburg, Germany
- Institut des Sciences Cognitives Marc Jeannerod, Lyon, France
| | - Stephanie Martin
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Defitech Chair in Brain-Machine Interface, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Robert T. Knight
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Frederic E. Theunissen
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|