1
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. Eur J Neurosci 2024; 60:6129-6144. [PMID: 38659055 DOI: 10.1111/ejn.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
For decades, the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here, we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity and functional role of the GPe in behaviour. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behaviour.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| |
Collapse
|
2
|
Larsh TR, Gilbert DL, Vadivelu S, Binder DK, Pedapati EV, Wu SW. Post Deep Brain Stimulation Time Course of Aperiodic Activity in Childhood and Young Adult Dystonia. Mov Disord Clin Pract 2024; 11:1305-1307. [PMID: 38989718 PMCID: PMC11489614 DOI: 10.1002/mdc3.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Travis R Larsh
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sudhakar Vadivelu
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ernest V Pedapati
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Nambu A, Chiken S, Sano H, Hatanaka N, Obeso JA. [Dynamic activity model of movement disorders: a unified view to understand their pathophysiology]. Rinsho Shinkeigaku 2024; 64:390-397. [PMID: 38811203 DOI: 10.5692/clinicalneurol.cn-001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Malfunction of the basal ganglia leads to movement disorders such as Parkinson's disease, dystonia, Huntington's disease, dyskinesia, and hemiballism, but their underlying pathophysiology is still subject to debate. To understand their pathophysiology in a unified manner, we propose the "dynamic activity model", on the basis of alterations of cortically induced responses in individual nuclei of the basal ganglia. In the normal state, electric stimulation in the motor cortex, mimicking cortical activity during initiation of voluntary movements, evokes a triphasic response consisting of early excitation, inhibition, and late excitation in the output stations of the basal ganglia of monkeys, rodents, and humans. Among three components, cortically induced inhibition, which is mediated by the direct pathway, releases an appropriate movement at an appropriate time by disinhibiting thalamic and cortical activity, whereas early and late excitation, which is mediated by the hyperdirect and indirect pathways, resets on-going cortical activity and stops movements, respectively. Cortically induced triphasic response patterns are systematically altered in various movement disorder models and could well explain the pathophysiology of their motor symptoms. In monkey and mouse models of Parkinson's disease, cortically induced inhibition is reduced and prevents the release of movements, resulting in akinesia/bradykinesia. On the other hand, in a mouse model of dystonia, cortically induced inhibition is enhanced and releases unintended movements, inducing involuntary muscle contractions. Moreover, after blocking the subthalamic nucleus activity in a monkey model of Parkinson's disease, cortically induced inhibition is recovered and enables voluntary movements, explaining the underlying mechanism of stereotactic surgery to ameliorate parkinsonian motor signs. The "dynamic activity model" gives us a more comprehensive view of the pathophysiology underlying motor symptoms of movement disorders and clues for their novel therapies.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences
- Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies)
| | - Hiromi Sano
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University
| | - Nobuhiko Hatanaka
- Division of System Neurophysiology, National Institute for Physiological Sciences
- Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies)
- School of Dentistry, Aichi Gakuin University
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III
- University CEU-San Pablo
| |
Collapse
|
4
|
Nambu A, Chiken S. External segment of the globus pallidus in health and disease: Its interactions with the striatum and subthalamic nucleus. Neurobiol Dis 2024; 190:106362. [PMID: 37992783 DOI: 10.1016/j.nbd.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
5
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. ARXIV 2023:arXiv:2312.14267v2. [PMID: 38196745 PMCID: PMC10775352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
For decades the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity, and functional role of the GPe in behavior. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behavior.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
6
|
Biswas S, Chan CS, Rubenstein JLR, Gan L. The transcription regulator Lmo3 is required for the development of medial ganglionic eminence derived neurons in the external globus pallidus. Dev Biol 2023; 503:10-24. [PMID: 37532091 PMCID: PMC10658356 DOI: 10.1016/j.ydbio.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The external globus pallidus (GPe) is an essential component of the basal ganglia, a group of subcortical nuclei that are involved in control of action. Changes in the firing of GPe neurons are associated with both passive and active body movements. Aberrant activity of GPe neurons has been linked to motor symptoms of a variety of movement disorders, such as Parkinson's Disease, Huntington's disease and dystonia. Recent studies have helped delineate functionally distinct subtypes of GABAergic GPe projection neurons. However, not much is known about specific molecular mechanisms underlying the development of GPe neuronal subtypes. We show that the transcriptional regulator Lmo3 is required for the development of medial ganglionic eminence derived Nkx2.1+ and PV+ GPe neurons, but not lateral ganglionic eminence derived FoxP2+ neurons. As a consequence of the reduction in PV+ neurons, Lmo3-null mice have a reduced GPe input to the subthalamic nucleus.
Collapse
Affiliation(s)
- Shiona Biswas
- The Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA.
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John L R Rubenstein
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California at San Francisco, CA, 94143, USA
| | - Lin Gan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Ophthalmology and the Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA
| |
Collapse
|
7
|
Courtney CD, Pamukcu A, Chan CS. Cell and circuit complexity of the external globus pallidus. Nat Neurosci 2023; 26:1147-1159. [PMID: 37336974 PMCID: PMC11382492 DOI: 10.1038/s41593-023-01368-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/18/2023] [Indexed: 06/21/2023]
Abstract
The external globus pallidus (GPe) of the basal ganglia has been underappreciated owing to poor understanding of its cells and circuits. It was assumed that the GPe consisted of a homogeneous neuron population primarily serving as a 'relay station' for information flowing through the indirect basal ganglia pathway. However, the advent of advanced tools in rodent models has sparked a resurgence in interest in the GPe. Here, we review recent data that have unveiled the cell and circuit complexity of the GPe. These discoveries have revealed that the GPe does not conform to traditional views of the basal ganglia. In particular, recent evidence confirms that the afferent and efferent connections of the GPe span both the direct and the indirect pathways. Furthermore, the GPe displays broad interconnectivity beyond the basal ganglia, consistent with its emerging multifaceted roles in both motor and non-motor functions. In summary, recent data prompt new proposals for computational rules of the basal ganglia.
Collapse
Affiliation(s)
- Connor D Courtney
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arin Pamukcu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
8
|
Dzhalagoniya IZ, Usova SV, Gamaleya AA, Tomskiy AA, Shaikh AG, Sedov AS. DYT1 dystonia: Neurophysiological properties of the pallidal activity. Parkinsonism Relat Disord 2023; 112:105447. [PMID: 37267819 DOI: 10.1016/j.parkreldis.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The aim of this paper is to find the differences in the physiology of the pallidal neurons in DYT1 and non-DYT1 dystonia. METHODS We performed microelectrode recording of the single unit activity in both segments of the globus pallidus during stereotactic implantation of electrodes for deep brain stimulation (DBS). RESULTS We found a reduced firing rate, reduced burst rate, and increased pause index in both pallidal segments in DYT1. Also, in DYT1 the activity in both pallidal segments was similar, but not so in non-DYT1. CONCLUSION The results suggest a common pathological focus for both pallidal segments, located in the striatum. We also speculate that strong striatal influence on GPi and GPe overrides other input sources to the pallidal nuclei causing similarity in neuronal activity. SIGNIFICANCE We found significant differences in neuronal activity between DYT1 and non-DYT1 neurons. Our findings shed light on the pathophysiology of DYT-1 dystonia which can be very different from non-DYT1 dystonia and have other efficient treatment tactics.
Collapse
Affiliation(s)
- Indiko Z Dzhalagoniya
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation.
| | - Svetlana V Usova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation
| | - Anna A Gamaleya
- N.N. Burdenko National Medical Research Center for Neurosurgery, 4th Tverskaya-Yamskaya st. 16, Moscow, Russian Federation
| | - Alexey A Tomskiy
- N.N. Burdenko National Medical Research Center for Neurosurgery, 4th Tverskaya-Yamskaya st. 16, Moscow, Russian Federation
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA; Daroff-DelOsso Ocular Motility Laboratory, Neurology Service, Louis Stoke VA Medical Center, 10701 East Blvd, Cleveland, OH, USA
| | - Alexey S Sedov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
9
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
11
|
Sciamanna G, Ponterio G, Vanni V, Laricchiuta D, Martella G, Bonsi P, Meringolo M, Tassone A, Mercuri NB, Pisani A. Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia. Cell Rep 2021; 31:107644. [PMID: 32433955 DOI: 10.1016/j.celrep.2020.107644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 12/30/2022] Open
Abstract
Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing in vivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Valentina Vanni
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy; Lab of Behavioural and Experimental Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Annalisa Tassone
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
12
|
Tsanov M. Neurons under genetic control: What are the next steps towards the treatment of movement disorders? Comput Struct Biotechnol J 2020; 18:3577-3589. [PMID: 33304456 PMCID: PMC7708864 DOI: 10.1016/j.csbj.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
Since the implementation of deep-brain stimulation as a therapy for movement disorders, there has been little progress in the clinical application of novel alternative treatments. Movement disorders are a group of neurological conditions, which are characterised with impairment of voluntary movement and share similar anatomical loci across the basal ganglia. The focus of the current review is on Parkinson's disease and Huntington's disease as they are the most investigated hypokinetic and hyperkinetic movement disorders, respectively. The last decade has seen enormous advances in the development of laboratory techniques that control neuronal activity. The two major ways to genetically control the neuronal function are: 1) expression of light-sensitive proteins that allow for the optogenetic control of the neuronal spiking and 2) expression or suppression of genes that control the transcription and translation of proteins. However, the translation of these methodologies from the laboratories into the clinics still faces significant challenges. The article summarizes the latest developments in optogenetics and gene therapy. Here, I compare the physiological mechanisms of established electrical deep brain stimulation to the experimental optogenetical deep brain stimulation. I compare also the advantages of DNA- and RNA-based techniques for gene therapy of familial movement disorders. I highlight the benefits and the major issues of each technique and I discuss the translational potential and clinical feasibility of optogenetic stimulation and gene expression control. The review emphasises recent technical breakthroughs that could initiate a notable leap in the treatment of movement disorders.
Collapse
Affiliation(s)
- Marian Tsanov
- School of Medicine, University College Dublin, Ireland
| |
Collapse
|
13
|
Can Pallidal Deep Brain Stimulation Rescue Borderline Dystonia? Possible Coexistence of Functional (Psychogenic) and Organic Components. Brain Sci 2020; 10:brainsci10090636. [PMID: 32942724 PMCID: PMC7563555 DOI: 10.3390/brainsci10090636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
The diagnosis and treatment of functional movement disorders are challenging for clinicians who manage patients with movement disorders. The borderline between functional and organic dystonia is often ambiguous. Patients with functional dystonia are poor responders to pallidal deep brain stimulation (DBS) and are not good candidates for DBS surgery. Thus, if patients with medically refractory dystonia have functional features, they are usually left untreated with DBS surgery. In order to investigate the outcome of functional dystonia in response to pallidal DBS surgery, we retrospectively included five patients with this condition. Their dystonia was diagnosed as organic by dystonia specialists and also as functional according to the Fahn and Williams criteria or the Gupta and Lang Proposed Revisions. Microelectrode recordings in the globus pallidus internus of all patients showed a cell-firing pattern of bursting with interburst intervals, which is considered typical of organic dystonia. Although their clinical course after DBS surgery was incongruent to organic dystonia, the outcome was good. Our results question the possibility to clearly differentiate functional dystonia from organic dystonia. We hypothesized that functional dystonia can coexist with organic dystonia, and that medically intractable dystonia with combined functional and organic features can be successfully treated by DBS surgery.
Collapse
|
14
|
Levitt JJ, Nestor PG, Kubicki M, Lyall AE, Zhang F, Riklin-Raviv T, O′Donnell LJ, McCarley RW, Shenton ME, Rathi Y. Miswiring of Frontostriatal Projections in Schizophrenia. Schizophr Bull 2020; 46:990-998. [PMID: 31990358 PMCID: PMC7342176 DOI: 10.1093/schbul/sbz129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated brain wiring in chronic schizophrenia and healthy controls in frontostriatal circuits using diffusion magnetic resonance imaging tractography in a novel way. We extracted diffusion streamlines in 27 chronic schizophrenia and 26 healthy controls connecting 4 frontal subregions to the striatum. We labeled the projection zone striatal surface voxels into 2 subtypes: dominant-input from a single cortical subregion, and, functionally integrative, with mixed-input from diverse cortical subregions. We showed: 1) a group difference for total striatal surface voxel number (P = .045) driven by fewer mixed-input voxels in the left (P = .007), but not right, hemisphere; 2) a group by hemisphere interaction for the ratio quotient between voxel subtypes (P = .04) with a left (P = .006), but not right, hemisphere increase in schizophrenia, also reflecting fewer mixed-input voxels; and 3) fewer mixed-input voxel counts in schizophrenia (P = .045) driven by differences in left hemisphere limbic (P = .007) and associative (P = .01), but not sensorimotor, striatum. These results demonstrate a less integrative pattern of frontostriatal structural connectivity in chronic schizophrenia. A diminished integrative pattern yields a less complex input pattern to the striatum from the cortex with less circuit integration at the level of the striatum. Further, as brain wiring occurs during early development, aberrant brain wiring could serve as a developmental biomarker for schizophrenia.
Collapse
Affiliation(s)
- James J Levitt
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, Harvard Medical School, Boston, MA,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,To whom correspondence should be addressed; Department of Psychiatry-116A, VA Boston Healthcare System, Harvard Medical School, 940 Belmont Street, Brockton, MA 02301; tel: (508) 583-4500 x61798, fax: 617-525-6150, e-mail:
| | - Paul G Nestor
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, Harvard Medical School, Boston, MA,Department of Psychology, University of Massachusetts, Boston, MA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tammy Riklin-Raviv
- Department of Electrical and Computer Engineering, Ben Gurion University, Beer-Sheva, Israel
| | - Lauren J O′Donnell
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Robert W McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, Harvard Medical School, Boston, MA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,VA Boston Healthcare System, Brockton Division, Brockton, MA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Myrov V, Sedov A, Tomskiy A, Myrova L, Belova E. A new approach for estimation of spiketrain patterns in basal ganglia. PROGRESS IN BRAIN RESEARCH 2019; 249:321-325. [PMID: 31325991 DOI: 10.1016/bs.pbr.2019.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The pathophysiological model of dystonia proposed that in addition to reduced firing rate in the internal pallidum, changes in the pattern may also play a role in disease manifestation. While common methods for patterns separation depends on arbitrary spiketrain parameters, we considered the new method for neural patterns based on spike density histograms and hierarchical clustering of real datasets. We used the single unit activity recordings from the globus pallidus external (GPe) and the globus pallidus internal (GPi) from 10 cervical dystonia (CD), 7 segmental dystonia (SD) and 8 generalized dystonia (GD) patients undergoing deep brain stimulation surgery. Using novel method, we separated three patterns of activity: burst, burst-like and tonic. Using this separation, we revealed the differences both in firing rate and pattern distribution between dystonia patients. We have shown the suitability of the proposed method for pattern clusterization on real data and assume that further application of this method would facilitate more detailed study of the neural activity in the basal ganglia and the search for neurophysiological biomarkers of movement disorders.
Collapse
Affiliation(s)
- Vladislav Myrov
- Saint Petersburg Academic University, Saint Petersburg, Russia
| | - Alexey Sedov
- Semenov Institute of Chemical Physics, Moscow, Russia.
| | - Alexey Tomskiy
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Ludmila Myrova
- Moscow Scientific Research Institute of Radio Engineering, Moscow, Russia
| | - Elena Belova
- Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
16
|
Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Parkinsonism Relat Disord 2019; 59:9-20. [PMID: 30658883 DOI: 10.1016/j.parkreldis.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease. METHODS We will focus on deep brain stimulation (DBS) - the most common form of basal ganglia neuromodulation - however, similar principles can apply to other neuromodulation modalities. We start with a brief review of DBS for Parkinson's disease, essential tremor, dystonia, and Tourette syndrome. We then review hallmark studies on basal ganglia circuits and electrophysiology resulting from decades of experience in neuromodulation. The organization and content of this paper follow Dr. Okun's Lecture from the 2018 Parkinsonism and Related Disorders World Congress. RESULTS Information gained from neuromodulation has led to an expansion of the basal ganglia rate model, an enhanced understanding of nuclei dynamics, an emerging focus on pathological oscillations, a revision of the tripartite division of the basal ganglia, and a redirected focus toward individualized symptom-specific stimulation. Though there have been many limitations of the basal ganglia "box model," the construct provided the necessary foundation to advance the field. We now understand that information in the basal ganglia is encoded through complex neural responses that can be reliably measured and used to infer disease states for clinical translation. CONCLUSIONS Our deepened understanding of basal ganglia physiology will drive new neuromodulation strategies such as adaptive DBS or cell-specific neuromodulation through the use of optogenetics.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stephanie Cernera
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Aryn Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Grewal SS, Holanda VM, Middlebrooks EH. Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography. AJNR Am J Neuroradiol 2018; 39:2120-2125. [PMID: 30262639 DOI: 10.3174/ajnr.a5816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Electrophysiologic abnormalities of the globus pallidus externus have been shown in several disease processes including Parkinson disease, dystonia, and Huntington disease. However, the connectivity, nuclear structure, and function of the globus pallidus externus are still not well-understood. Increasing evidence for the existence of direct corticopallidal connections challenges traditional understanding of the connectivity of the globus pallidus externus; nevertheless, these corticopallidal connections have yet to be fully characterized in humans. The objective of this study was to assess the corticopallidal connections of the globus pallidus externus by means of probabilistic diffusion-weighted MR imaging tractography using high-resolution, multishell data. MATERIALS AND METHODS Imaging data from the open-access Human Connectome Project data base were used to perform probabilistic tractography between the globus pallidus externus and the cerebral cortex using 34 distinct cortical regions. Group averages were calculated for normalized percentages of tracts reaching each of the cortical targets, and side-to-side comparison was made. RESULTS Cortical connectivity was demonstrated between the globus pallidus externus and multiple cortical regions, including direct connection to putative sensorimotor, associative, and limbic areas. Connectivity patterns were not significantly different between the right and left hemispheres with the exception of the frontal pole, which showed a greater number of connections on the right (P = .004). CONCLUSIONS Our in vivo study of the human globus pallidus externus using probabilistic tractography supports the existence of extensive corticopallidal connections and a tripartite functional division, as found in animal studies. A better understanding of the connectivity of the globus pallidus externus may help to understand its function and elucidate the effects of programming the higher contacts in pallidal deep brain stimulation.
Collapse
Affiliation(s)
- S S Grewal
- From the Departments of Neurosurgery (S.S.G., E.H.M.)
| | - V M Holanda
- Center of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - E H Middlebrooks
- From the Departments of Neurosurgery (S.S.G., E.H.M.) .,Radiology (E.H.M.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
18
|
Tsutsumi Y, Tachibana Y, Sato F, Furuta T, Ohara H, Tomita A, Fujita M, Moritani M, Yoshida A. Cortical and Subcortical Projections from Granular Insular Cortex Receiving Orofacial Proprioception. Neuroscience 2018; 388:317-329. [DOI: 10.1016/j.neuroscience.2018.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 11/26/2022]
|
19
|
Yokochi F, Kato K, Iwamuro H, Kamiyama T, Kimura K, Yugeta A, Okiyama R, Taniguchi M, Kumada S, Ushiba J. Resting-State Pallidal-Cortical Oscillatory Couplings in Patients With Predominant Phasic and Tonic Dystonia. Front Neurol 2018; 9:375. [PMID: 29904367 PMCID: PMC5990626 DOI: 10.3389/fneur.2018.00375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Pallidal deep brain stimulation (DBS) improves the symptoms of dystonia. The improvement processes of dystonic movements (phasic symptoms) and tonic symptoms differ. Phasic symptoms improve rapidly after starting DBS treatment, but tonic symptoms improve gradually. This difference implies distinct neuronal mechanisms for phasic and tonic symptoms in the underlying cortico-basal ganglia neuronal network. Phasic symptoms are related to the pallido-thalamo-cortical pathway. The pathway related to tonic symptoms has been assumed to be different from that for phasic symptoms. In the present study, local field potentials of the globus pallidus internus (GPi) and globus pallidus externus (GPe) and electroencephalograms from the motor cortex (MCx) were recorded in 19 dystonia patients to analyze the differences between the two types of symptoms. The 19 patients were divided into two groups, 10 with predominant phasic symptoms (phasic patients) and 9 with predominant tonic symptoms (tonic patients). To investigate the distinct features of oscillations and functional couplings across the GPi, GPe, and MCx by clinical phenotype, power and coherence were calculated over the delta (2-4 Hz), theta (5-7 Hz), alpha (8-13 Hz), and beta (14-35 Hz) frequencies. In phasic patients, the alpha spectral peaks emerged in the GPi oscillatory activities, and alpha GPi coherence with the GPe and MCx was higher than in tonic patients. On the other hand, delta GPi oscillatory activities were prominent, and delta GPi-GPe coherence was significantly higher in tonic than in phasic patients. However, there was no significant delta coherence between the GPi/GPe and MCx in tonic patients. These results suggest that different pathophysiological cortico-pallidal oscillations are related to tonic and phasic symptoms.
Collapse
Affiliation(s)
- Fusako Yokochi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kenji Kato
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.,Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tsutomu Kamiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Katsuo Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Akihiro Yugeta
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Makoto Taniguchi
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Satoko Kumada
- Department of Pediatric Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
20
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
21
|
Alam M, Sanghera MK, Schwabe K, Lütjens G, Jin X, Song J, von Wrangel C, Stewart RM, Jankovic J, Grossman RG, Darbin O, Krauss JK. Globus pallidus internus neuronal activity: a comparative study of linear and non-linear features in patients with dystonia or Parkinson’s disease. J Neural Transm (Vienna) 2015; 123:231-40. [DOI: 10.1007/s00702-015-1484-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
|
22
|
Kumbhare D, Chaniary KD, Baron MS. Preserved dichotomy but highly irregular and burst discharge in the basal ganglia in alert dystonic rats at rest. Brain Res 2015. [PMID: 26210616 DOI: 10.1016/j.brainres.2015.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite its prevalence, the underlying pathophysiology of dystonia remains poorly understood. Using our novel tri-component classification algorithm, extracellular neuronal activity in the globus pallidus (GP), STN, and the entopeduncular nucleus (EP) was characterized in 34 normal and 25 jaundiced dystonic Gunn rats with their heads restrained while at rest. In normal rats, neurons in each nucleus were similarly characterized by two physiologically distinct types: regular tonic with moderate discharge frequencies (mean rates in GP, STN and EP ranging from 35-41 spikes/s) or irregular at slower frequencies (17-20 spikes/s), with a paucity of burst activity. In dystonic rats, these nuclei were also characterized by two distinct principal neuronal patterns. However, in marked difference, in the dystonic rats, neurons were primarily slow and highly irregular (12-15 spikes/s) or burst predominant (14-17 spikes/s), with maintained modest differences between nuclei. In GP and EP, with increasing severity of dystonia, burstiness was moderately further increased, irregularity mildly further increased, and discharge rates mildly further reduced. In contrast, these features did not appreciably change in STN with worsening dystonia. Findings of a lack of bursting in GP, STN and EP in normal rats in an alert resting state and prominent bursting in dystonic Gunn rats suggest that cortical or other external drive is normally required for bursting in these nuclei and that spontaneous bursting, as seen in dystonia and Parkinson's disease, is reflective of an underlying pathophysiological state. Moreover, the extent of burstiness appears to most closely correlate with the severity of the dystonia.
Collapse
Affiliation(s)
- Deepak Kumbhare
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; McGuire Research Institute, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA 23249, USA
| | - Kunal D Chaniary
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Mark S Baron
- Southeast Parkinson's Disease Research, Education and Clinical Center (PADRECC), Hunter Holmes McGuire Veterans Affairs Medical Center, 1201 Broad Rock Blvd, Richmond, VA 23249, USA; Department of Neurology, Virginia Commonwealth University Health System, Richmond, VA 23298, USA.
| |
Collapse
|
23
|
Keogh MJ, Aribisala BS, He J, Tulip E, Butteriss D, Morris C, Gorman G, Horvath R, Chinnery PF, Blamire AM. Voxel-based analysis in neuroferritinopathy expands the phenotype and determines radiological correlates of disease severity. J Neurol 2015; 262:2232-40. [PMID: 26142024 DOI: 10.1007/s00415-015-7832-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Neuroferritinopathy is an autosomal dominant adult-onset movement disorder which occurs due to mutations in the ferritin light chain gene (FTL). Extensive iron deposition and cavitation are observed post-mortem in the basal ganglia, but whether more widespread pathological changes occur, and whether they correlate with disease severity is unknown. 3D-T1w and quantitative T2 whole brain MRI scans were performed in 10 clinically symptomatic patients with the 460InsA FTL mutation and 10 age-matched controls. Voxel-based morphometry (VBM) and voxel-based relaxometry (VBR) were subsequently performed. Clinical assessment using the Unified Dystonia Rating Scale (UDRS) and Unified Huntington's Disease Rating Scale (UHDRS) was undertaken in all patients. VBM detected significant tissue changes within the substantia nigra, midbrain and dentate together with significant cerebellar atrophy in patients (FWE, p < 0.05). Iron deposition in the caudate head and cavitation in the lateral globus pallidus correlated with UDRS score (p < 0.001). There were no differences between groups with VBR. Our data show that progressive iron accumulation in the caudate nucleus, and cavitation of the globus pallidus correlate with disease severity in neuroferritinopathy. We also confirm sub-clinical cerebellar atrophy as a feature of the disease. We suggest that VBM is an effective technique to detect regions of iron deposition and cavitation, with potential wider utility to determine radiological markers of disease severity for all NBIA disorders.
Collapse
Affiliation(s)
- M J Keogh
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, England, UK.
| | - B S Aribisala
- Institute of Cellular Medicine and Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, England, UK
| | - J He
- Institute of Cellular Medicine and Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, England, UK
| | - E Tulip
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, England, UK
| | - D Butteriss
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, England, UK
| | - C Morris
- Medical Toxicology Centre, Wolfson Building, Claremont Place, Newcastle University, Newcastle upon Tyne, NE2 4AA, England, UK
| | - G Gorman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, England, UK
| | - R Horvath
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, England, UK
| | - P F Chinnery
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, England, UK.,Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, England, UK
| | - Andrew M Blamire
- Institute of Cellular Medicine and Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, England, UK.
| |
Collapse
|
24
|
Tronnier VM, Domingo A, Moll CK, Rasche D, Mohr C, Rosales R, Capetian P, Jamora RD, Lee LV, Münchau A, Diesta CC, Tadic V, Klein C, Brüggemann N, Moser A. Biochemical mechanisms of pallidal deep brain stimulation in X-linked dystonia parkinsonism. Parkinsonism Relat Disord 2015; 21:954-9. [PMID: 26093890 DOI: 10.1016/j.parkreldis.2015.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/17/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Invasive techniques such as in-vivo microdialysis provide the opportunity to directly assess neurotransmitter levels in subcortical brain areas. METHODS Five male Filipino patients (mean age 42.4, range 34-52 years) with severe X-linked dystonia-parkinsonism underwent bilateral implantation of deep brain leads into the internal part of the globus pallidus (GPi). Intraoperative microdialysis and measurement of gamma aminobutyric acid and glutamate was performed in the GPi in three patients and globus pallidus externus (GPe) in two patients at baseline for 25/30 min and during 25/30 min of high-frequency GPi stimulation. RESULTS While the gamma-aminobutyric acid concentration increased in the GPi during high frequency stimulation (231 ± 102% in comparison to baseline values), a decrease was observed in the GPe (22 ± 10%). Extracellular glutamate levels largely remained unchanged. CONCLUSIONS Pallidal microdialysis is a promising intraoperative monitoring tool to better understand pathophysiological implications in movement disorders and therapeutic mechanisms of high frequency stimulation. The increased inhibitory tone of GPi neurons and the subsequent thalamic inhibition could be one of the key mechanisms of GPi deep brain stimulation in dystonia. Such a mechanism may explain how competing (dystonic) movements can be suppressed in GPi/thalamic circuits in favour of desired motor programs.
Collapse
Affiliation(s)
- V M Tronnier
- Department of Neurosurgery, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - A Domingo
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C K Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - D Rasche
- Department of Neurosurgery, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - C Mohr
- Department of Neuroradiology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - R Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurology and Psychiatry, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - P Capetian
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany; Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - R D Jamora
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - L V Lee
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - A Münchau
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C C Diesta
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - V Tadic
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C Klein
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - N Brüggemann
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany; Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - A Moser
- Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
25
|
Abstract
Deep brain stimulation (DBS), applying high-frequency electrical stimulation to deep brain structures, has now provided an effective therapeutic option for treatment of various neurological and psychiatric disorders. DBS targeting the internal segment of the globus pallidus, subthalamic nucleus, and thalamus is used to treat symptoms of movement disorders, such as Parkinson’s disease, dystonia, and tremor. However, the mechanism underlying the beneficial effects of DBS remains poorly understood and is still under debate: Does DBS inhibit or excite local neuronal elements? In this short review, we would like to introduce our recent work on the physiological mechanism of DBS and propose an alternative explanation: DBS dissociates input and output signals, resulting in the disruption of abnormal information flow through the stimulation site.
Collapse
Affiliation(s)
- Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Japan
| |
Collapse
|
26
|
Stoeter P, Roa-Sanchez P, Speckter H, Perez-Then E, Foerster B, Vilchez C, Oviedo J, Rodriguez-Raecke R. Changes of cerebral white matter in patients suffering from Pantothenate Kinase-Associated Neurodegeneration (PKAN): A diffusion tensor imaging (DTI) study. Parkinsonism Relat Disord 2015; 21:577-81. [PMID: 25819806 DOI: 10.1016/j.parkreldis.2015.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/24/2015] [Accepted: 03/08/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND To look for microstructural white matter alterations in patients with dystonia due to Pantothenate Kinase-Associated Neurodegeneration. MATERIAL AND METHODS We examined 21 genetically confirmed patients and an age-matched group of 21 healthy controls by diffusion tensor imaging. Evaluation of data was performed by tract-based spatial statistics analysis and a voxel-wise comparison of calculated maps of fractional anisotropy. Findings were compared between groups and correlated to the dystonia score of the Burke-Fahn-Marsden Scale (p ≤ 0.05). RESULTS Patients showed reductions of fractional anisotropy mainly in the periventricular substance surrounding the third ventricle, in the medial part of both putamina and in the frontal white matter including the anterior limbs of the internal capsules and the corpus callosum. Infratentorially, the cerebellar white matter and dorsal parts of the pons and medulla were affected. CONCLUSION In addition to cortical grey matter changes, we now have a second structural finding pointing to a more widespread affection of cerebral tissue in PKAN dystonia than just the lesion and iron accumulation in the globus pallidus.
Collapse
Affiliation(s)
- P Stoeter
- Dep. of Radiology, Santo Domingo, Dominican Republic.
| | - P Roa-Sanchez
- Dep. of Neurology, Santo Domingo, Dominican Republic
| | - H Speckter
- Dep. of Radiology, Santo Domingo, Dominican Republic
| | - E Perez-Then
- Dep. of Medical Science, CEDIMAT, Santo Domingo, Dominican Republic
| | - B Foerster
- Philips Medical Systems LatAm, Sao Paulo, Brazil
| | - C Vilchez
- Dep. of Radiology, Santo Domingo, Dominican Republic
| | - J Oviedo
- Dep. of Radiology, Santo Domingo, Dominican Republic
| | | |
Collapse
|
27
|
Nambu A, Tachibana Y, Chiken S. Cause of parkinsonian symptoms: Firing rate, firing pattern or dynamic activity changes? ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.baga.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Salvesen L, Ullerup BH, Sunay FB, Brudek T, Løkkegaard A, Agander TK, Winge K, Pakkenberg B. Changes in total cell numbers of the basal ganglia in patients with multiple system atrophy - A stereological study. Neurobiol Dis 2014; 74:104-13. [PMID: 25449905 DOI: 10.1016/j.nbd.2014.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 12/25/2022] Open
Abstract
Total numbers of neurons, oligodendrocytes, astrocytes, and microglia in the basal ganglia and red nucleus were estimated in brains from 11 patients with multiple system atrophy (MSA) and 11 age- and gender-matched control subjects with unbiased stereological methods. Compared to the control subjects, the MSA patients had a substantially lower number of neurons in the substantia nigra (p=0.001), putamen (p=0.001), and globus pallidus (p<0.001), and, to a lesser extent in the caudate nucleus (p=0.03). A significantly lower number of oligodendrocytes were only observed in the putamen (p=0.04) and globus pallidus (p=0.01). In the MSA brains the total number of astrocytes was significantly higher in the putamen (p=0.04) and caudate nucleus (p=0.01). In all examined regions a higher number of microglia were found in the MSA brains with the greatest difference observed in the otherwise unaffected red nucleus (p=0.001). The results from the stereological study were supported by cell marker expression analyses showing increased markers for activated microglia. Our results suggest that microgliosis is a consistent and severe neuropathological feature of MSA, whereas no widespread and substantial loss of oligodendrocytes was observed. We have demonstrated significant neuronal loss in the substantia nigra, striatum, and globus pallidus of patients with MSA, while neurons in other basal ganglia nuclei were spared, supporting the region-specific patterns of neuropathological changes in MSA.
Collapse
Affiliation(s)
- Lisette Salvesen
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark; Bispebjerg Movement Disorders Biobank, Bispebjerg University Hospital, Copenhagen, Denmark; Department of Neurology, Bispebjerg University Hospital, Copenhagen, Denmark.
| | - Birgitte H Ullerup
- Bispebjerg Movement Disorders Biobank, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Fatma B Sunay
- Bispebjerg Movement Disorders Biobank, Bispebjerg University Hospital, Copenhagen, Denmark; Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Tomasz Brudek
- Bispebjerg Movement Disorders Biobank, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Tina K Agander
- Department of Pathology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Kristian Winge
- Bispebjerg Movement Disorders Biobank, Bispebjerg University Hospital, Copenhagen, Denmark; Department of Neurology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| |
Collapse
|
29
|
Rodriguez-Raecke R, Roa-Sanchez P, Speckter H, Fermin-Delgado R, Perez-Then E, Oviedo J, Stoeter P. Grey matter alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN). Parkinsonism Relat Disord 2014; 20:975-9. [PMID: 24965278 DOI: 10.1016/j.parkreldis.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/05/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a rare heritable disease marked by dystonia and loss of movement control. In contrast to the well-known "Eye-of-the-Tiger" sign affecting the globus pallidus, little is known about other deviations of brain morphology, especially about grey matter changes. METHODS We investigated 29 patients with PKAN and 29 age-matched healthy controls using Magnet Resonance Imaging and Voxel-Based Morphometry. RESULTS As compared to controls, children with PKAN showed increased grey matter density in the putamen and nucleus caudatus and adults with PKAN showed increased grey matter density in the ventral part of the anterior cingulate cortex. A multiple regression analysis with dystonia score as predictor showed grey matter reduction in the cerebellum, posterior cingulate cortex, superior parietal lobule, pars triangularis and small frontal and temporal areas and an analysis with age as predictor showed grey matter decreases in the putamen, nucleus caudatus, supplementary motor area and anterior cingulate cortex. CONCLUSIONS The grey matter increases may be regarded as a secondary phenomenon compensating the increased activity of the motor system due to a reduced inhibitory output of the globus pallidus. With increasing age, the grey matter reduction of cortical midline structures however might contribute to the progression of dystonic symptoms due to loss of this compensatory control.
Collapse
Affiliation(s)
| | - Pedro Roa-Sanchez
- Department of Neurology, CEDIMAT, Santo Domingo, República Dominicana
| | - Herwin Speckter
- Department of Radiology, CEDIMAT, Santo Domingo, República Dominicana
| | | | - Eddy Perez-Then
- Department of Research, CEDIMAT, Santo Domingo, República Dominicana
| | - Jairo Oviedo
- Department of Radiology, CEDIMAT, Santo Domingo, República Dominicana
| | - Peter Stoeter
- Department of Radiology, CEDIMAT, Santo Domingo, República Dominicana.
| |
Collapse
|
30
|
Karas PJ, Mikell CB, Christian E, Liker MA, Sheth SA. Deep brain stimulation: a mechanistic and clinical update. Neurosurg Focus 2013; 35:E1. [DOI: 10.3171/2013.9.focus13383] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deep brain stimulation (DBS), the practice of placing electrodes deep into the brain to stimulate subcortical structures with electrical current, has been increasing as a neurosurgical procedure over the past 15 years. Originally a treatment for essential tremor, DBS is now used and under investigation across a wide spectrum of neurological and psychiatric disorders. In addition to applying electrical stimulation for clinical symptomatic relief, the electrodes implanted can also be used to record local electrical activity in the brain, making DBS a useful research tool. Human single-neuron recordings and local field potentials are now often recorded intraoperatively as electrodes are implanted. Thus, the increasing scope of DBS clinical applications is being matched by an increase in investigational use, leading to a rapidly evolving understanding of cortical and subcortical neurocircuitry. In this review, the authors discuss recent innovations in the clinical use of DBS, both in approved indications as well as in indications under investigation. Deep brain stimulation as an investigational tool is also reviewed, paying special attention to evolving models of basal ganglia and cortical function in health and disease. Finally, the authors look to the future across several indications, highlighting gaps in knowledge and possible future directions of DBS treatment.
Collapse
Affiliation(s)
- Patrick J. Karas
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| | - Charles B. Mikell
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| | - Eisha Christian
- 2Department of Neurosurgery, Keck Hospital of the University of Southern California, Los Angeles, California
| | - Mark A. Liker
- 2Department of Neurosurgery, Keck Hospital of the University of Southern California, Los Angeles, California
| | - Sameer A. Sheth
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
31
|
Hisatsune C, Miyamoto H, Hirono M, Yamaguchi N, Sugawara T, Ogawa N, Ebisui E, Ohshima T, Yamada M, Hensch TK, Hattori M, Mikoshiba K. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. Front Neural Circuits 2013; 7:156. [PMID: 24109434 PMCID: PMC3790101 DOI: 10.3389/fncir.2013.00156] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/14/2013] [Indexed: 11/23/2022] Open
Abstract
The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca2+ channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway.
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute , Wako, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reiner A, Shelby E, Wang H, DeMarch Z, Deng Y, Guley NH, Hogg V, Roxburgh R, Tippett LJ, Waldvogel HJ, Faull RLM. Striatal parvalbuminergic neurons are lost in Huntington's disease: implications for dystonia. Mov Disord 2013; 28:1691-9. [PMID: 24014043 PMCID: PMC3812318 DOI: 10.1002/mds.25624] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/13/2022] Open
Abstract
Although dystonia represents a major source of motor disability in Huntington's disease (HD), its pathophysiology remains unknown. Because recent animal studies indicate that loss of parvalbuminergic (PARV+) striatal interneurons can cause dystonia, we investigated if loss of PARV+ striatal interneurons occurs during human HD progression, and thus might contribute to dystonia in HD. We used immunolabeling to detect PARV+ interneurons in fixed sections, and corrected for disease-related striatal atrophy by expressing PARV+ interneuron counts in ratio to interneurons co-containing somatostatin and neuropeptide Y (whose numbers are unaffected in HD). At all symptomatic HD grades, PARV+ interneurons were reduced to less than 26% of normal abundance in rostral caudate. In putamen rostral to the level of globus pallidus, loss of PARV+ interneurons was more gradual, not dropping off to less than 20% of control until grade 2. Loss of PARV+ interneurons was even more gradual in motor putamen at globus pallidus levels, with no loss at grade 1, and steady grade-wise decline thereafter. A large decrease in striatal PARV+ interneurons, thus, occurs in HD with advancing disease grade, with regional variation in the loss per grade. Given the findings of animal studies and the grade-wise loss of PARV+ striatal interneurons in motor striatum in parallel with the grade-wise appearance and worsening of dystonia, our results raise the possibility that loss of PARV+ striatal interneurons is a contributor to dystonia in HD.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Evan Shelby
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Hongbing Wang
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Zena DeMarch
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Natalie Hart Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, Tennessee, USA
| | - Virginia Hogg
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Psychology, University of AucklandAuckland, New Zealand
| | - Richard Roxburgh
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Neurology, Auckland City HospitalAuckland, New Zealand
| | - Lynette J Tippett
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Psychology, University of AucklandAuckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Anatomy with Radiology, University of AucklandAuckland, New Zealand
| | - Richard LM Faull
- Centre for Brain Research, University of AucklandAuckland, New Zealand
- Department of Anatomy with Radiology, University of AucklandAuckland, New Zealand
| |
Collapse
|
33
|
Pallidal deep brain stimulation modulates afferent fibers, efferent fibers, and glia. J Neurosci 2013; 33:9873-5. [PMID: 23761881 DOI: 10.1523/jneurosci.1471-13.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
34
|
Wei W, Li L, Yu G, Ding S, Li C, Zhou FM. Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice. J Neurophysiol 2013; 110:2203-16. [PMID: 23945778 DOI: 10.1152/jn.00161.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The dopamine (DA) D2 receptor (D2R)-expressing medium spiny neurons (D2-MSNs) in the striatum project to and inhibit the GABAergic neurons in the globus pallidus (GP), forming an important link in the indirect pathway of the basal ganglia movement control circuit. These striatopallidal axon terminals express presynaptic D2Rs that inhibit GABA release and thus regulate basal ganglion function. Here we show that in transcription factor Pitx3 gene mutant mice with a severe DA loss in the dorsal striatum mimicking the DA denervation in Parkinson's disease (PD), the striatopallidal GABAergic synaptic transmission displayed a heightened sensitivity to presynaptic D2R-mediated inhibition with the dose-response curve shifted to the left, although the maximal inhibition was not changed. Functionally, low concentrations of DA were able to more efficaciously reduce the striatopallidal inhibition-induced pauses of GP neuron activity in DA-deficient Pitx3 mutant mice than in wild-type mice. These results demonstrate that presynaptic D2R inhibition of the striatopallidal synapse becomes supersensitized after DA loss. These supersensitive D2Rs may compensate for the lost DA in PD and also induce a strong disinhibition of GP neuron activity that may contribute to the motor-stimulating effects of dopaminergic treatments in PD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | | | | | | | | | | |
Collapse
|
35
|
Liu LD, Prescott IA, Dostrovsky JO, Hodaie M, Lozano AM, Hutchison WD. Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia patients. J Neurophysiol 2012; 108:5-17. [DOI: 10.1152/jn.00527.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) in the globus pallidus internus (GPi) has been shown to improve dystonia, a movement disorder of repetitive twisting movements and postures. DBS at frequencies above 60 Hz improves dystonia, but the mechanisms underlying this frequency dependence are unclear. In patients undergoing dual-microelectrode mapping of the GPi, microstimulation has been shown to reduce neuronal firing, presumably due to synaptic GABA release. This study examined the effects of different microstimulation frequencies (1–100 Hz) and train length (0.5–20 s), with and without prior high-frequency stimulation (HFS) on neuronal firing and evoked field potentials (fEPs) in 13 dystonia patients. Pre-HFS, the average firing decreased as stimulation frequency increased and was silenced above 50 Hz. The average fEP amplitudes increased up to frequencies of 20–30 Hz but then declined and at 50 Hz, were only at 75% of baseline. In some cases, short latency fiber volleys and antidromic-like spikes were observed and followed high frequencies. Post-HFS, overall firing was reduced compared with pre-HFS, and the fEP amplitudes were enhanced at low frequencies, providing evidence of inhibitory synaptic plasticity in the GPi. In a patient with DBS electrodes already implanted in the GPi, recordings from four neurons in the subthalamic nucleus showed almost complete inhibition of firing with clinically effective but not clinically ineffective stimulation parameters. These data provide additional support for the hypothesis of stimulation-evoked GABA release from afferent synaptic terminals and reduction of neuronal firing during DBS and additionally, implicate excitation of GPi axon fibers and neurons and enhancement of inhibitory synaptic transmission by high-frequency GPi DBS as additional putative mechanisms underlying the clinical benefits of DBS in dystonia.
Collapse
Affiliation(s)
- Liu D. Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Ian A. Prescott
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jonathan O. Dostrovsky
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - William D. Hutchison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|