1
|
Alsuradi H, Hong J, Mazi H, Eid M. Neuro-motor controlled wearable augmentations: current research and emerging trends. Front Neurorobot 2024; 18:1443010. [PMID: 39544848 PMCID: PMC11560910 DOI: 10.3389/fnbot.2024.1443010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Wearable augmentations (WAs) designed for movement and manipulation, such as exoskeletons and supernumerary robotic limbs, are used to enhance the physical abilities of healthy individuals and substitute or restore lost functionality for impaired individuals. Non-invasive neuro-motor (NM) technologies, including electroencephalography (EEG) and sufrace electromyography (sEMG), promise direct and intuitive communication between the brain and the WA. After presenting a historical perspective, this review proposes a conceptual model for NM-controlled WAs, analyzes key design aspects, such as hardware design, mounting methods, control paradigms, and sensory feedback, that have direct implications on the user experience, and in the long term, on the embodiment of WAs. The literature is surveyed and categorized into three main areas: hand WAs, upper body WAs, and lower body WAs. The review concludes by highlighting the primary findings, challenges, and trends in NM-controlled WAs. This review motivates researchers and practitioners to further explore and evaluate the development of WAs, ensuring a better quality of life.
Collapse
Affiliation(s)
- Haneen Alsuradi
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Joseph Hong
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Helin Mazi
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamad Eid
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
3
|
Musumeci G, D'Alonzo M, Ranieri F, Falato E, Capone F, Motolese F, Di Pino G, Di Lazzaro V, Pilato F. Intracortical and interhemispheric excitability changes in arm amputees: A TMS study. Clin Neurophysiol 2023; 156:98-105. [PMID: 37918223 DOI: 10.1016/j.clinph.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE To evaluate cortical circuits and excitability of the motor cortex in the hemisphere contralateral to the affected (AH) and to the unaffected arm (UH), in upper limb amputees. METHODS Motor evoked potentials (MEP) were recorded in 17 subjects who had upper limb amputation: 11 trans-radial (TR) and 6 trans-humeral (TH). Motor thresholds (MT), short interval intracortical inhibition (SICI), and interhemispheric inhibition (IHI) in the available arm muscles of the stump were evaluated. RESULTS There was no significant difference in MT between hemispheres. SICI was preserved in TR but not in TH group. Additionally, in the TR group, the MEP amplitudes in AH were higher than in UH. A significant IHI was observed in the whole sample but not in each hemisphere or patient group. CONCLUSIONS In our population of TR amputees, we found increased corticospinal excitability in the AH with preserved intracortical inhibition. This finding was not observed in the TH population. SIGNIFICANCE Understanding the changes in intracortical excitability in amputees may enhance knowledge of the functional reorganization of the brain in the post-amputation phase, bringing useful information for prosthetic rehabilitation.
Collapse
Affiliation(s)
- Gabriella Musumeci
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome 00128, Italy
| | - Marco D'Alonzo
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome 00128, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.le L.A. Scuro, 10, 37134 Verona, Italy
| | - Emma Falato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fioravante Capone
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Francesco Motolese
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Giovanni Di Pino
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fabio Pilato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| |
Collapse
|
4
|
Pinardi M, Di Stefano N, Di Pino G, Spence C. Exploring crossmodal correspondences for future research in human movement augmentation. Front Psychol 2023; 14:1190103. [PMID: 37397340 PMCID: PMC10308310 DOI: 10.3389/fpsyg.2023.1190103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
"Crossmodal correspondences" are the consistent mappings between perceptual dimensions or stimuli from different sensory domains, which have been widely observed in the general population and investigated by experimental psychologists in recent years. At the same time, the emerging field of human movement augmentation (i.e., the enhancement of an individual's motor abilities by means of artificial devices) has been struggling with the question of how to relay supplementary information concerning the state of the artificial device and its interaction with the environment to the user, which may help the latter to control the device more effectively. To date, this challenge has not been explicitly addressed by capitalizing on our emerging knowledge concerning crossmodal correspondences, despite these being tightly related to multisensory integration. In this perspective paper, we introduce some of the latest research findings on the crossmodal correspondences and their potential role in human augmentation. We then consider three ways in which the former might impact the latter, and the feasibility of this process. First, crossmodal correspondences, given the documented effect on attentional processing, might facilitate the integration of device status information (e.g., concerning position) coming from different sensory modalities (e.g., haptic and visual), thus increasing their usefulness for motor control and embodiment. Second, by capitalizing on their widespread and seemingly spontaneous nature, crossmodal correspondences might be exploited to reduce the cognitive burden caused by additional sensory inputs and the time required for the human brain to adapt the representation of the body to the presence of the artificial device. Third, to accomplish the first two points, the benefits of crossmodal correspondences should be maintained even after sensory substitution, a strategy commonly used when implementing supplementary feedback.
Collapse
Affiliation(s)
- Mattia Pinardi
- NeXT Lab, Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Nicola Di Stefano
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Giovanni Di Pino
- NeXT Lab, Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Charles Spence
- Crossmodal Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Hutt A, Hudetz AG. Arousal system stimulation and anesthetic state alter visuoparietal connectivity. Front Syst Neurosci 2023; 17:1157488. [PMID: 37139471 PMCID: PMC10150228 DOI: 10.3389/fnsys.2023.1157488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cortical information processing is under the precise control of the ascending arousal system (AAS). Anesthesia suppresses cortical arousal that can be mitigated by exogenous stimulation of the AAS. The question remains to what extent cortical information processing is regained by AAS stimulation. We investigate the effect of electrical stimulation of the nucleus Pontis Oralis (PnO), a distinct source of ascending AAS projections, on cortical functional connectivity (FC) and information storage at mild, moderate, and deep anesthesia. Local field potentials (LFPs) recorded previously in the secondary visual cortex (V2) and the adjacent parietal association cortex (PtA) in chronically instrumented unrestrained rats. We hypothesized that PnO stimulation would induce electrocortical arousal accompanied by enhanced FC and active information storage (AIS) implying improved information processing. In fact, stimulation reduced FC in slow oscillations (0.3-2.5 Hz) at low anesthetic level and increased FC at high anesthetic level. These effects were augmented following stimulation suggesting stimulus-induced plasticity. The observed opposite stimulation-anesthetic impact was less clear in the γ-band activity (30-70 Hz). In addition, FC in slow oscillations was more sensitive to stimulation and anesthetic level than FC in γ-band activity which exhibited a rather constant spatial FC structure that was symmetric between specific, topographically related sites in V2 and PtA. Invariant networks were defined as a set of strongly connected electrode channels, which were invariant to experimental conditions. In invariant networks, stimulation decreased AIS and increasing anesthetic level increased AIS. Conversely, in non-invariant (complement) networks, stimulation did not affect AIS at low anesthetic level but increased it at high anesthetic level. The results suggest that arousal stimulation alters cortical FC and information storage as a function of anesthetic level with a prolonged effect beyond the duration of stimulation. The findings help better understand how the arousal system may influence information processing in cortical networks at different levels of anesthesia.
Collapse
Affiliation(s)
- Axel Hutt
- MLMS, MIMESIS, Université de Strasbourg, CNRS, lnria, ICube, Strasbourg, France
- *Correspondence: Axel Hutt,
| | - Anthony G. Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Yang L, Qin Y, Chen K, Xu C, Peng M, Tan S, Liu T, Yao D. The role of basal ganglia network in neural plasticity in neuromyelitis optica spectrum disorder with myelitis. Mult Scler Relat Disord 2022; 68:104170. [PMID: 36113277 DOI: 10.1016/j.msard.2022.104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To explore the alternation of the brain baseline activity in neuromyelitis optica spectrum disorder (NMOSD) patients after myelitis, and characterize the representation of the neural plasticity process. METHODS Clinical evaluation and resting-state fMRI were obtained from 20 NMOSD patients with myelitis and 20 healthy controls, matched in gender and age. Resting-state networks (RSNs) were identified through independent component analysis (ICA), and functional connectivity (FC) intra-RSNs and between region-of-interest (ROI) seed to whole-brain voxels were analyzed. Between-group comparisons and correlations with motor performance were also assessed. RESULTS A total of 14 main functional RSNs were identified. Group comparison of intra-network FCs revealed that FC strengths increased in basal ganglia network (BGN) and left frontoparietal network, decreased in sensorimotor network and default mode network in NMOSD. Better motor performance was found closely correlated with higher FC of BGN. Additionally, remarkably increased FC between caudate in BGN with cerebellum, frontal lobe and parietal lobe was discovered in further ROI-based whole-brain voxels FC analysis. CONCLUSIONS NMOSD patients presented wide brain resting-state functional connectivity alterations after myelitis, and BGN might be highly active in the process of neural plasticity in chronic stage of NMOSD. Besides, understanding neural plasticity representation, especially that in NMOSD patients after myelitis, might have important applications in monitoring and designing rehabilitative approaches.
Collapse
Affiliation(s)
- Lili Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section of First Ring Road, Chengdu 611731, China
| | - Yun Qin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Kai Chen
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section of First Ring Road, Chengdu 611731, China
| | - Congyu Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Maoqing Peng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section of First Ring Road, Chengdu 611731, China.
| | - Tiejun Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China.
| |
Collapse
|
7
|
Engdahl S, Dhawan A, Bashatah A, Diao G, Mukherjee B, Monroe B, Holley R, Sikdar S. Classification Performance and Feature Space Characteristics in Individuals With Upper Limb Loss Using Sonomyography. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:2100311. [PMID: 35070521 PMCID: PMC8763379 DOI: 10.1109/jtehm.2022.3140973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 01/01/2022] [Indexed: 11/15/2022]
Abstract
Objective: Sonomyography, or ultrasound-based sensing of muscle deformation, is an emerging modality for upper limb prosthesis control. Although prior studies have shown that individuals with upper limb loss can achieve successful motion classification with sonomyography, it is important to better understand the time-course over which proficiency develops. In this study, we characterized user performance during their initial and subsequent exposures to sonomyography. Method: Ultrasound images corresponding to a series of hand gestures were collected from individuals with transradial limb loss under three scenarios: during their initial exposure to sonomyography (Experiment 1), during a subsequent exposure to sonomyography where they were provided biofeedback as part of a training protocol (Experiment 2), and during testing sessions held on different days (Experiment 3). User performance was characterized by offline classification accuracy, as well as metrics describing the consistency and separability of the sonomyography signal patterns in feature space. Results: Classification accuracy was high during initial exposure to sonomyography (96.2 ± 5.9%) and did not systematically change with the provision of biofeedback or on different days. Despite this stable classification performance, some of the feature space metrics changed. Conclusions: User performance was strong upon their initial exposure to sonomyography and did not improve with subsequent exposure. Clinical Impact: Prosthetists may be able to quickly assess if a patient will be successful with sonomyography without submitting them to an extensive training protocol, leading to earlier socket fabrication and delivery.
Collapse
Affiliation(s)
- Susannah Engdahl
- Department of BioengineeringGeorge Mason University Fairfax VA 20030 USA
| | - Ananya Dhawan
- Department of BioengineeringGeorge Mason University Fairfax VA 20030 USA
| | - Ahmed Bashatah
- Department of BioengineeringGeorge Mason University Fairfax VA 20030 USA
| | - Guoqing Diao
- Department of Biostatistics and BioinformaticsThe George Washington University Washington DC 20052 USA
| | - Biswarup Mukherjee
- Department of BioengineeringGeorge Mason University Fairfax VA 20030 USA
| | | | - Rahsaan Holley
- MedStar National Rehabilitation Hospital Washington DC 20010 USA
| | - Siddhartha Sikdar
- Department of BioengineeringGeorge Mason University Fairfax VA 20030 USA
| |
Collapse
|
8
|
Di Pino G, Mioli A, Altamura C, D'Alonzo M. Embodying an artificial hand increases blood flow to the investigated limb [version 3; peer review: 2 approved]. OPEN RESEARCH EUROPE 2022; 1:55. [PMID: 35747768 PMCID: PMC7612882 DOI: 10.12688/openreseurope.13641.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
Background The autonomic nervous system is the main determinant of the blood flow directed towards a body part, and it is tightly connected to the representation of the body in the brain; would the experimental modulation of the sense of limb ownership affect its blood perfusion? Methods In healthy participants, we employed the rubber hand illusion paradigm to modulate limb ownership while we monitored the brachial artery blood flow and resistance index within the investigated limb. Results In all conditions with brush-stroking, we found an initial drop in the blood flow due to tactile stimulation. Subsequently, in the illusion condition (where both the rubber and real hand synchronous brush-stroking were present), the blood flow rose significantly faster and reached significantly higher values. Moreover, the increase in blood flow correlated with the extent of embodiment as measured by questionnaires and correlated negatively with the change of peripherical vascular resistance. Conclusions These findings suggest that modulating the representation of a body part impacts its blood perfusion.
Collapse
Affiliation(s)
- Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| | - Alessandro Mioli
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| | - Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, Rome, 00128, Italy
| | - Marco D'Alonzo
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| |
Collapse
|
9
|
Eden J, Bräcklein M, Ibáñez J, Barsakcioglu DY, Di Pino G, Farina D, Burdet E, Mehring C. Principles of human movement augmentation and the challenges in making it a reality. Nat Commun 2022; 13:1345. [PMID: 35292665 PMCID: PMC8924218 DOI: 10.1038/s41467-022-28725-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Augmenting the body with artificial limbs controlled concurrently to one's natural limbs has long appeared in science fiction, but recent technological and neuroscientific advances have begun to make this possible. By allowing individuals to achieve otherwise impossible actions, movement augmentation could revolutionize medical and industrial applications and profoundly change the way humans interact with the environment. Here, we construct a movement augmentation taxonomy through what is augmented and how it is achieved. With this framework, we analyze augmentation that extends the number of degrees-of-freedom, discuss critical features of effective augmentation such as physiological control signals, sensory feedback and learning as well as application scenarios, and propose a vision for the field.
Collapse
Affiliation(s)
- Jonathan Eden
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - Mario Bräcklein
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - Jaime Ibáñez
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
- BSICoS, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | | | - Giovanni Di Pino
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK.
| | - Carsten Mehring
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, 79104, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| |
Collapse
|
10
|
Di Pino G, Mioli A, Altamura C, D'Alonzo M. Embodying an artificial hand increases blood flow to the investigated limb. OPEN RESEARCH EUROPE 2021; 1:55. [PMID: 35747768 PMCID: PMC7612882 DOI: 10.12688/openreseurope.13641.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 08/31/2023]
Abstract
Background: The autonomic nervous system is the main determinant of the blood flow directed towards a body part, and it is tightly connected to the representation of the body in the brain; would the experimental modulation of the sense of ownership of the limb affect its blood perfusion? Methods: In healthy participants, we employed the rubber hand illusion paradigm to modulate limb ownership while we monitored the brachial artery blood flow and resistance of the investigated limb. Results: In all conditions with brush-stroking, we found an initial drop in the blood flow due to tactile stimulation. Subsequently, in the illusion condition where both the rubber and real hand experience synchronous brush-stroking, the blood flow rose significantly faster and reached significantly higher values. Moreover, the increase in blood flow correlated to the embodiment level measured by questionnaires and, negatively, to the change of peripherical vascular resistance. Conclusions: These findings demonstrate that modulating the representation of a body part impacts its blood perfusion.
Collapse
Affiliation(s)
- Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| | - Alessandro Mioli
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| | - Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, Rome, 00128, Italy
| | - Marco D'Alonzo
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| |
Collapse
|
11
|
Dominijanni G, Shokur S, Salvietti G, Buehler S, Palmerini E, Rossi S, De Vignemont F, d’Avella A, Makin TR, Prattichizzo D, Micera S. The neural resource allocation problem when enhancing human bodies with extra robotic limbs. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00398-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Sakai H, Ueda S, Ueno K, Kumada T. Neuroplastic Reorganization Induced by Sensory Augmentation for Self-Localization During Locomotion. FRONTIERS IN NEUROERGONOMICS 2021; 2:691993. [PMID: 38235242 PMCID: PMC10790880 DOI: 10.3389/fnrgo.2021.691993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2024]
Abstract
Sensory skills can be augmented through training and technological support. This process is underpinned by neural plasticity in the brain. We previously demonstrated that auditory-based sensory augmentation can be used to assist self-localization during locomotion. However, the neural mechanisms underlying this phenomenon remain unclear. Here, by using functional magnetic resonance imaging, we aimed to identify the neuroplastic reorganization induced by sensory augmentation training for self-localization during locomotion. We compared activation in response to auditory cues for self-localization before, the day after, and 1 month after 8 days of sensory augmentation training in a simulated driving environment. Self-localization accuracy improved after sensory augmentation training, compared with the control (normal driving) condition; importantly, sensory augmentation training resulted in auditory responses not only in temporal auditory areas but also in higher-order somatosensory areas extending to the supramarginal gyrus and the parietal operculum. This sensory reorganization had disappeared by 1 month after the end of the training. These results suggest that the use of auditory cues for self-localization during locomotion relies on multimodality in higher-order somatosensory areas, despite substantial evidence that information for self-localization during driving is estimated from visual cues on the proximal part of the road. Our findings imply that the involvement of higher-order somatosensory, rather than visual, areas is crucial for acquiring augmented sensory skills for self-localization during locomotion.
Collapse
Affiliation(s)
- Hiroyuki Sakai
- Human Science Laboratory, Toyota Central R&D Laboratories, Inc., Tokyo, Japan
| | - Sayako Ueda
- TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Kenichi Ueno
- Support Unit for Functional Magnetic Resonance Imaging, RIKEN Center for Brain Science, Wako, Japan
| | | |
Collapse
|
13
|
Núñez-Corrales S, Jakobsson E. Entropic boundary conditions towards safe artificial superintelligence. J EXP THEOR ARTIF IN 2021. [DOI: 10.1080/0952813x.2021.1952653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Santiago Núñez-Corrales
- Illinois Informatics and National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana IL, USA
| | - Eric Jakobsson
- Molecular and Cellular Biology and National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana IL, USA
| |
Collapse
|
14
|
Zangrandi A, D'Alonzo M, Cipriani C, Di Pino G. Neurophysiology of slip sensation and grip reaction: insights for hand prosthesis control of slippage. J Neurophysiol 2021; 126:477-492. [PMID: 34232750 PMCID: PMC7613203 DOI: 10.1152/jn.00087.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback is pivotal for a proficient dexterity of the hand. By modulating the grip force in function of the quick and not completely predictable change of the load force, grabbed objects are prevented to slip from the hand. Slippage control is an enabling achievement to all manipulation abilities. However, in hand prosthetics, the performance of even the most innovative research solutions proposed so far to control slippage remain distant from the human physiology. Indeed, slippage control involves parallel and compensatory activation of multiple mechanoceptors, spinal and supraspinal reflexes, and higher-order voluntary behavioral adjustments. In this work, we reviewed the literature on physiological correlates of slippage to propose a three-phases model for the slip sensation and reaction. Furthermore, we discuss the main strategies employed so far in the research studies that tried to restore slippage control in amputees. In the light of the proposed three-phase slippage model and from the weaknesses of already implemented solutions, we proposed several physiology-inspired solutions for slippage control to be implemented in the future hand prostheses. Understanding the physiological basis of slip detection and perception and implementing them in novel hand feedback system would make prosthesis manipulation more efficient and would boost its perceived naturalness, fostering the sense of agency for the hand movements.
Collapse
Affiliation(s)
- Andrea Zangrandi
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco D'Alonzo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Christian Cipriani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
15
|
Romano D, Mioli A, D'Alonzo M, Maravita A, Di Lazzaro V, Di Pino G. Behavioral and Physiological Evidence of a favored Hand Posture in the Body Representation for Action. Cereb Cortex 2021; 31:3299-3310. [PMID: 33611384 PMCID: PMC8196246 DOI: 10.1093/cercor/bhab011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/12/2022] Open
Abstract
Motor planning and execution require a representational map of our body. Since the body can assume different postures, it is not known how it is represented in this map. Moreover, is the generation of the motor command favored by some body configurations? We investigated the existence of a centrally favored posture of the hand for action, in search of physiological and behavioral advantages due to central motor processing. We tested two opposite hand pinch grips, equally difficult and commonly used: forearm pronated, thumb-down, index-up pinch against the same grip performed with thumb-up. The former revealed faster movement onset, sign of faster neural computation, and faster target reaching. It induced increased corticospinal excitability, independently on pre-stimulus tonic muscle contraction. Remarkably, motor excitability also increased when thumb-down pinch was only observed, imagined, or prepared, actually keeping the hand at rest. Motor advantages were independent of any concurrent modulation due to somatosensory input, as shown by testing afferent inhibition. Results provide strong behavioral and physiological evidence for a preferred hand posture favoring brain motor control, independently by somatosensory processing. This suggests the existence of a baseline postural representation that may serve as an a priori spatial reference for body-space interaction.
Collapse
Affiliation(s)
- Daniele Romano
- Psychology Department, NeuroMi, Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Alessandro Mioli
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco D'Alonzo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Angelo Maravita
- Psychology Department, NeuroMi, Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
16
|
Noccaro A, Eden J, Di Pino G, Formica D, Burdet E. Human performance in three-hands tasks. Sci Rep 2021; 11:9511. [PMID: 33947906 PMCID: PMC8096970 DOI: 10.1038/s41598-021-88862-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
The successful completion of complex tasks like hanging a picture or laparoscopic surgery requires coordinated motion of more than two limbs. User-controlled supernumerary robotic limbs (SL) have been proposed to bypass the need for coordination with a partner in such tasks. However, neither the capability to control multiple limbs alone relative to collaborative control with partners, nor how that capability varies across different tasks, is well understood. In this work, we present an investigation of tasks requiring three-hands where the foot was used as an additional source of motor commands. We considered: (1) how does simultaneous control of three hands compare to a cooperating dyad; (2) how this relative performance was altered by the existence of constraints emanating from real or virtual physical connections (mechanical constraints) or from cognitive limits (cognitive constraints). It was found that a cooperating dyad outperformed a single user in all scenarios in terms of task score, path efficiency and motion smoothness. However, while the participants were able to reach more targets with increasing mechanical constraints/decreasing number of simultaneous goals, the relative difference in performance between a dyad and a participant performing trimanual activities decreased, suggesting further potential for SLs in this class of scenario.
Collapse
Affiliation(s)
- A Noccaro
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - J Eden
- Department of Bioengineering, Imperial College of Science Technology and Medicine, London, UK
| | - G Di Pino
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - D Formica
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - E Burdet
- Department of Bioengineering, Imperial College of Science Technology and Medicine, London, UK
| |
Collapse
|
17
|
Castro F, Osman L, Di Pino G, Vuckovic A, Nowicky A, Bishop D. Does sonification of action simulation training impact corticospinal excitability and audiomotor plasticity? Exp Brain Res 2021; 239:1489-1505. [PMID: 33683403 PMCID: PMC8144125 DOI: 10.1007/s00221-021-06069-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 01/03/2023]
Abstract
Sonification is a sensory augmentation strategy whereby a sound is associated with, and modulated by, movement. Evidence suggests that sonification could be a viable strategy to maximize learning and rehabilitation. Recent studies investigated sonification of action observation, reporting beneficial effects, especially in Parkinson's disease. However, research on simulation training-a training regime based on action observation and motor imagery, in which actions are internally simulated, without physical execution-suggest that action observation alone is suboptimal, compared to the combined use of action observation and motor imagery. In this study, we explored the effects of sonified action observation and motor imagery on corticospinal excitability, as well as to evaluate the extent of practice-dependent plasticity induced by this training. Nineteen participants were recruited to complete a practice session based on combined and congruent action observation and motor imagery (AOMI) and physical imitation of the same action. Prior to the beginning, participants were randomly assigned to one of two groups, one group (nine participants) completed the practice block with sonified AOMI, while the other group (ten participants) completed the practice without extrinsic auditory information and served as control group. To investigate practice-induced plasticity, participants completed two auditory paired associative stimulation (aPAS) protocols, one completed after the practice block, and another one completed alone, without additional interventions, at least 7 days before the practice. After the practice block, both groups significantly increased their corticospinal excitability, but sonification did not exert additional benefits, compared to non-sonified conditions. In addition, aPAS significantly increased corticospinal excitability when completed alone, but when it was primed by a practice block, no modulatory effects on corticospinal excitability were found. It is possible that sonification of combined action observation and motor imagery may not be a useful strategy to improve corticospinal, but further studies are needed to explore its relationship with performance improvements. We also confirm the neuromodulatory effect of aPAS, but its interaction with audiomotor practice remain unclear.
Collapse
Affiliation(s)
- Fabio Castro
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Rome, Italy.
- Centre for Cognitive Neuroscience, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Ladan Osman
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Aleksandra Vuckovic
- School of Engineering, College of Engineering and Science, James Watt Building (South) University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alexander Nowicky
- Centre for Cognitive Neuroscience, Department of Clinical Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Daniel Bishop
- Centre for Cognitive Neuroscience, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
18
|
De Santis D. A Framework for Optimizing Co-adaptation in Body-Machine Interfaces. Front Neurorobot 2021; 15:662181. [PMID: 33967733 PMCID: PMC8097093 DOI: 10.3389/fnbot.2021.662181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The operation of a human-machine interface is increasingly often referred to as a two-learners problem, where both the human and the interface independently adapt their behavior based on shared information to improve joint performance over a specific task. Drawing inspiration from the field of body-machine interfaces, we take a different perspective and propose a framework for studying co-adaptation in scenarios where the evolution of the interface is dependent on the users' behavior and that do not require task goals to be explicitly defined. Our mathematical description of co-adaptation is built upon the assumption that the interface and the user agents co-adapt toward maximizing the interaction efficiency rather than optimizing task performance. This work describes a mathematical framework for body-machine interfaces where a naïve user interacts with an adaptive interface. The interface, modeled as a linear map from a space with high dimension (the user input) to a lower dimensional feedback, acts as an adaptive “tool” whose goal is to minimize transmission loss following an unsupervised learning procedure and has no knowledge of the task being performed by the user. The user is modeled as a non-stationary multivariate Gaussian generative process that produces a sequence of actions that is either statistically independent or correlated. Dependent data is used to model the output of an action selection module concerned with achieving some unknown goal dictated by the task. The framework assumes that in parallel to this explicit objective, the user is implicitly learning a suitable but not necessarily optimal way to interact with the interface. Implicit learning is modeled as use-dependent learning modulated by a reward-based mechanism acting on the generative distribution. Through simulation, the work quantifies how the system evolves as a function of the learning time scales when a user learns to operate a static vs. an adaptive interface. We show that this novel framework can be directly exploited to readily simulate a variety of interaction scenarios, to facilitate the exploration of the parameters that lead to optimal learning dynamics of the joint system, and to provide an empirical proof for the superiority of human-machine co-adaptation over user adaptation.
Collapse
Affiliation(s)
- Dalia De Santis
- Department of Robotics, Brain and Cognitive Sciences, Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
19
|
DI Pino G, Piombino V, Carassiti M, Ortiz-Catalan M. Neurophysiological models of phantom limb pain: what can be learnt. Minerva Anestesiol 2021; 87:481-487. [PMID: 33432796 DOI: 10.23736/s0375-9393.20.15067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phantom Limb Pain (PLP) is a dysesthesic painful sensations perceived in the lost limb, resulting from complex interactions between structural and functional nervous systems changes. We analyze its main pathogenetic models and speculate on candidate therapeutic targets. The neuroma model considers PLP to arise from spontaneous activity of residual limb injured axons. Other peripheral-origin models attribute PLP to damage of somatosensory receptors or vascular changes. According to the cortical remapping model, the loss of bidirectional nervous flow and the need to enhance alternative functions trigger reorganization and arm and face skin afferents "invade" the hand territory. On the contrary, the persistent representation model suggests that continued inputs preserve the lost limb representation and that, instead to a shrinkage, PLP is associated with larger representation and stronger cortical activity. In the neuromatrix model, the mismatch between body representation, which remains intact despite limb amputation, and real body appearance generates pain. Another hypothesis is that proprioceptive memories associate specific limb positions with pre-amputation pain and may be recalled by those positions. Finally, the stochastic entanglement model offers a direct relationship between sensorimotor neural reorganization and pain. Amputation disrupts motor and somatosensory circuits, allowing for maladaptive wiring with pain circuits and causing pain without nociception. Relief of PLP depends solely on motor and somatosensory circuitry engagement, making anthropomorphic visual feedback dispensable. Existing and apparently contradicting theories might not be mutually exclusive. All of them involve several intertwined potential mechanisms by which replacing the amputated limb by an artificial one could counteract PLP.
Collapse
Affiliation(s)
- Giovanni DI Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus Bio-Medico University, Rome, Italy -
| | - Valeria Piombino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus Bio-Medico University, Rome, Italy
| | - Massimiliano Carassiti
- Unit of Anesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden.,Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Operational Area 3, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Penaloza CI, Nishio S. BMI control of a third arm for multitasking. Sci Robot 2021; 3:3/20/eaat1228. [PMID: 33141729 DOI: 10.1126/scirobotics.aat1228] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/04/2018] [Indexed: 11/02/2022]
Abstract
Brain-machine interface (BMI) systems have been widely studied to allow people with motor paralysis conditions to control assistive robotic devices that replace or recover lost function but not to extend the capabilities of healthy users. We report an experiment in which healthy participants were able to extend their capabilities by using a noninvasive BMI to control a human-like robotic arm and achieve multitasking. Experimental results demonstrate that participants were able to reliably control the robotic arm with the BMI to perform a goal-oriented task while simultaneously using their own arms to do a different task. This outcome opens possibilities to explore future human body augmentation applications for healthy people that not only enhance their capability to perform a particular task but also extend their physical capabilities to perform multiple tasks simultaneously.
Collapse
Affiliation(s)
- Christian I Penaloza
- Hiroshi Ishiguro Laboratory, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai Seika-cho, Sorakugun, Kyoto, Japan.
| | - Shuichi Nishio
- Hiroshi Ishiguro Laboratory, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai Seika-cho, Sorakugun, Kyoto, Japan
| |
Collapse
|
21
|
Sims SKKC, Rizzo A, Howard K, Farrand A, Boger H, Adkins DL. Comparative Enhancement of Motor Function and BDNF Expression Following Different Brain Stimulation Approaches in an Animal Model of Ischemic Stroke. Neurorehabil Neural Repair 2020; 34:925-935. [PMID: 32909525 PMCID: PMC7572816 DOI: 10.1177/1545968320952798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Combinatory intervention such as high-frequency (50-100 Hz) excitatory cortical stimulation (ECS) given concurrently with motor rehabilitative training (RT) improves forelimb function, except in severely impaired animals after stroke. Clinical studies suggest that low-frequency (≤1 Hz) inhibitory cortical stimulation (ICS) may provide an alternative approach to enhance recovery. Currently, the molecular mediators of CS-induced behavioral effects are unknown. Brain-derived neurotrophic factor (BDNF) has been associated with improved recovery and neural remodeling after stroke and thus may be involved in CS-induced behavioral recovery. OBJECTIVE To investigate whether inhibitory stimulation during RT improves functional recovery of severely impaired rats, following focal cortical ischemia and if this recovery alters BDNF expression (study 1) and depends on BDNF binding to TrkB receptors (study 2). METHODS Rats underwent ECS + RT, ICS + RT, or noCS + RT treatment daily for 3 weeks following a unilateral ischemic lesion to the motor cortex. Electrode placement for stimulation was either placed ipsilateral (ECS) or contralateral (ICS) to the lesion. After treatment, BDNF expression was measured in cortical tissue samples (study 1). In study 2, the TrkB inhibitor, ANA-12, was injected prior to treatment daily for 21 days. RESULTS ICS + RT treatment significantly improved impaired forelimb recovery compared with ECS + RT and noCS + RT treatment. CONCLUSION ICS given concurrently with rehabilitation improves motor recovery in severely impaired animals, and alters cortical BDNF expression; nevertheless, ICS-mediated improvements are not dependent on BDNF binding to TrkB. Conversely, inhibition of TrkB receptors does disrupt motor recovery in ECS + RT treated animals.
Collapse
Affiliation(s)
| | | | | | - Ariana Farrand
- Medical University of South Carolina, Charleston, SC, USA
| | - Heather Boger
- Medical University of South Carolina, Charleston, SC, USA
| | - DeAnna L Adkins
- National Institute of Neurological Diseases and Stroke, Rockville, MD, USA
| |
Collapse
|
22
|
Pinardi M, Ferrari F, D’Alonzo M, Clemente F, Raiano L, Cipriani C, Di Pino G. ‘Doublecheck: a sensory confirmation is required to own a robotic hand, sending a command to feel in charge of it’. Cogn Neurosci 2020; 11:216-228. [DOI: 10.1080/17588928.2020.1793751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M. Pinardi
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - F. Ferrari
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics & A.I., Scuola Superiore Sant’Anna, Pisa, Italy
| | - M. D’Alonzo
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - F. Clemente
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics & A.I., Scuola Superiore Sant’Anna, Pisa, Italy
| | - L. Raiano
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - C. Cipriani
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics & A.I., Scuola Superiore Sant’Anna, Pisa, Italy
| | - G. Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
23
|
Di Pino G, Romano D, Spaccasassi C, Mioli A, D’Alonzo M, Sacchetti R, Guglielmelli E, Zollo L, Di Lazzaro V, Denaro V, Maravita A. Sensory- and Action-Oriented Embodiment of Neurally-Interfaced Robotic Hand Prostheses. Front Neurosci 2020; 14:389. [PMID: 32477046 PMCID: PMC7232597 DOI: 10.3389/fnins.2020.00389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Embodiment is the percept that something not originally belonging to the self becomes part of the body. Feeling embodiment for a prosthesis may counteract amputees' altered image of the body and increase prosthesis acceptability. Prosthesis embodiment has been studied longitudinally in an amputee receiving feedback through intraneural and perineural multichannel electrodes implanted in her stump. Three factors-invasive (vs non-invasive) stimulation, training, and anthropomorphism-have been tested through two multisensory integration tasks: visuo-tactile integration (VTI) and crossing-hand effect in temporal order judgment (TOJ), the former more sensible to an extension of a safe margin around the body and the latter to action-oriented remapping. Results from the amputee participant were compared with the ones from healthy controls. Testing the participant with intraneural stimulation produced an extension of peripersonal space, a sign of prosthesis embodiment. One-month training extended the peripersonal space selectively on the side wearing the prostheses. More and less-anthropomorphic prostheses benefited of intraneural feedback and extended the peripersonal space. However, the worsening of TOJ performance following arm crossing was present only wearing the more trained, despite less anthropomorphic, prosthesis, suggesting that training was critical for our participant to achieve operative tool-like embodiment.
Collapse
Affiliation(s)
- Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Daniele Romano
- Psychology Department & NeuroMi, Milan Center for Neuroscience, University of Milan-Bicocca, Milan, Italy
| | - Chiara Spaccasassi
- Psychology Department & NeuroMi, Milan Center for Neuroscience, University of Milan-Bicocca, Milan, Italy
| | - Alessandro Mioli
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco D’Alonzo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Rinaldo Sacchetti
- National Institute for Insurance Against Accidents at Work, Bologna, Italy
| | - Eugenio Guglielmelli
- Research Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Loredana Zollo
- Research Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Denaro
- Research Unit of Orthopedics and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Angelo Maravita
- Psychology Department & NeuroMi, Milan Center for Neuroscience, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
24
|
Gunduz ME, Pinto CB, Saleh Velez FG, Duarte D, Pacheco-Barrios K, Lopes F, Fregni F. Motor Cortex Reorganization in Limb Amputation: A Systematic Review of TMS Motor Mapping Studies. Front Neurosci 2020; 14:314. [PMID: 32372907 PMCID: PMC7187753 DOI: 10.3389/fnins.2020.00314] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: The purpose of this systematic review is to evaluate motor cortex reorganization in amputees as indexed by transcranial magnetic stimulation (TMS) cortical mapping and its relationship with phantom limb pain (PLP). Methods: Pubmed database were systematically searched. Three independent researchers screened the relevant articles, and the data of motor output maps, including the number of effective stimulation sites, center of gravity (CoG) shift, and their clinical correlations were extracted. We calculated a pooled CoG shift for motor cortex TMS mapping. Results: The search yielded 468 articles, 11 were included. Three studies performed correlation between the cortical changes and PLP intensity, and only one study compared cortical mapping changes between amputees with pain and without pain. Results showed (i) enlarged excitable area and a shift of CoG of neighboring areas toward the deafferented limb area; (ii) no correlation between motor cortex reorganization and level of pain and (iii) greater cortical reorganization in patients with PLP compared to amputation without pain. Conclusion: Our review supports the evidence for cortical reorganization in the affected hemisphere following an amputation. The motor cortex reorganization could be a potential clinical target for prevention and treatment response of PLP.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Camila Bonin Pinto
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Faddi Ghassan Saleh Velez
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Dante Duarte
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Unidad de Investigación Para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Fernanda Lopes
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
25
|
D'Alonzo M, Mioli A, Formica D, Di Pino G. Modulation of Body Representation Impacts on Efferent Autonomic Activity. J Cogn Neurosci 2020; 32:1104-1116. [PMID: 31951156 DOI: 10.1162/jocn_a_01532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The afferent branch of the autonomic nervous system contributes with interoception to the multimodal sensory correlation continuously needed to update our representation of the body. To test whether the modulation of body representation would have an impact on the efferent branch of the autonomic nervous system, nonspecific skin conductance has been measured in three rubber hand illusion (RHI) experiments, controlled with asynchronous brush-stroking and incongruent fake hand position. Nonspecific skin conductance standard deviation (SCSD) computed along the whole 90 sec of stroking was found to be increased by the illusion and to correlate with all the typical measures of embodiment. Computing SCSD in shorter time windows strongly enhanced the difference between illusion and controls. The highest difference was found in the 10-55 sec window, being the 14-34 sec window as the most informative one. The higher correlations with the validated measures of embodiment (all but the proprioceptive drift) were found for time windows ranging between 35 and 65 sec. The SCSD was no longer significantly higher when the RHI was repeated twice (two trials each iteration), but it was still significantly higher in synchronous stroking even when considering only the second trial. However, after the first iteration of the RHI paradigm, the effect of the embodiment on nonspecific skin conductance response results to be attenuated, suggesting that novelty in presentation of the RHI can contribute to the effect on nonspecific skin conductance response. Results candidate SCSD as a noninvasive, cheap, easy, and objective measure of embodiment, especially sensible to onset and strength of the illusion. Alike the already known enhanced autonomic reaction to a threatening, SCSD does not interfere with the collection of other behavioral measures. Correlations and their dynamics, presence of the effect in the second presentation of the setup but relative low robustness against multiple repetition, suggest that the increased fluctuations of skin conductance caught by SCSD are not just the effect of different presented sensory stimuli but more likely a stronger arousal response to the novelty of the updated perceptual status.
Collapse
|
26
|
D'Alonzo M, Mioli A, Formica D, Vollero L, Di Pino G. Different level of virtualization of sight and touch produces the uncanny valley of avatar's hand embodiment. Sci Rep 2019; 9:19030. [PMID: 31836765 PMCID: PMC6911036 DOI: 10.1038/s41598-019-55478-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/14/2019] [Indexed: 11/24/2022] Open
Abstract
Humans increasingly often act through virtual and robotic avatars, which can feed back to their user only virtual sensory information. Since avatar is user's embodiment and body image is mostly based on senses, how virtualization of sensory inputs affects avatar self-attribution is a key question for understanding nowadays human behavior. By manipulating visual and tactile inputs in a series of experiments fashioned after the rubber hand illusion, we assessed the relative weight of the virtualization of sight (Real, Robotic, Virtual) and of touch (Real, Virtual) on artificial hand embodiment. Virtualization decreased embodiment, but unexpectedly lowest embodiment was found when only one sense was virtual. Discordant levels of virtualization of sight and touch elicited revulsion, extending the concept of the uncanny valley to avatar embodiment. Besides timing, spatial constraints and realism of feedback, a matched degree of virtualization of seen and felt stimuli is a further constraint in building the representation of the body.
Collapse
Affiliation(s)
- M D'Alonzo
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo, 5, 00128, Rome, Italy
| | - A Mioli
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo, 5, 00128, Rome, Italy
| | - D Formica
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo, 5, 00128, Rome, Italy
| | - L Vollero
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo, 5, 00128, Rome, Italy
| | - G Di Pino
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo, 5, 00128, Rome, Italy.
| |
Collapse
|
27
|
Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. PM R 2019; 10:S174-S188. [PMID: 30269804 DOI: 10.1016/j.pmrj.2018.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 10/28/2022]
Abstract
Recovery of upper and lower limbs function is essential to reach independence in daily activities in patients with upper motor neuron syndrome (UMNS). Rehabilitation can provide a guide for motor recovery influencing the neurobiology of neuronal plasticity providing controlled, repetitive, and variable patterns. Increasing therapy dosage, intensity, number of repetition, execution of task-oriented exercises, and combining top-down and bottom-up approaches can promote plasticity and functional recovery. Robotic exoskeletons for upper and lower limbs, based on the principle of motor learning, have been introduced in neurorehabilitation. In this narrative review, we provide an overview of literature published on exoskeleton devices for upper and lower limb rehabilitation in patients with UMNS; we summarized the available current research evidence and outlined the new challenges that neurorehabilitation and bioengineering will have to face in the upcoming years. Robotic treatment should be considered a rehabilitation tool useful to generate a more complex, controlled multisensory stimulation of the patient and useful to modify the plasticity of neural connections through the experience of movement. Efficacy and efficiency of robotic treatment should be defined starting from intensity, complexity, and specificity of the robotic exercise, that are related to human-robot interaction in terms of motion, emotion, motivation, meaning of the task, feedback from the exoskeleton, and fine motion assistance. Duration of a single session, global period of the treatment, and the timing for beginning of robotic treatment are still open questions. There is the need to evaluate and individualize the treatment according to patient's characteristics. Robotic devices for upper and lower limbs open a window to define therapeutic modalities as possible beneficial drug, able to boost biological, neurobiological, and epigenetic changes in central nervous system. We need to implement large and innovative research programs to answer these issues in the near future.
Collapse
Affiliation(s)
- Franco Molteni
- Valduce Hospital "Villa Beretta" Rehabilitation Center, Costa Masnaga, Italy(∗)
| | - Giulio Gasperini
- Valduce Hospital "Villa Beretta" Rehabilitation Center, Costa Masnaga, Italy(†)
| | | | - Eleonora Guanziroli
- Valduce Hospital "Villa Beretta" Rehabilitation Center, Via N. Sauro 17, Costa Masnaga, Italy(§).
| |
Collapse
|
28
|
Penaloza CI, Alimardani M, Nishio S. Android Feedback-Based Training Modulates Sensorimotor Rhythms During Motor Imagery. IEEE Trans Neural Syst Rehabil Eng 2019. [PMID: 29522410 DOI: 10.1109/tnsre.2018.2792481] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EEG-based brain computer interface (BCI) systems have demonstrated potential to assist patients with devastating motor paralysis conditions. However, there is great interest in shifting the BCI trend toward applications aimed at healthy users. Although BCI operation depends on technological factors (i.e., EEG pattern classification algorithm) and human factors (i.e., how well the person can generate good quality EEG patterns), it is the latter that is least investigated. In order to control a motor imagery-based BCI, users need to learn to modulate their sensorimotor brain rhythms by practicing motor imagery using a classical training protocol with an abstract visual feedback. In this paper, we investigate a different BCI training protocol using a human-like android robot (Geminoid HI-2) to provide realistic visual feedback. The proposed training protocol addresses deficiencies of the classical approach and takes the advantage of body-abled user capabilities. Experimental results suggest that android feedback-based BCI training improves the modulation of sensorimotor rhythms during motor imagery task. Moreover, we discuss how the influence of body ownership transfer illusion toward the android might have an effect on the modulation of event-related desynchronization/synchronization activity.
Collapse
|
29
|
Mioli A, D'Alonzo M, Pellegrino G, Formica D, Di Pino G. Intermittent Theta Burst Stimulation Over Ventral Premotor Cortex or Inferior Parietal Lobule Does Not Enhance the Rubber Hand Illusion. Front Neurosci 2018; 12:870. [PMID: 30532689 PMCID: PMC6265367 DOI: 10.3389/fnins.2018.00870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
An enhanced sense of prosthesis ownership may be the key for higher amputees’ quality of life. In this study in 28 healthy subjects, neuronavigated intermittent Theta Burst Stimulation (iTBS) delivered over the right ventral premotor cortex or inferior parietal lobule has been tested, compared to sham stimulation, to enhance embodiment in the rubber hand illusion paradigm. Neuromodulation of both areas did not result in an enhancement of embodiment, as assessed by the results collected from a self-evaluation questionnaire for the extent of self-attribution of the rubber hand and proprioceptive drift. In all cases, the difference between synchronous and asynchronous stroking confirms the successful induction of the illusion. It may be speculated that the low consistency of iTBS over brain regions other than primary motor cortex may account for the absence of effect, suggesting to test other neuromodulating techniques, acting on cortical networks different from the ones sensitive to iTBS to enhance artificial hand embodiment.
Collapse
Affiliation(s)
- Alessandro Mioli
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, Università Campus Bio-Medico, Rome, Italy
| | - Marco D'Alonzo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, Università Campus Bio-Medico, Rome, Italy
| | | | - Domenico Formica
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, Università Campus Bio-Medico, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, Università Campus Bio-Medico, Rome, Italy
| |
Collapse
|
30
|
Bashford L, Wu J, Sarma D, Collins K, Rao RPN, Ojemann JG, Mehring C. Concurrent control of a brain-computer interface and natural overt movements. J Neural Eng 2018; 15:066021. [PMID: 30303130 DOI: 10.1088/1741-2552/aadf3d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A primary control signal in brain-computer interfaces (BCIs) have been cortical signals related to movement. However, in cases where natural motor function remains, BCI control signals may interfere with other possibly simultaneous activity for useful ongoing movement. We sought to determine if the brain could learn to control both a BCI and concurrent overt movement execution in such cases. APPROACH We designed experiments where BCI and overt movements must be used concurrently and in coordination to achieve a 2D centre out control. Power in the 70-90 Hz band of human electrocorticography (ECoG) signals, was used to generate BCI control commands for vertical movement of the cursor. These signals were deliberately recorded from the same human cortical site that produced the strongest movement related activity associated with the concurrent overt finger movements required for the horizontal movement of the cursor. MAIN RESULTS We demonstrate that three subjects were able to perform the concurrent BCI task, controlling BCI and natural movements simultaneously and to a large extent independently. We conclude that the brain is capable of dissociating the original control signal dependency on movement, producing specific BCI control signals in the presence of motor related responses from the ongoing overt behaviour with which the BCI signal was initially correlated. SIGNIFICANCE We demonstrate a novel human brain-computer interface (BCI) which can be used to control movement concurrently and in coordination with movements of the natural limbs. This demonstrates the dissociation of cortical activity from the behaviour with which it was originally associated despite the ongoing behaviour and shows the feasibility of achieving simultaneous BCI control of devices with natural movements.
Collapse
Affiliation(s)
- L Bashford
- Department of Bioengineering, Imperial College London, London, United Kingdom. Bernstein Center and Brain-Links Brain-Tools, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Mercadillo RE, Alcauter S, Barrios FA. Effects of primatological training on anthropomorphic valuations of emotions. IBRO Rep 2018; 5:54-59. [PMID: 30211338 PMCID: PMC6134357 DOI: 10.1016/j.ibror.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022] Open
Abstract
Anthropomorphism is a consequence of similarities between human and non-human animals. Primatologists use sensory and motor processes to infer primate emotional expressions. Training and experience influence anthropomorphic attributions made by primatologists. Experience is accompanied by functional plasticity of sensory and motor cortices.
Anthropomorphism implies the attribution of human like emotions and cognition to non-human animals. This tendency may be conditioned by similar morphologies between mammals and is particularly important in primatology. Some neurocognitive findings suggest that prefrontal brain activity associated to conceptual learning influences anthropomorphic judgments, nevertheless, individual differences are also presented indicating that training on primate behavior may influence anthropomorphism. We identified and interpreted brain activity registered by functional magnetic resonance imaging while seven trained primatologists (39.42 ± 10.86 yr.) inferred emotions in human primates, non-human primates and non-primate animals; comparisons were made with seven matched scholars with no primatological training (38.71 ± 9.34 yr.). Primatologists manifested cerebellar, occipital and frontal activity related to sensory and motor processes when valuating humans and non-human primates, but not for other animals. So, primatological training and experience may elicit brain plasticity processes allowing inner motor and sensory models through frontal and cerebellar interactions.
Collapse
Affiliation(s)
- Roberto E Mercadillo
- Area of Neurosciences, Biology of Reproduction Department, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma 1ra Secc, 09340, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Sarael Alcauter
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Blvd. Juriquilla 3001, Querétaro, 76230 Querétaro, Mexico
| | - Fernando A Barrios
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Blvd. Juriquilla 3001, Querétaro, 76230 Querétaro, Mexico
| |
Collapse
|
32
|
Convento S, Romano D, Maravita A, Bolognini N. Roles of the right temporo‐parietal and premotor cortices in self‐location and body ownership. Eur J Neurosci 2018; 47:1289-1302. [DOI: 10.1111/ejn.13937] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Silvia Convento
- Psychology Department and NeuroMiMilan Center for NeuroscienceUniversity of Milano‐Bicocca Milan Italy
- Neuroscience DepartmentBaylor College of Medicine Houston Texas
| | - Daniele Romano
- Psychology Department and NeuroMiMilan Center for NeuroscienceUniversity of Milano‐Bicocca Milan Italy
| | - Angelo Maravita
- Psychology Department and NeuroMiMilan Center for NeuroscienceUniversity of Milano‐Bicocca Milan Italy
| | - Nadia Bolognini
- Psychology Department and NeuroMiMilan Center for NeuroscienceUniversity of Milano‐Bicocca Milan Italy
- Laboratory of NeuropsychologyIRCSS Italian Auxological Institute Milan Italy
| |
Collapse
|
33
|
|
34
|
Vaughan-Graham J, Patterson K, Zabjek K, Cott CA. Conceptualizing movement by expert Bobath instructors in neurological rehabilitation. J Eval Clin Pract 2017; 23:1153-1163. [PMID: 28425221 DOI: 10.1111/jep.12742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
RATIONALE, AIMS, AND OBJECTIVES Movement, a core aspect of physiotherapy practice, and integral to the clinical reasoning process has undergone limited theoretical development. Instead, research has focused on intervention effectiveness embedded within the positivist paradigm. The purpose of this study was to explore how expert neurorehabilitation therapists conceptualize movement as part of their clinical reasoning. METHOD A qualitative interpretive descriptive approach consisting of stimulated recall using video-recorded treatment sessions and in-depth interviews was used. Theoretical sampling was used to recruit members of the International Bobath Instructors Training Association (IBITA) who are recognized experts in neurorehabilitation. Interview transcripts were transcribed verbatim. Data analysis was progressive, iterative, and inductive. RESULTS Twenty-two IBITA instructors from 7 different countries volunteered to participate. They ranged in clinical experience from 12 to 40 years and instructor experience from 1 to 35 years. The conceptualization of movement by the IBITA instructors involves the following elements: (1) movement comprises the whole person and the whole body, not just individual body segments; (2) active alignment of body segments is integral to movement performance; and (3) efficient movement requires the relative integration of postural control/stability and selective movement/mobility. CONCLUSIONS The IBITA instructors conceptualize movement from a person-centred perspective. The integration of postural control and selective movement, with alignment and variability as key components, forms the foundation of their understanding of movement. Further investigation into the role of postural control in movement recovery post central nervous system lesion is required. Likewise, the dimensions of movement critical to the conceptualization of movement are not well understood from the perspective of the physiotherapist or persons with neurological impairments.
Collapse
Affiliation(s)
| | - Kara Patterson
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Karl Zabjek
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Cheryl A Cott
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Lotti F, Ranieri F, Vadalà G, Zollo L, Di Pino G. Invasive Intraneural Interfaces: Foreign Body Reaction Issues. Front Neurosci 2017; 11:497. [PMID: 28932181 PMCID: PMC5592213 DOI: 10.3389/fnins.2017.00497] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Intraneural interfaces are stimulation/registration devices designed to couple the peripheral nervous system (PNS) with the environment. Over the last years, their use has increased in a wide range of applications, such as the control of a new generation of neural-interfaced prostheses. At present, the success of this technology is limited by an electrical impedance increase, due to an inflammatory response called foreign body reaction (FBR), which leads to the formation of a fibrotic tissue around the interface, eventually causing an inefficient transduction of the electrical signal. Based on recent developments in biomaterials and inflammatory/fibrotic pathologies, we explore and select the biological solutions that might be adopted in the neural interfaces FBR context: modifications of the interface surface, such as organic and synthetic coatings; the use of specific drugs or molecular biology tools to target the microenvironment around the interface; the development of bio-engineered-scaffold to reduce immune response and promote interface-tissue integration. By linking what we believe are the major crucial steps of the FBR process with related solutions, we point out the main issues that future research has to focus on: biocompatibility without losing signal conduction properties, good reproducible in vitro/in vivo models, drugs exhaustion and undesired side effects. The underlined pros and cons of proposed solutions show clearly the importance of a better understanding of all the molecular and cellular pathways involved and the need of a multi-target action based on a bio-engineered combination approach.
Collapse
Affiliation(s)
- Fiorenza Lotti
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-MedicoRome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-MedicoRome, Italy
| | - Federico Ranieri
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-MedicoRome, Italy.,Fondazione Alberto Sordi-Research Institute for AgingRome, Italy.,Research Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-MedicoRome, Italy
| | - Gianluca Vadalà
- Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-MedicoRome, Italy
| | - Loredana Zollo
- Research Unit of Biomedical Robotics and Biomicrosystems, Università Campus Bio-MedicoRome, Italy
| | - Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-MedicoRome, Italy.,Research Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-MedicoRome, Italy
| |
Collapse
|
36
|
Lebedev MA, Nicolelis MAL. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiol Rev 2017; 97:767-837. [PMID: 28275048 DOI: 10.1152/physrev.00027.2016] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain-machine interfaces (BMIs) combine methods, approaches, and concepts derived from neurophysiology, computer science, and engineering in an effort to establish real-time bidirectional links between living brains and artificial actuators. Although theoretical propositions and some proof of concept experiments on directly linking the brains with machines date back to the early 1960s, BMI research only took off in earnest at the end of the 1990s, when this approach became intimately linked to new neurophysiological methods for sampling large-scale brain activity. The classic goals of BMIs are 1) to unveil and utilize principles of operation and plastic properties of the distributed and dynamic circuits of the brain and 2) to create new therapies to restore mobility and sensations to severely disabled patients. Over the past decade, a wide range of BMI applications have emerged, which considerably expanded these original goals. BMI studies have shown neural control over the movements of robotic and virtual actuators that enact both upper and lower limb functions. Furthermore, BMIs have also incorporated ways to deliver sensory feedback, generated from external actuators, back to the brain. BMI research has been at the forefront of many neurophysiological discoveries, including the demonstration that, through continuous use, artificial tools can be assimilated by the primate brain's body schema. Work on BMIs has also led to the introduction of novel neurorehabilitation strategies. As a result of these efforts, long-term continuous BMI use has been recently implicated with the induction of partial neurological recovery in spinal cord injury patients.
Collapse
|
37
|
Assenza G, Campana C, Formica D, Schena E, Taffoni F, Di Pino G, Di Lazzaro V. Efficacy of cathodal transcranial direct current stimulation in drug-resistant epilepsy: a proof of principle. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:530-3. [PMID: 25570013 DOI: 10.1109/embc.2014.6943645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been proved that Transcranial DCS (tDCS) can modulate cortical excitability, enhancing or decreasing, respectively by anodal or cathodal polarity. The short-term and lasting alterations induced by tDCS are strictly related to the charge density, duration of stimulation and the depth of neuron below the skull. Epilepsy represents a pathophysiological model of unbalanced relation between cortical excitation and inhibition. In this line, tDCS can be exploited to counterbalance the neuronal hyper-excitation through electric neural modulation. This paper aims at providing the efficacy of cathodal tDCS in reducing seizures' frequency in drug-resistant focal epilepsy. The study was single blind and sham-controlled with an observation period of one month during which the patients or the caregivers provided a detailed seizures' calendar (frequency as n°/week; basal, post sham and post tDCS). Patients received sham or real tDCS treatment on the 8th and 22th days. Two patients affected by focal resistant epilepsy were enrolled. They both underwent a consistent reduction of the seizures'frequency: about 70 % for Patient 1 and about 50% for Patient 2. This study represents the proof that cathodal tDCS may be efficient in reducing seizures'frequency in focal resistant epilepsy.
Collapse
|
38
|
Bashford L, Mehring C. Ownership and Agency of an Independent Supernumerary Hand Induced by an Imitation Brain-Computer Interface. PLoS One 2016; 11:e0156591. [PMID: 27303808 PMCID: PMC4909224 DOI: 10.1371/journal.pone.0156591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects' real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands.
Collapse
Affiliation(s)
- Luke Bashford
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Bernstein Centre Freiburg, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Carsten Mehring
- Bernstein Centre Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Abdi E, Burdet E, Bouri M, Himidan S, Bleuler H. In a demanding task, three-handed manipulation is preferred to two-handed manipulation. Sci Rep 2016; 6:21758. [PMID: 26912293 PMCID: PMC4766403 DOI: 10.1038/srep21758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/28/2016] [Indexed: 11/08/2022] Open
Abstract
Equipped with a third hand under their direct control, surgeons may be able to perform certain surgical interventions alone; this would reduce the need for a human assistant and related coordination difficulties. However, does human performance improve with three hands compared to two hands? To evaluate this possibility, we carried out a behavioural study on the performance of naive adults catching objects with three virtual hands controlled by their two hands and right foot. The subjects could successfully control the virtual hands in a few trials. With this control strategy, the workspace of the hands was inversely correlated with the task velocity. The comparison of performance between the three and two hands control revealed no significant difference of success in catching falling objects and in average effort during the tasks. Subjects preferred the three handed control strategy, found it easier, with less physical and mental burden. Although the coordination of the foot with the natural hands increased trial after trial, about two minutes of practice was not sufficient to develop a sense of ownership towards the third arm.
Collapse
Affiliation(s)
- Elahe Abdi
- Robotic Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - Mohamed Bouri
- Robotic Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sharifa Himidan
- Pediatric General and Thoracic Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hannes Bleuler
- Robotic Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
40
|
Vernon D, Beetz M, Sandini G. Prospection in Cognition: The Case for Joint Episodic-Procedural Memory in Cognitive Robotics. Front Robot AI 2015. [DOI: 10.3389/frobt.2015.00019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Zippo AG, Romanelli P, Torres Martinez NR, Caramenti GC, Benabid AL, Biella GEM. A novel wireless recording and stimulating multichannel epicortical grid for supplementing or enhancing the sensory-motor functions in monkey (Macaca fascicularis). Front Syst Neurosci 2015; 9:73. [PMID: 26029061 PMCID: PMC4429233 DOI: 10.3389/fnsys.2015.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/22/2015] [Indexed: 02/03/2023] Open
Abstract
Artificial brain-machine interfaces (BMIs) represent a prospective step forward supporting or replacing faulty brain functions. So far, several obstacles, such as the energy supply, the portability and the biocompatibility, have been limiting their effective translation in advanced experimental or clinical applications. In this work, a novel 16 channel chronically implantable epicortical grid has been proposed. It provides wireless transmission of cortical recordings and stimulations, with induction current recharge. The grid has been chronically implanted in a non-human primate (Macaca fascicularis) and placed over the somato-motor cortex such that 13 electrodes recorded or stimulated the primary motor cortex and three the primary somatosensory cortex, in the deeply anaesthetized animal. Cortical sensory and motor recordings and stimulations have been performed within 3 months from the implant. In detail, by delivering motor cortex epicortical single spot stimulations (1-8 V, 1-10 Hz, 500 ms, biphasic waves), we analyzed the motor topographic precision, evidenced by tunable finger or arm movements of the anesthetized animal. The responses to light mechanical peripheral sensory stimuli (blocks of 100 stimuli, each single stimulus being <1 ms and interblock intervals of 1.5-4 s) have been analyzed. We found 150-250 ms delayed cortical responses from fast finger touches, often spread to nearby motor stations. We also evaluated the grid electrical stimulus interference with somatotopic natural tactile sensory processing showing no suppressing interference with sensory stimulus detection. In conclusion, we propose a chronically implantable epicortical grid which can accommodate most of current technological restrictions, representing an acceptable candidate for BMI experimental and clinical uses.
Collapse
Affiliation(s)
- Antonio G Zippo
- Institute of Molecular Bioimaging and Physiology, National Research Council Segrate, Italy
| | | | - Napoleon R Torres Martinez
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Laboratoire d' Électronique des Technologies de l'Information, CLINATEC Grenoble, France
| | | | - Alim L Benabid
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Laboratoire d' Électronique des Technologies de l'Information, CLINATEC Grenoble, France
| | - Gabriele E M Biella
- Institute of Molecular Bioimaging and Physiology, National Research Council Segrate, Italy
| |
Collapse
|
42
|
Dynamic expansion of alert responses to incoming painful stimuli following tool use. Neuropsychologia 2015; 70:486-94. [PMID: 25595342 DOI: 10.1016/j.neuropsychologia.2015.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 11/20/2022]
|
43
|
Brain Activity during Lower-Limb Movement with Manual Facilitation: An fMRI Study. Neurol Res Int 2015; 2015:701452. [PMID: 25722890 PMCID: PMC4333285 DOI: 10.1155/2015/701452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 12/17/2014] [Indexed: 11/20/2022] Open
Abstract
Brain activity knowledge of healthy subjects is an important reference in the context of motor control and reeducation. While the normal brain behavior for upper-limb motor control has been widely explored, the same is not true for lower-limb control. Also the effects that different stimuli can evoke on movement and respective brain activity are important in the context of motor potentialization and reeducation. For a better understanding of these processes, a functional magnetic resonance imaging (fMRI) was used to collect data of 10 healthy subjects performing lower-limb multijoint functional movement under three stimuli: verbal stimulus, manual facilitation, and verbal + manual facilitation. Results showed that, with verbal stimulus, both lower limbs elicit bilateral cortical brain activation; with manual facilitation, only the left lower limb (LLL) elicits bilateral activation while the right lower limb (RLL) elicits contralateral activation; verbal + manual facilitation elicits bilateral activation for the LLL and contralateral activation for the RLL. Manual facilitation also elicits subcortical activation in white matter, the thalamus, pons, and cerebellum. Deactivations were also found for lower-limb movement. Manual facilitation is stimulus capable of generating brain activity in healthy subjects. Stimuli need to be specific for bilateral activation and regarding which brain areas we aim to activate.
Collapse
|
44
|
Romano D, Caffa E, Hernandez-Arieta A, Brugger P, Maravita A. The robot hand illusion: inducing proprioceptive drift through visuo-motor congruency. Neuropsychologia 2014; 70:414-20. [PMID: 25446964 DOI: 10.1016/j.neuropsychologia.2014.10.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/02/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
The representation of one's own body sets the border of the self, but also shapes the space where we interact with external objects. Under particular conditions, such as in the rubber hand illusion external objects can be incorporated in one's own body representation, following congruent visuo-tactile stroking of one's own and a fake hand. This procedure induces an illusory sense of ownership for the fake hand and a shift of proprioceptive localization of the own hand towards the fake hand. Here we investigated whether pure visuo-motor, instead of visuo-tactile, congruency between one's own hand and a detached myoelectric-controlled robotic hand can induce similar embodiment effects. We found a shift of proprioceptive hand localization toward the robot hand, only following synchronized real hand/robot hand movements. Notably, no modulation was found of the sense of ownership following either synchronous or asynchronous-movement training. Our findings suggest that visuo-motor synchrony can drive the localization of one's own body parts in space, even when somatosensory input is kept constant and the experience of body ownership is maintained.
Collapse
Affiliation(s)
- Daniele Romano
- Department of Psychology, University of Milan-Bicocca, piazza dell׳Ateneo Nuovo 1, 20126 Milano, Italy
| | - Elisa Caffa
- Department of Psychology, University of Milan-Bicocca, piazza dell׳Ateneo Nuovo 1, 20126 Milano, Italy
| | | | - Peter Brugger
- Department of Neurology, University Hospital Zurich, Switzerland
| | - Angelo Maravita
- Department of Psychology, University of Milan-Bicocca, piazza dell׳Ateneo Nuovo 1, 20126 Milano, Italy.
| |
Collapse
|