1
|
Batten SR, Hartle AE, Barbosa LS, Hadj-Amar B, Bang D, Melville N, Twomey T, White JP, Torres A, Celaya X, McClure SM, Brewer GA, Lohrenz T, Kishida KT, Bina RW, Witcher MR, Vannucci M, Casas B, Chiu P, Montague PR, Howe WM. Emotional words evoke region- and valence-specific patterns of concurrent neuromodulator release in human thalamus and cortex. Cell Rep 2025; 44:115162. [PMID: 39786997 DOI: 10.1016/j.celrep.2024.115162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Words represent a uniquely human information channel-humans use words to express thoughts and feelings and to assign emotional valence to experience. Work from model organisms suggests that valence assignments are carried out in part by the neuromodulators dopamine, serotonin, and norepinephrine. Here, we ask whether valence signaling by these neuromodulators extends to word semantics in humans by measuring sub-second neuromodulator dynamics in the thalamus (N = 13) and anterior cingulate cortex (N = 6) of individuals evaluating positive, negative, and neutrally valenced words. Our combined results suggest that valenced words modulate neuromodulator release in both the thalamus and cortex, but with region- and valence-specific response patterns, as well as hemispheric dependence for dopamine release in the anterior cingulate. Overall, these experiments provide evidence that neuromodulator-dependent valence signaling extends to word semantics in humans, but not in a simple one-valence-per-transmitter fashion.
Collapse
Affiliation(s)
- Seth R Batten
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA.
| | - Alec E Hartle
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Leonardo S Barbosa
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | | | - Dan Bang
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark; Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK; Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Natalie Melville
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Tom Twomey
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Jason P White
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Alexis Torres
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Xavier Celaya
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - Terry Lohrenz
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Kenneth T Kishida
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Robert W Bina
- Department of Neurosurgery, Banner University Medical Center, Phoenix, AZ 85281, USA
| | - Mark R Witcher
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Brooks Casas
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Pearl Chiu
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Pendleton R Montague
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK; Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA.
| | - William M Howe
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
2
|
Pérez IR, Avalos-Fuentes JA, Paz-Bermúdez F, Cortes H, Medina GT, Jijón-Lorenzo R, Florán B. D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats. J Neurosci Res 2025; 103:e70014. [PMID: 39737598 DOI: 10.1002/jnr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left. These differences are linked to a higher receptor sensitivity and potentially a better coupling of Golf proteins. When we assessed motor behavior through intranigral injection of the D1 receptor agonist SKF 38393 in the left or right substantia nigra, we found higher contralateral circling when injected on the right side. Thus, differences in motor activity correlate with neurochemical data, indicating that D1 receptor signaling plays a significant role in motor asymmetry.
Collapse
Affiliation(s)
- Ihosvany Rodríguez Pérez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Hernan Cortes
- Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico, Mexico
| | - Gisela Tovar Medina
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Rafael Jijón-Lorenzo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
3
|
Peled-Avron L, Daood M, Ben-Hayun R, Nevat M, Aharon-Peretz J, Admon R, Tomer R. Methylphenidate reduces spatial attentional bias by modulating fronto-striatal connectivity. Cereb Cortex 2024; 34:bhae379. [PMID: 39331032 DOI: 10.1093/cercor/bhae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Spatial attention bias reflects tendency to direct attention to specific side in space. This bias reflects asymmetric dopamine (DA) signaling in the striatum. Administration of DA agonists reduces spatial bias, yet the underlying mechanism is not yet clear. To address this, the current study tested whether methylphenidate (MPH; an indirect DA agonist) reduces orienting bias by modulating fronto-striatal connectivity. 54 adults with consistent bias completed the greyscales task which detects subtle biases during fMRI scanning under MPH (20 mg) or placebo, in a double-blind design. As hypothesized, MPH reduced bias by increasing orienting towards non-preferred hemispace, regardless of whether the initial bias was left or right. MPH-induced increases were found in activation of the medial superior frontal gyrus (mSFG: F[1;53] = 4.632, cluster-defining threshold of P < 0.05, minimal cluster size = 0, p_FWE = 0.036, η2 = 0.08) and its functional connectivity with the caudate (left caudate: F[1;53] = 12.664, p_FWE = 0.001, η2 = 0.192; right caudate: F[1;53] = 11.069, p_FWE = 0.002, η2 = 0.172), when orienting towards the non-preferred hemispace. MPH also reduced mSFG activation and fronto-striatal connectivity for the preferred hemispace. Results suggest modulation of frontal excitability due to increased caudate-mSFG functional connectivity. This mechanism may underlie the positive effect of dopaminergic agonists on abnormal patterns of directing attention in space.
Collapse
Affiliation(s)
- Leehe Peled-Avron
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
- Department of Psychology & Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002 Ramat-Gan, Israel
| | - Maryana Daood
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
| | - Rachel Ben-Hayun
- Stroke and Cognition Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa, 3200003 Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel Haifa, 3200003
| | - Michael Nevat
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
| | - Judith Aharon-Peretz
- Stroke and Cognition Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa, 3200003 Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel Haifa, 3200003
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
| | - Rachel Tomer
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
| |
Collapse
|
4
|
Yang KC, Yang BH, Liu MN, Liou YJ, Chou YH. Cognitive impairment in schizophrenia is associated with prefrontal-striatal functional hypoconnectivity and striatal dopaminergic abnormalities. J Psychopharmacol 2024; 38:515-525. [PMID: 38853592 DOI: 10.1177/02698811241257877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND A better understanding of the mechanisms underlying cognitive impairment in schizophrenia is imperative, as it causes poor functional outcomes and a lack of effective treatments. AIMS This study aimed to investigate the relationships of two proposed main pathophysiology of schizophrenia, altered prefrontal-striatal connectivity and the dopamine system, with cognitive impairment and their interactions. METHODS Thirty-three patients with schizophrenia and 27 healthy controls (HCs) who are right-handed and matched for age and sex were recruited. We evaluated their cognition, functional connectivity (FC) between the dorsolateral prefrontal cortex (DLPFC)/middle frontal gyrus (MiFG) and striatum, and the availability of striatal dopamine transporter (DAT) using a cognitive battery investigating attention, memory, and executive function, resting-state functional magnetic resonance imaging with group independent component analysis and single-photon emission computed tomography with 99mTc-TRODAT. RESULTS Patients with schizophrenia exhibited poorer cognitive performance, reduced FC between DLPFC/MiFG and the caudate nucleus (CN) or putamen, decreased DAT availability in the left CN, and decreased right-left DAT asymmetry in the CN compared to HCs. In patients with schizophrenia, altered imaging markers are associated with cognitive impairments, especially the relationship between DLPFC/MiFG-putamen FC and attention and between DAT asymmetry in the CN and executive function. CONCLUSIONS This study is the first to demonstrate how prefrontal-striatal hypoconnectivity and altered striatal DAT markers are associated with different domains of cognitive impairment in schizophrenia. More research is needed to evaluate their complex relationships and potential therapeutic implications.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
- The Human Brain Research Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Rohner VL, Lamothe-Molina PJ, Patriarchi T. Engineering, applications, and future perspectives of GPCR-based genetically encoded fluorescent indicators for neuromodulators. J Neurochem 2024; 168:163-184. [PMID: 38288673 DOI: 10.1111/jnc.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
This review explores the evolving landscape of G-protein-coupled receptor (GPCR)-based genetically encoded fluorescent indicators (GEFIs), with a focus on their development, structural components, engineering strategies, and applications. We highlight the unique features of this indicator class, emphasizing the importance of both the sensing domain (GPCR structure and activation mechanism) and the reporting domain (circularly permuted fluorescent protein (cpFP) structure and fluorescence modulation). Further, we discuss indicator engineering approaches, including the selection of suitable cpFPs and expression systems. Additionally, we showcase the diversity and flexibility of their application by presenting a summary of studies where such indicators were used. Along with all the advantages, we also focus on the current limitations as well as common misconceptions that arise when using these indicators. Finally, we discuss future directions in indicator engineering, including strategies for screening with increased throughput, optimization of the ligand-binding properties, structural insights, and spectral diversity.
Collapse
Affiliation(s)
- Valentin Lu Rohner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Srivastav S, Cui X, Varela RB, Kesby JP, Eyles D. Increasing dopamine synthesis in nigrostriatal circuits increases phasic dopamine release and alters dorsal striatal connectivity: implications for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:69. [PMID: 37798312 PMCID: PMC10556015 DOI: 10.1038/s41537-023-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
One of the most robust neurochemical abnormalities reported in patients with schizophrenia is an increase in dopamine (DA) synthesis and release, restricted to the dorsal striatum (DS). This hyper functionality is strongly associated with psychotic symptoms and progresses in those who later transition to schizophrenia. To understand the implications of this progressive neurobiology on brain function, we have developed a model in rats which we refer to as EDiPs (Enhanced Dopamine in Prodromal schizophrenia). The EDiPs model features a virally mediated increase in dorsal striatal (DS) DA synthesis capacity across puberty and into adulthood. This protocol leads to progressive changes in behaviour and neurochemistry. Our aim in this study was to explore if increased DA synthesis capacity alters the physiology of DA release and DS connectivity. Using fast scan cyclic voltammetry to assess DA release we show that evoked/phasic DA release is increased in the DS of EDiPs rats, whereas tonic/background levels of DA remain unaffected. Using quantitative immunohistochemistry methods to quantify DS synaptic architecture we show a presynaptic marker for DA release sites (Bassoon) was elevated within TH axons specifically within the DS, consistent with the increased phasic DA release in this region. Alongside changes in DA systems, we also show increased density of vesicular glutamate transporter 1 (VGluT1) synapses in the EDiPs DS suggesting changes in cortical connectivity. Our data may prove relevant in understanding the long-term implications for DS function in response to the robust and prolonged increases in DA synthesis uptake and release reported in schizophrenia.
Collapse
Affiliation(s)
- Sunil Srivastav
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | | | - James P Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Carter AR, Barrett A. Recent advances in treatment of spatial neglect: networks and neuropsychology. Expert Rev Neurother 2023; 23:587-601. [PMID: 37273197 PMCID: PMC10740348 DOI: 10.1080/14737175.2023.2221788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Spatial neglect remains an underdiagnosed and undertreated consequence of stroke that imposes significant disability. A growing appreciation of brain networks involved in spatial cognition is helping us to develop a mechanistic understanding of different therapies under development. AREAS COVERED This review focuses on neuromodulation of brain networks for the treatment of spatial neglect after stroke, using evidence-based approaches including 1) Cognitive strategies that are more likely to impact frontal lobe executive function networks; 2) Visuomotor adaptation, which may depend on the integrity of parietal and parieto- and subcortical-frontal connections and the presence of a particular subtype of neglect labeled Aiming neglect; 3) Non-invasive brain stimulation that may modulate relative levels of activity of the two hemispheres and depend on corpus callosum connectivity; and 4) Pharmacological modulation that may exert its effect primarily via right-lateralized networks more closely involved in arousal. EXPERT OPINION Despite promising results from individual studies, significant methodological heterogeneity between trials weakened conclusions drawn from meta-analyses. Improved classification of spatial neglect subtypes will benefit research and clinical care. Understanding the brain network mechanisms of different treatments and different types of spatial neglect will make possible a precision medicine treatment approach.
Collapse
Affiliation(s)
- Alex R. Carter
- Department of Neurology, Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - A.M. Barrett
- UMass Chan Medical School and UMass Memorial Healthcare, Worcester, MA, USA
- Central Western MA VA Healthcare System, Worcester, MA, USA
| |
Collapse
|
8
|
Kang JWM, Keay KA, Kendig MD, Corbit LH, Mor D. Serotonin and Dopamine Show Different Response Profiles to Acute Stress in the Nucleus Accumbens and Medial Prefrontal Cortex of Rats with Neuropathic Pain. Neurochem Res 2023; 48:2265-2280. [PMID: 36941432 PMCID: PMC10182167 DOI: 10.1007/s11064-023-03906-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
The ability to adaptively guide behaviour requires the integration of external information with internal motivational factors. Decision-making capabilities can be impaired by acute stress and is often exacerbated by chronic pain. Chronic neuropathic pain patients often present with cognitive dysfunction, including impaired decision-making. The mechanisms underlying these changes are not well understood but may include altered monoaminergic transmission in the brain. In this study we investigated the relationships between dopamine, serotonin, and their metabolites in key brain regions that regulate motivated behaviour and decision-making. The neurochemical profiles of the medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens were analysed using HPLC in rats that received a chronic constriction injury (CCI) of the right sciatic nerve and an acute stress (15-min restraint), prior to an outcome devaluation task. CCI alone significantly decreased dopamine but not serotonin concentrations in the medial prefrontal cortex. By contrast, restraint stress acutely increased dopamine in the medial prefrontal cortex, and the nucleus accumbens; and increased serotonin in the medial prefrontal cortex 2 h later. The sustained dopaminergic and serotonergic responses to acute stress highlight the importance of an animal's ability to mount an effective coping response. In addition, these data suggest that the impact of nerve injury and acute stress on outcome-devaluation occurs independently of dopaminergic and serotonergic transmission in the medial prefrontal cortex, orbital prefrontal cortex and nucleus accumbens of rats.
Collapse
Affiliation(s)
- James W M Kang
- School of Medical Sciences [Neuroscience], The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael D Kendig
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Laura H Corbit
- Department of Psychology, The University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - David Mor
- School of Medical Sciences [Neuroscience], The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
9
|
Ofir‐Geva S, Meilijson I, Frenkel‐Toledo S, Soroker N. Use of multi-perturbation Shapley analysis in lesion studies of functional networks: The case of upper limb paresis. Hum Brain Mapp 2023; 44:1320-1343. [PMID: 36206326 PMCID: PMC9921264 DOI: 10.1002/hbm.26105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding the impact of variation in lesion topography on the expression of functional impairments following stroke is important, as it may pave the way to modeling structure-function relations in statistical terms while pointing to constraints for adaptive remapping and functional recovery. Multi-perturbation Shapley-value analysis (MSA) is a relatively novel game-theoretical approach for multivariate lesion-symptom mapping. In this methodological paper, we provide a comprehensive explanation of MSA. We use synthetic data to assess the method's accuracy and perform parameter optimization. We then demonstrate its application using a cohort of 107 first-event subacute stroke patients, assessed for upper limb (UL) motor impairment (Fugl-Meyer Assessment scale). Under the conditions tested, MSA could correctly detect simulated ground-truth lesion-symptom relationships with a sensitivity of 75% and specificity of ~90%. For real behavioral data, MSA disclosed a strong hemispheric effect in the relative contribution of specific regions-of-interest (ROIs): poststroke UL motor function was mostly contributed by damage to ROIs associated with movement planning (supplementary motor cortex and superior frontal gyrus) following left-hemispheric damage (LHD) and by ROIs associated with movement execution (primary motor and somatosensory cortices and the ventral brainstem) following right-hemispheric damage (RHD). Residual UL motor ability following LHD was found to depend on a wider array of brain structures compared to the residual motor ability of RHD patients. The results demonstrate that MSA can provide a unique insight into the relative importance of different hubs in neural networks, which is difficult to obtain using standard univariate methods.
Collapse
Affiliation(s)
- Shay Ofir‐Geva
- Department of Neurological RehabilitationLoewenstein Rehabilitation Medical CenterRaananaIsrael
- Department of Rehabilitation Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Isaac Meilijson
- School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
| | | | - Nachum Soroker
- Department of Neurological RehabilitationLoewenstein Rehabilitation Medical CenterRaananaIsrael
- Department of Rehabilitation Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
10
|
Zareba MR, Furman W, Binder M. Influence of age and cognitive performance on resting-state functional connectivity of dopaminergic and noradrenergic centers. Brain Res 2022; 1796:148082. [PMID: 36115586 DOI: 10.1016/j.brainres.2022.148082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Aging is associated with structural and functional changes in the brain, with a decline in cognitive functions observed as its inevitable concomitant. The body of literature suggests dopamine and noradrenaline as prominent candidate neuromodulators to mediate these effects; however, knowledge regarding the underlying mechanisms is scarce. To fill this gap, we compared resting-state functional connectivity (FC) patterns of ventral tegmental area (VTA), substantia nigra pars compacta (SNc) and locus coeruleus (LC) in healthy young (20-35 years; N = 37) and older adults (55-80 years; N = 27). Additionally, we sought FC patterns of these structures associated with performance in tasks probing executive, attentional and reward functioning, and we compared the functional coupling of the bilateral SNc. The results showed that individual SNc had stronger coupling with ipsilateral cortical and subcortical areas along with the contralateral cerebellum in the whole sample, and that the strength of connections of this structure with angular gyrus and lateral orbitofrontal cortex predicted visuomotor search abilities. In turn, older age was associated with greater local synchronization within VTA, its lower FC with caudate, mediodorsal thalamus, and SNc, as well as higher FC of both midbrain dopaminergic seeds with red nuclei. LC functional coupling showed no differences between the groups and was not associated with any of the behavioral functions. To the best of our knowledge, this work is the first to report the age-related effects on VTA local synchronization and its connectivity with key recipients of dopaminergic innervation, such as striatum and mediodorsal thalamus.
Collapse
Affiliation(s)
- Michal Rafal Zareba
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland
| | - Wiktoria Furman
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland.
| | - Marek Binder
- Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Calabrese JR, Goetschius LG, Murray L, Kaplan MR, Lopez-Duran N, Mitchell C, Hyde LW, Monk CS. Mapping frontostriatal white matter tracts and their association with reward-related ventral striatum activation in adolescence. Brain Res 2022; 1780:147803. [PMID: 35090884 DOI: 10.1016/j.brainres.2022.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
The ventral striatum (VS) is implicated in reward processing and motivation. Human and non-human primate studies demonstrate that the VS and prefrontal cortex (PFC), which comprise the frontostriatal circuit, interact to influence motivated behavior. However, there is a lack of research that precisely maps and quantifies VS-PFC white matter tracts. Moreover, no studies have linked frontostriatal white matter to VS activation. Using a multimodal neuroimaging approach with diffusion MRI (dMRI) and functional MRI (fMRI), the present study had two objectives: 1) to chart white matter tracts between the VS and specific PFC structures and 2) assess the association between the degree of VS-PFC white matter tract connectivity and VS activation in 187 adolescents. White matter connectivity was assessed with probabilistic tractography and functional activation was examined with two fMRI tasks (one task with social reward and another task using monetary reward). We found widespread but variable white matter connectivity between the VS and areas of the PFC, with the anterior insula and subgenual cingulate cortex demonstrating the greatest degree of connectivity with the VS. VS-PFC structural connectivity was related to functional activation in the VS though activation depended on the specific PFC region and reward task.
Collapse
Affiliation(s)
| | | | - Laura Murray
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Megan R Kaplan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | | | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Population Studies Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System. Biomedicines 2022; 10:biomedicines10020326. [PMID: 35203536 PMCID: PMC8869292 DOI: 10.3390/biomedicines10020326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
In emotional processing, dopamine (DA) plays an essential role, and its deterioration involves important consequences. Under physiological conditions, dopamine exhibits brain asymmetry and coexists with various neuropeptides that can coordinate the processing of brain functions. Brain asymmetry can extend into a broader concept of asymmetric neurovisceral integration, including behavior. The study of the activity of neuropeptide regulatory enzymes (neuropeptidases, NPs) is illustrative. We have observed that the left and right brain areas interact intra- and inter-hemispherically, as well as with peripheral tissues or with physiological parameters such as blood pressure or with behaviors such as turning preference. To obtain data that reflect this integrative behavior, we simultaneously analyzed the impact of left or right brain DA depletion on the activity of various NPs in corticolimbic regions of the left and right hemispheres, such as the medial prefrontal cortex, amygdala and hippocampus, as well as on the plasma activity of the same aminopeptidase activities (APs) and on systolic blood pressure (SBP). Intra- and inter-hemispheric interactions as well as the interactions of NPs from the left or right hemispheres were analyzed with the same plasma APs and the SBP obtained from sham and from left or right lesioned rats. The results demonstrate a complex profile depending on the hemisphere considered. They definitively confirm an asymmetric neurovisceral integration and reveal a higher level of inter-hemispheric corticolimbic interactions including with SBP after left dopamine depletion.
Collapse
|
13
|
Schöne M, Seidenbecher S, Kaufmann J, Antonucci LA, Frodl T, Koutsouleris N, Schiltz K, Bogerts B. Appetitive aggression is associated with lateralized activation in nucleus accumbens. Psychiatry Res Neuroimaging 2022; 319:111425. [PMID: 34891023 DOI: 10.1016/j.pscychresns.2021.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 12/01/2022]
Abstract
Aggression can have a hedonistic aspect in predisposed individuals labeled as appetitive aggression. The present study investigates the neurobiological correlates of this appetitive type of aggression in non-clinical samples from community. Applying functional magnet resonance imaging (fMRI), we tested whether 20 martial artists compared to 26 controls had a higher activation in the nucleus accumbens (NAcc), a central part of the dopaminergic, mesolimbic reward system. Subjects had to watch violent vs. neutral pictures representing appetitive aggression. The affinity towards hedonistic violence was assessed by the Appetitive and Facilitative Aggression Scale (AFAS). Furthermore, the subjects rated all the pictures with regard to how pleasant and violent they were. The martial artists reported a higher AFAS-score and a more positive perception of violent pictures. On the neural level, across all subjects, there was a significant positive correlation between the AFAS-score and the activation in the left NAcc and an inverse association with the activation of the right NAcc when watching violent compared to neutral pictures. This lateralization effect indicates a different processing of hedonistic aspects of aggression in the two hemispheres.
Collapse
Affiliation(s)
- Maria Schöne
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Salus Institute, Salus gGmbH, Magdeburg, Germany.
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Salus Institute, Salus gGmbH, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Linda Antonella Antonucci
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Institute of Neuroscience, Dublin, Ireland; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatic, RWTH-University, Aachen, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Department of Forensic Psychiatry, Mental Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Salus Institute, Salus gGmbH, Magdeburg, Germany
| |
Collapse
|
14
|
Functional Connectivity of Nucleus Accumbens Is Associated with Lifelong Premature Ejaculation in Male Adults : A Resting-state fMRI Study. Clin Neuroradiol 2021; 32:655-663. [PMID: 34714363 DOI: 10.1007/s00062-021-01105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Ejaculation represents a crucial component of sexual behavior in men, which is involved in reward functions of certain brain areas including the nucleus accumbens (NAcc). Lifelong premature ejaculation (PE) is one of the most prevalent sexual dysfunctions in men. It is suggested to be related to abnormal brain function. This study aimed to explore changes of the functional connectivity patterns of NAcc and possible correlations of the neuroimaging abnormalities with clinical features in lifelong PE patients. METHODS The sample consisted with 42 lifelong PE patients and 30 healthy controls. All participants underwent functional magnetic resonance imaging scans and clinical symptoms. The functional connectivity (FC) approach was applied to investigate differences of NAcc-seed intrinsic connectivity between two groups and correlation analysis was used to access possible relationships between the imaging findings and clinical features, such as premature ejaculation diagnostic tool (PEDT) or intravaginal ejaculatory latency time (IELT). RESULTS Results showed that lifelong PE patients had decreased FC between the NAcc and thalamus, superior temporal pole, superior temporal cortex (STC), inferior frontal gyrus (IFG), orbitofrontal cortex, caudate and putamen. A significantly negative correlation between the PEDT score and NAcc-STC connectivity (r = -0.46) was found in lifelong PE patients, while IELT score positively correlated with the NAcc-IFG connectivity (r = 0.48) and NAcc-thalamus connectivity (r = 0.46). CONCLUSION The findings may facilitate a more sophisticated understanding of neural mechanisms of lifelong PE, particularly associated with the NAcc-related intrinsic connectivity during the resting state.
Collapse
|
15
|
Lubben N, Ensink E, Coetzee GA, Labrie V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 2021; 3:fcab211. [PMID: 34557668 PMCID: PMC8454206 DOI: 10.1093/braincomms/fcab211] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
The lateralization of the human brain may provide clues into the pathogenesis and progression of neurodegenerative diseases. Though differing in their presentation and underlying pathologies, neurodegenerative diseases are all devastating and share an intriguing theme of asymmetrical pathology and clinical symptoms. Parkinson’s disease, with its distinctive onset of motor symptoms on one side of the body, stands out in this regard, but a review of the literature reveals asymmetries in several other neurodegenerative diseases. Here, we review the lateralization of the structure and function of the healthy human brain and the common genetic and epigenetic patterns contributing to the development of asymmetry in health and disease. We specifically examine the role of asymmetry in Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, and interrogate whether these imbalances may reveal meaningful clues about the origins of these diseases. We also propose several hypotheses for how lateralization may contribute to the distinctive and enigmatic features of asymmetry in neurodegenerative diseases, suggesting a role for asymmetry in the choroid plexus, neurochemistry, protein distribution, brain connectivity and the vagus nerve. Finally, we suggest how future studies may reveal novel insights into these diseases through the lens of asymmetry.
Collapse
Affiliation(s)
- Noah Lubben
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Elizabeth Ensink
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerhard A Coetzee
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Viviane Labrie
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
16
|
Pradel K, Drwiȩga G, Błasiak T. Superior Colliculus Controls the Activity of the Rostromedial Tegmental Nuclei in an Asymmetrical Manner. J Neurosci 2021; 41:4006-4022. [PMID: 33741724 PMCID: PMC8176749 DOI: 10.1523/jneurosci.1556-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022] Open
Abstract
Dopaminergic (DA) neurons of the midbrain are involved in controlling orienting and approach of animals toward relevant external stimuli. The firing of DA neurons is regulated by many brain structures; however, the sensory input is provided predominantly by the ipsilateral superior colliculus (SC). It is suggested that SC also innervates the contralateral rostromedial tegmental nucleus (RMTg)-the main inhibitory input to DA neurons. Therefore, this study aimed to describe the physiology and anatomy of the SC-RMTg pathway. To investigate the anatomic connections within the circuit of interest, anterograde, retrograde, and transsynaptic tract-tracing studies were performed on male Sprague Dawley rats. We have observed that RMTg is monosynaptically innervated predominantly by the lateral parts of the intermediate layer of the contralateral SC. To study the physiology of this neuronal pathway, we conducted in vivo electrophysiological experiments combined with optogenetics; the activity of RMTg neurons was recorded using silicon probes, while either contralateral or ipsilateral SC was optogenetically stimulated. Obtained results revealed that activation of the contralateral SC excites the majority of RMTg neurons, while stimulation of the ipsilateral SC evokes similar proportions of excitatory or inhibitory responses. Consequently, single-unit recordings showed that the activation of RMTg neurons innervated by the contralateral SC, or stimulation of contralateral SC-originating axon terminals within the RMTg, inhibits midbrain DA neurons. Together, the anatomy and physiology of the discovered brain circuit suggest its involvement in the orienting and motivation-driven locomotion of animals based on the direction of external sensory stimuli.SIGNIFICANCE STATEMENT Dopaminergic neurons are the target of predominantly ipsilateral, excitatory innervation originating from the superior colliculus. However, we demonstrate in our study that SC inhibits the activity of dopaminergic neurons on the contralateral side of the brain via the rostromedial tegmental nucleus. In this way, sensory information received by the animal from one hemifield could induce opposite effects on both sides of the dopaminergic system. It was shown that the side to which an animal directs its behavior is a manifestation of asymmetry in dopamine release between left and right striatum. Animals tend to move oppositely to the hemisphere with higher striatal dopamine concentration. This explains how the above-described circuit might guide the behavior of animals according to the direction of incoming sensory stimuli.
Collapse
Affiliation(s)
- Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Gniewosz Drwiȩga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
17
|
Abstract
Stroke causes many forms of disability, including emotional and mood disorders. Depression is the most common of these, affecting approximately one-third of stroke patients. Other disorders like mania, bipolar disorder, anxiety disorder, or apathy may also develop following stroke, although they are less common. The development of mood and emotional disorders is dependent on the severity of brain injury, the side of injury, and hemispheric location. Whereas a left hemispheric stroke often results in depression or a catastrophic reaction with anxiety, injury to the right hemisphere has predominantly been associated with the development of emotional indifference (anosodiaphoria) or euphoria. In this chapter, we discuss the mood disorders associated with hemispheric strokes and the neuropsychological mechanisms that might account for the clinical manifestations of these affective disorders.
Collapse
Affiliation(s)
- Michał Harciarek
- Department of Social Sciences, Institute of Psychology, University of Gdansk, Gdansk, Poland.
| | - Aleksandra Mańkowska
- Department of Social Sciences, Institute of Psychology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
18
|
Radoman M, Crane NA, Gorka SM, Weafer J, Langenecker SA, de Wit H, Phan KL. Striatal activation to monetary reward is associated with alcohol reward sensitivity. Neuropsychopharmacology 2021; 46:343-350. [PMID: 32505126 PMCID: PMC7852684 DOI: 10.1038/s41386-020-0728-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
One well-known phenotypic risk factor for the development of alcohol use disorder is sensitivity to the rewarding effects of alcohol. In the present study, we examined whether individuals who are sensitive to alcohol reward are also sensitive to nondrug rewards, thereby reflecting a broader individual difference risk factor. Specifically, we tested the hypothesis that subjective response to acute rewarding effects of alcohol would be related to neural activation during monetary reward receipt relative to loss (in the absence of alcohol). Community-recruited healthy young social drinkers (N = 58) completed four laboratory sessions in which they received alcohol (0.8 g/kg) and placebo in alternating order under double-blind conditions, providing self-report measures of subjective response to alcohol at regular intervals. At a separate visit 1-3 weeks later, they completed a reward-guessing game, the 'Doors' task, during fMRI in a drug-free state. Participants who reported greater motivation (i.e., wanting) to consume more alcohol after a single moderate dose of alcohol also exhibited greater neural activation in the bilateral ventral caudate and the nucleus accumbens during reward receipt relative to loss. Striatal activation was not related to other subjective ratings including alcohol-induced sedation, stimulation, or pleasure (i.e., feeling, liking). Our study is the first to show that measures of alcohol reward are related to neural indices of monetary reward in humans. These results support growing evidence that individual differences in responses to drug and nondrug reward are linked and together form a risk profile for drug use or abuse, particularly in young adults.
Collapse
Affiliation(s)
- Milena Radoman
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street, Chicago, IL, 60612, USA.
| | - Natania A. Crane
- grid.185648.60000 0001 2175 0319Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street, Chicago, IL 60612 USA
| | - Stephanie M. Gorka
- grid.261331.40000 0001 2285 7943Department of Psychiatry and Behavioral Health, Ohio State University, 1670 Upham Drive, Columbus, OH 43205 USA
| | - Jessica Weafer
- grid.266539.d0000 0004 1936 8438Department of Psychology, University of Kentucky, 171 Funkhouser Drive, Lexington, KY 40506 USA
| | - Scott A. Langenecker
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah, 50N Medical Drive, Salt Lake City, UT 84132 USA
| | - Harriet de Wit
- grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841S Maryland Avenue, Chicago, IL 60637 USA
| | - K. Luan Phan
- grid.261331.40000 0001 2285 7943Department of Psychiatry and Behavioral Health, Ohio State University, 1670 Upham Drive, Columbus, OH 43205 USA
| |
Collapse
|
19
|
Levenberg K, Hajnal A, George DR, Saunders EFH. Prolonged functional cerebral asymmetry as a consequence of dysfunctional parvocellular paraventricular hypothalamic nucleus signaling: An integrative model for the pathophysiology of bipolar disorder. Med Hypotheses 2020; 146:110433. [PMID: 33317848 DOI: 10.1016/j.mehy.2020.110433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Approximately 45 million people worldwide are diagnosed with bipolar disorder (BD). While there are many known risk factors and models of the pathologic processes influencing BD, the exact neurologic underpinnings of BD are unknown. We attempt to integrate the existing literature and create a unifying hypothesis regarding the pathophysiology of BD with the hope that a concrete model may potentially facilitate more specific diagnosis, prevention, and treatment of BD in the future. We hypothesize that dysfunctional signaling from the parvocellular neurons of the paraventricular hypothalamic nucleus (PVN) results in the clinical presentation of BD. Functional damage to this nucleus and its signaling pathways may be mediated by myriad factors (e.g. immune dysregulation and auto-immune processes, polygenetic variation, dysfunctional interhemispheric connections, and impaired or overactivated hypothalamic axes) which could help explain the wide variety of clinical presentations along the BD spectrum. The neurons of the PVN regulate ultradian rhythms, which are observed in cyclic variations in healthy individuals, and mediate changes in functional hemispheric lateralization. Theoretically, dysfunctional PVN signaling results in prolonged functional hemispheric dominance. In this model, prolonged right hemispheric dominance leads to depressive symptoms, whereas left hemispheric dominance correlated to the clinical picture of mania. Subsequently, physiologic processes that increase signaling through the PVN (hypothalamic-pituitaryadrenal axis, hypothalamic- pituitary-gonadal axis, and hypothalamic-pituitary-thyroid axis activity, suprachiasmatic nucleus pathways) as well as, neuro-endocrine induced excito-toxicity, auto-immune and inflammatory flairs may induce mood episodes in susceptible individuals. Potentially, ultradian rhythms slowing with age, in combination with changes in hypothalamic axes and maturation of neural circuitry, accounts for BD clinically presenting more frequently in young adulthood than later in life.
Collapse
Affiliation(s)
- Kate Levenberg
- College of Medicine, Penn State University College of Medicine, State College, USA.
| | - Andras Hajnal
- Neural & Behavioral Sciences, Penn State University College of Medicine, State College, USA
| | - Daniel R George
- Department of Humanities, Penn State University College of Medicine, Hershey, USA
| | - Erika F H Saunders
- Psychiatry and Behavioral Health, Penn State University College of Medicine, State College, USA
| |
Collapse
|
20
|
Alarcón-Arís D, Pavia-Collado R, Miquel-Rio L, Coppola-Segovia V, Ferrés-Coy A, Ruiz-Bronchal E, Galofré M, Paz V, Campa L, Revilla R, Montefeltro A, Kordower JH, Vila M, Artigas F, Bortolozzi A. Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson's disease-like mouse model and in monkeys. EBioMedicine 2020; 59:102944. [PMID: 32810825 PMCID: PMC7452525 DOI: 10.1016/j.ebiom.2020.102944] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Progressive neuronal death in monoaminergic nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Given that α-synuclein may be an early mediator of the pathological cascade that ultimately leads to neurodegeneration, decreased α-synuclein synthesis will abate neurotoxicity if delivered to the key affected neurons. METHODS We used a non-viral gene therapy based on a new indatraline-conjugated antisense oligonucleotide (IND-ASO) to disrupt the α-synuclein mRNA transcription selectively in monoamine neurons of a PD-like mouse model and elderly nonhuman primates. Molecular, cell biology, histological, neurochemical and behavioral assays were performed. FINDINGS Intracerebroventricular and intranasal IND-ASO administration for four weeks in a mouse model with AAV-mediated wild-type human α-synuclein overexpression in dopamine neurons prevented the synthesis and accumulation of α-synuclein in the connected brain regions, improving dopamine neurotransmission. Likewise, the four-week IND-ASO treatment led to decreased levels of endogenous α-synuclein protein in the midbrain monoamine nuclei of nonhuman primates, which are affected early in PD. CONCLUSIONS The inhibition of α-synuclein production in dopamine neurons and its accumulation in cortical/striatal projection areas may alleviate the early deficits of dopamine function, showing the high translational value of antisense oligonucleotides as a disease modifying therapy for PD and related synucleinopathies. FUNDING Grants SAF2016-75797-R, RTC-2014-2812-1 and RTC-2015-3309-1, Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund (ERDF), UE; Grant ID 9238, Michael J. Fox Foundation; and Centres for Networked Biomedical Research on Mental Health (CIBERSAM), and on Neurodegenerative Diseases (CIBERNED).
Collapse
Affiliation(s)
- Diana Alarcón-Arís
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rubén Pavia-Collado
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lluis Miquel-Rio
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Valentín Coppola-Segovia
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Laboratory of Neurobiology and Redox Pathology, Department of Basic Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Albert Ferrés-Coy
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Mireia Galofré
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Verónica Paz
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Leticia Campa
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | | | | | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| |
Collapse
|
21
|
Markovich-Molochnikov I, Cohen D. Bilateral responses of rat ventral striatum tonically active neurons to unilateral medial forebrain bundle stimulation. Eur J Neurosci 2020; 52:4499-4516. [PMID: 32810912 DOI: 10.1111/ejn.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
Unilateral medial forebrain bundle (MFB) stimulation is an extremely effective promoter of reinforcement learning irrespective of the conditioned cue's laterality. The effectiveness of unilateral MFB stimulation, which activates the mesolimbic pathway connecting the ventral tegmental area to the ventral striatum (vStr), is surprising considering that these fibers rarely cross to the contralateral hemisphere. Specifically, this type of biased fiber distribution entails the activation of brain structures that are primarily ipsilateral to the stimulated MFB, along with weak to negligible activation of the contralateral structures, thus impeding the formation of a cue-outcome association. To better understand the spread of activation of MFB stimulation across hemispheres, we studied whether unilateral MFB stimulation primarily activates the ipsilateral vStr or the vStr of both hemispheres. We simultaneously recorded neuronal activity in the vStr of both hemispheres in response to several sets of unilateral MFB stimulation in anesthetized and freely moving rats. Unilateral MFB stimulation evoked strong stimulus-dependent activation of vStr tonically active neurons (TANs), presumably the cholinergic interneurons, in both hemispheres. However, the TANs' activation patterns and responsiveness depended on whether the stimulus was delivered ipsilaterally or contralaterally to the recorded neuron. These findings indicate that unilateral MFB stimulation effectively activates the vStr in both hemispheres in a stimulus-dependent manner which may serve as neuronal substrate for the formation of cue-outcome associations during reinforcement learning.
Collapse
Affiliation(s)
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
22
|
Holloway ZR, Paige NB, Comstock JF, Nolen HG, Sable HJ, Lester DB. Cerebellar Modulation of Mesolimbic Dopamine Transmission Is Functionally Asymmetrical. THE CEREBELLUM 2020; 18:922-931. [PMID: 31478166 DOI: 10.1007/s12311-019-01074-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebral and cerebellar hemispheres are known to be asymmetrical in structure and function, and previous literature supports that asymmetry extends to the neural dopamine systems. Using in vivo fixed potential amperometry with carbon fiber microelectrodes in anesthetized mice, the current study assessed hemispheric lateralization of stimulation-evoked dopamine in the nucleus accumbens (NAc) and the influence of the cerebellum in regulating this reward-associated pathway. Our results suggest that cerebellar output can modulate mesolimbic dopamine transmission, and this modulation contributes to asymmetrically lateralized dopamine release. Dopamine release did not differ between hemispheres when evoked by medial forebrain bundle (MFB) stimulation; however, dopamine release was significantly greater in the right NAc relative to the left when evoked by electrical stimulation of the cerebellar dentate nucleus (DN). Furthermore, cross-hemispheric talk between the left and right cerebellar DN does not seem to influence mesolimbic release given that lidocaine infused into the DN opposite to the stimulated DN did not alter release. These studies may provide a neurochemical mechanism for studies identifying the cerebellum as a relevant node for reward, motivational behavior, saliency, and inhibitory control. An increased understanding of the lateralization of dopaminergic systems may reveal novel targets for pharmacological interventions in neuropathology of the cerebellum and extending projections.
Collapse
Affiliation(s)
- Zade R Holloway
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Nick B Paige
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Josiah F Comstock
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Hunter G Nolen
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Helen J Sable
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Deranda B Lester
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA.
| |
Collapse
|
23
|
Hoekzema E, Tamnes CK, Berns P, Barba-Müller E, Pozzobon C, Picado M, Lucco F, Martínez-García M, Desco M, Ballesteros A, Crone EA, Vilarroya O, Carmona S. Becoming a mother entails anatomical changes in the ventral striatum of the human brain that facilitate its responsiveness to offspring cues. Psychoneuroendocrinology 2020; 112:104507. [PMID: 31757430 DOI: 10.1016/j.psyneuen.2019.104507] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
In mothers, offspring cues are associated with a powerful reinforcing value that motivates maternal care. Animal studies show that this is mediated by dopamine release into the nucleus accumbens, a core component of the brain's reward system located in the ventral striatum (VStr). The VStr is also known to respond to infant signals in human mothers. However, it is unknown whether pregnancy modifies the anatomy or functionality of this structure, and whether such modifications underlie its strong reactivity to offspring cues. Therefore, we analyzed structural and functional neuroimaging data from a unique pre-conception prospective cohort study involving first-time mothers investigated before and after their pregnancy as well as nulliparous control women scanned at similar time intervals. First, we delineated the anatomy of the VStr in each subject's neuroanatomical space and examined whether there are volumetric changes in this structure across sessions. Then, we tested if these changes could predict the mothers' brain responses to visual stimuli of their infants. We found decreases in the right VStr and a trend for left VStr reductions in the women who were pregnant between sessions compared to the women who were not. Furthermore, VStr volume reductions across pregnancy were associated with infant-related VStr responses in the postpartum period, with stronger volume decreases predicting stronger functional activation to offspring cues. These findings provide the first indications that the transition to motherhood renders anatomical adaptations in the VStr that promote the strong responsiveness of a mother's reward circuit to cues of her infant.
Collapse
Affiliation(s)
- Elseline Hoekzema
- Brain and Development Research Center, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, the Netherlands.
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Puck Berns
- Brain and Development Research Center, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, the Netherlands
| | - Erika Barba-Müller
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Marisol Picado
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain
| | | | - Eveline A Crone
- Brain and Development Research Center, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, the Netherlands
| | - Oscar Vilarroya
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain; Fundació IMIM, Barcelona, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
| |
Collapse
|
24
|
Gong L, Li H, Yang D, Peng Y, Liu D, Zhong M, Zhang B, Xu R, Kang J. Striatum Shape Hypertrophy in Early Stage Parkinson's Disease With Excessive Daytime Sleepiness. Front Neurosci 2020; 13:1353. [PMID: 31992965 PMCID: PMC6964599 DOI: 10.3389/fnins.2019.01353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Excessive daytime sleepiness (EDS) is one of the common and burdensome non-motor symptoms of Parkinson's disease (PD). However, the underlying neuropathology mechanism in PD patients with EDS (PD-EDS) remains unclear. The present study aims to delineate potential locations of structural alteration of subcortical regions in early stage and drug-naïve PD-EDS. METHODS The study had 252 patients with PD and 92 matched healthy controls (HC). EDS was estimated with the Epworth Sleepiness Scale, with a cutoff of 10. Ultimately, 59 patients were considered as PD-EDS. The remaining 193 were PD patients without EDS (PD-nEDS). FMRIB's Integrated Registration and Segmentation Tool (FIRST) was employed to assess the volumetric and surface alterations of subcortical nuclei in PD and PD-EDS. RESULTS Volumetric analyses found no difference in the subcortical nucleus volume between PD and HC, or PD-EDS and PD-nEDS groups. The shape analyses revealed the local atrophic changes in bilateral caudate and right putamen in patients with PD. In addition, the hypertrophic changes were located in the right putamen and left pallidum in PD-EDS than in PD-nEDS. CONCLUSION Our findings revealed the regional hypertrophy of the striatum in PD-EDS. Our results indicate that local hypertrophic striatum would be a valuable early biomarker for detecting the alteration in PD-EDS. The shape analysis contributes valuable information when investigating PD-EDS.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Huaisu Li
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Dan Yang
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Yinwei Peng
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Duan Liu
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ming Zhong
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Bei Zhang
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ronghua Xu
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, China
| | - Jian Kang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Jastrzębowska MA, Marquis R, Melie-García L, Lutti A, Kherif F, Herzog MH, Draganski B. Dopaminergic modulation of motor network compensatory mechanisms in Parkinson's disease. Hum Brain Mapp 2019; 40:4397-4416. [PMID: 31291039 DOI: 10.1002/hbm.24710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
The dopaminergic system has a unique gating function in the initiation and execution of movements. When the interhemispheric imbalance of dopamine inherent to the healthy brain is disrupted, as in Parkinson's disease (PD), compensatory mechanisms act to stave off behavioral changes. It has been proposed that two such compensatory mechanisms may be (a) a decrease in motor lateralization, observed in drug-naïve PD patients and (b) reduced inhibition - increased facilitation. Seeking to investigate the differential effect of dopamine depletion and subsequent substitution on compensatory mechanisms in non-drug-naïve PD, we studied 10 PD patients and 16 healthy controls, with patients undergoing two test sessions - "ON" and "OFF" medication. Using a simple visually-cued motor response task and fMRI, we investigated cortical motor activation - in terms of laterality, contra- and ipsilateral percent BOLD signal change and effective connectivity in the parametric empirical Bayes framework. We found that decreased motor lateralization persists in non-drug-naïve PD and is concurrent with decreased contralateral activation in the cortical motor network. Normal lateralization is not reinstated by dopamine substitution. In terms of effective connectivity, disease-related changes primarily affect ipsilaterally-lateralized homotopic cortical motor connections, while medication-related changes affect contralaterally-lateralized homotopic connections. Our findings suggest that, in non-drug-naïve PD, decreased lateralization is no longer an adaptive cortical mechanism, but rather the result of maladaptive changes, related to disease progression and long-term dopamine replacement. These findings highlight the need for the development of noninvasive therapies, which would promote the adaptive mechanisms of the PD brain.
Collapse
Affiliation(s)
- Maya A Jastrzębowska
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Renaud Marquis
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- EEG and Epilepsy Unit, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Lester Melie-García
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
26
|
Karpova IV, Mikheev VV, Marysheva VV, Kuritcyna NA, Bychkov ER, Shabanov PD. [The time course of changes in the state of monoaminergic systems in the brain of mice under the acute hypoxia with hypercapnia]. BIOMEDITSINSKAIA KHIMIIA 2019; 65:485-497. [PMID: 31876519 DOI: 10.18097/pbmc20196506485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In socially isolated male outbred albino mice, the changes of monoaminergic systems under acute hypoxia with hypercapnia were studied. In cerebral cortex, hippocampus and striatum of the right and left sides of the brain, the concentrations of norepinephrine, dopamine, serotonin and their metabolites - dihydroxyphenylacetic, homovanillic and 5-hydroxyindoleacetic acids were investigated using the HPLC method. In isolated mice, which were not subjected to hypoxia with hypercapnia, higher levels of dopamine and serotonin in the left cortex were found. There was no asymmetry in monoamines and their metabolites in other studied brain structures. 10 min after the onset of exposure, acute hypoxia with hypercapnia resulted in a right-sided increase in norepinephrine levels and a decrease in dopamine levels in the striatum and serotonin levels in the hippocampus. In the cerebral cortex, 10 min after of hypoxic exposure beginning, there was a left-sided decrease in the dopamine content, while the original asymmetry found in the cortex of intact animals disappeared. In isolated mice perished of hypoxia with hypercapnia, almost all parameters returned to the control level. The exception was the ratio of serotonin metabolite level to the neurotransmitter, which in the right cortex became lower than in control animals. In white outbred mice, the brain monoaminergic systems are suggested to be relatively resistant to the negative consequences of hypoxia and hypercapnia, and corresponding shifts resulting in the reflex brain response to changes in the gas composition of the respiratory air.
Collapse
Affiliation(s)
- I V Karpova
- Institute of Experimental Medicine, St. Petersburg Russia
| | - V V Mikheev
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V V Marysheva
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - N A Kuritcyna
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - E R Bychkov
- Institute of Experimental Medicine, St. Petersburg Russia; Kirov Military Medical Academy, St. Petersburg, Russia
| | - P D Shabanov
- Institute of Experimental Medicine, St. Petersburg Russia; Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
27
|
Gemikonakli G, Keay KA, Kendig MD, Kang JWM, Corbit LH, Mor D. Altered monoamine levels in the dorsal striatum of the rat are associated with alterations in behavioural selection and motivation following peripheral nerve injury and acute stress. Eur J Neurosci 2019; 50:2786-2800. [PMID: 31325375 DOI: 10.1111/ejn.14518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Chronic neuropathic pain and psychological stress interact to compromise goal-directed control over behaviour following mild psychological stress. The dorsomedial (DMS) and dorsolateral (DLS) striatum in the rat are crucial for the expression of goal-directed and habitual behaviours, respectively. This study investigated whether changes in monoamine levels in the DMS and DLS following nerve injury and psychological stress reflect these behavioural differences. Neuropathic pain was induced by a chronic constriction injury (CCI) of the sciatic nerve in Sprague-Dawley rats. Acute stress was induced using a 15-min restraint. Behavioural flexibility was assessed using the outcome devaluation paradigm. Noradrenaline, serotonin, dopamine and associated metabolites were measured bilaterally from the DLS and DMS. In uninjured rats, restraint increased dopaminergic markers in the left and serotonergic markers in the right of both the DMS and DLS, indicating a possible left hemisphere-mediated dominance. CCI led to a slightly different lateralised effect, with a larger effect in the DMS than in the DLS. Individual differences in behavioural flexibility following CCI negatively correlated with dopaminergic markers in the right DLS, but positively correlated with these markers in the left DMS. A combination of CCI and restraint reduced behavioural flexibility, which was associated with the loss of the left/DMS dominance. These data suggest that behavioural flexibility following psychological stress or pain is associated with a left hemisphere dominance within the dorsal striatum. The loss of behavioural flexibility following the combined stressors is then associated with a transition from left to right, and DMS to DLS dominance.
Collapse
Affiliation(s)
- Gizem Gemikonakli
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Kevin A Keay
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael D Kendig
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - James W M Kang
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura H Corbit
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia.,Department of Psychology, The University of Toronto, Toronto, Ontario, Canada
| | - David Mor
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Campos ACP, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL. Monoaminergic regulation of nociceptive circuitry in a Parkinson's disease rat model. Exp Neurol 2019; 318:12-21. [DOI: 10.1016/j.expneurol.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/11/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
|
29
|
Koshimori Y, Strafella AP, Valli M, Sharma V, Cho SS, Houle S, Thaut MH. Motor Synchronization to Rhythmic Auditory Stimulation (RAS) Attenuates Dopaminergic Responses in Ventral Striatum in Young Healthy Adults: [ 11C]-(+)-PHNO PET Study. Front Neurosci 2019; 13:106. [PMID: 30837831 PMCID: PMC6382688 DOI: 10.3389/fnins.2019.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 01/04/2023] Open
Abstract
Auditory-motor entrainment using rhythmic auditory stimulation (RAS) has been shown to improve motor control in healthy persons and persons with neurologic motor disorders such as Parkinson's disease and stroke. Neuroimaging studies have shown the modulation of corticostriatal activity in response to RAS. However, the underlying neurochemical mechanisms for auditory-motor entrainment are unknown. The current study aimed to investigate RAS-induced dopamine (DA) responses in basal ganglia (BG) during finger tapping tasks combined with [11C]-(+)-PHNO-PET in eight right-handed young healthy participants. Each participant underwent two PET scans with and without RAS. Binding potential relative to the non-displaceable compartment (BPND) values were derived using the simplified reference tissue method. The task performance was measured using absolute tapping period error and its standard deviation. We found that the presence of RAS significantly improved the task performance compared to the absence of RAS, demonstrated by reductions in the absolute tapping period error (p = 0.007) and its variability (p = 0.006). We also found that (1) the presence of RAS reduced the BG BPND variability (p = 0.013) and (2) the absence of RAS resulted in a greater DA response in the left ventral striatum (VS) compared to the presence of RAS (p = 0.003), These suggest that the absence of external cueing may require more DA response in the left VS associated with more motivational and sustained attentional efforts to perform the task. Additionally, we demonstrated significant age effects on D2/3 R availability in BG: increasing age was associated with reduced D2/3 R availability in the left putamen without RAS (p = 0.026) as well as in the right VS with RAS (p = 0.02). This is the first study to demonstrate the relationships among RAS, DA response/D2/3 R availability, motor responses and age, providing the groundwork for future studies to explore mechanisms for auditory-motor entrainment in healthy elderly and patients with dopamine-based movement disorders.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Antonio P. Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Morton and Gloria Shulman Movement Disorders Clinic and The Edmond J. Safra Program in Parkinson’s Disease, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mikaeel Valli
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Vivek Sharma
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Baycrest Health Sciences, Rotman Research Institute, Toronto, ON, Canada
| | - Sang-soo Cho
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Michael H. Thaut
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Corwin C, Nikolopoulou A, Pan AL, Nunez-Santos M, Vallabhajosula S, Serrano P, Babich J, Figueiredo-Pereira ME. Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets. J Neuroinflammation 2018; 15:272. [PMID: 30236122 PMCID: PMC6146649 DOI: 10.1186/s12974-018-1305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prostaglandins are products of the cyclooxygenase pathway, which is implicated in Parkinson's disease (PD). Limited knowledge is available on mechanisms by which prostaglandins contribute to PD neurodegeneration. To address this gap, we focused on the prostaglandin PGD2/J2 signaling pathway, because PGD2 is the most abundant prostaglandin in the brain, and the one that increases the most under pathological conditions. Moreover, PGJ2 is spontaneously derived from PGD2. METHODS In this study, we determined in rats the impact of unilateral nigral PGJ2-microinfusions on COX-2, lipocalin-type PGD2 synthase (L-PGDS), PGD2/J2 receptor 2 (DP2), and 15 hydroxyprostaglandin dehydrogenase (15-PGDH). Nigral dopaminergic (DA) and microglial distribution and expression levels of these key factors of the prostaglandin D2/J2 pathway were evaluated by immunohistochemistry. PGJ2-induced motor deficits were assessed with the cylinder test. We also determined whether oral treatment with ibuprofen improved the PD-like pathology induced by PGJ2. RESULTS PGJ2 treatment induced progressive PD-like pathology in the rats. Concomitant with DA neuronal loss in the substantia nigra pars compacta (SNpc), PGJ2-treated rats exhibited microglia and astrocyte activation and motor deficits. In DA neurons, COX-2, L-PGDS, and 15-PGDH levels increased significantly in PGJ2-treated rats compared to controls, while DP2 receptor levels were unchanged. In microglia, DP2 receptors were basically non-detectable, while COX-2 and L-PGDS levels increased upon PGJ2-treatment, and 15-PGDH remained unchanged. 15-PGDH was also detected in oligodendrocytes. Notably, ibuprofen prevented most PGJ2-induced PD-like pathology. CONCLUSIONS The PGJ2-induced rat model develops progressive PD pathology, which is a hard-to-mimic aspect of this disorder. Moreover, prevention of most PGJ2-induced PD-like pathology with ibuprofen suggests a positive feedback mechanism between PGJ2 and COX-2 that could lead to chronic neuroinflammation. Notably, this is the first study that analyzes the nigral dopaminergic and microglial distribution and levels of factors of the PGD2/J2 signaling pathway in rodents. Our findings support the notions that upregulation of COX-2 and L-PGDS may be important in the PGJ2 evoked PD-like pathology, and that neuronal DP2 receptor antagonists and L-PGDS inhibitors may be novel pharmacotherapeutics to relieve neuroinflammation-mediated neurodegeneration in PD, circumventing the adverse side effects of cyclooxygenase inhibitors.
Collapse
Affiliation(s)
- Chuhyon Corwin
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Allen L Pan
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | - Mariela Nunez-Santos
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Peter Serrano
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
| | - John Babich
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA.
| |
Collapse
|
31
|
Gordon HW. Differential Activation of the Left and Right Cerebral Hemispheres of Individuals Who Use or are Dependent on Drugs of Abuse. ACTA ACUST UNITED AC 2018; 4. [PMID: 30090867 PMCID: PMC6078424 DOI: 10.21767/2471-853x.100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction: The left and right cerebral hemispheres are not equivalent in performance of cognitive functions associated with risk factors of drug abuse, nor is their development equivalently affected by drugs of abuse. The question addressed here is whether drugs of abuse affect cognitive function as assessed by brain activation, in particular related to impulsivity, and/or whether weaker brain activation associated with impulsivity increases the risk of drug abuse. Methodology: Using PubMed and key words, articles were selected that addressed brain activation in individuals who used or abused one of the psychoactive drugs. Findings are summarized. Results: For each of the drugs, hypoactivation was found. In some cases this reduced activation was reported predominantly for the right or both hemispheres. There were fewer reports for the left hemisphere. Discussion and Conclusion: Rarely do authors focus on why only one or the other hemisphere is affected or why specific structures are affected. Neurobiological differences between the hemispheres and among various brain structures could provide clues to the specific effect of drugs. Increased attention to this gap in research will give additional insights into the etiology of drug abuse and provide direction for treatment.
Collapse
Affiliation(s)
- Harold W Gordon
- Epidemiology Research Branch, Division of Epidemiology, Services, and Prevention Research (DESPR), National Institute on Drug Abuse, USA
| |
Collapse
|
32
|
Martino M, Magioncalda P, Yu H, Li X, Wang Q, Meng Y, Deng W, Li Y, Li M, Ma X, Lane T, Duncan NW, Northoff G, Li T. Abnormal Resting-State Connectivity in a Substantia Nigra-Related Striato-Thalamo-Cortical Network in a Large Sample of First-Episode Drug-Naïve Patients With Schizophrenia. Schizophr Bull 2018; 44:419-431. [PMID: 28605528 PMCID: PMC5814905 DOI: 10.1093/schbul/sbx067] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The dopamine hypothesis is one of the most influential theories of the neurobiological background of schizophrenia (SCZ). However, direct evidence for abnormal dopamine-related subcortical-cortical circuitry disconnectivity is still lacking. The aim of this study was therefore to test dopamine-related substantia nigra (SN)-based striato-thalamo-cortical resting-state functional connectivity (FC) in SCZ. METHOD Based on our a priori hypothesis, we analyzed a large sample resting-state functional magnetic resonance imaging (fMRI) dataset from first-episode drug-naïve SCZ patients (n = 112) and healthy controls (n = 82) using the SN as the seed region for an investigation of striato-thalamo-cortical FC. This was done in the standard band of slow frequency oscillations and then in its subfrequency bands (Slow4 and Slow5). Results: The analysis showed in SCZ: (1) reciprocal functional hypo-connectivity between SN and striatum, with differential patterns for Slow5 and Slow4; (2) functional hypo-connectivity between striatum and thalamus, as well as functional hyper-connectivity between thalamus and sensorimotor cortical areas, specifically in Slow4; (3) correlation of thalamo-sensorimotor functional hyper-connectivity with psychopathological symptoms. Conclusions: We demonstrate abnormal dopamine-related SN-based striato-thalamo-cortical FC in slow frequency oscillations in first-episode drug-naive SCZ. This suggests that altered dopaminergic function in the SN leads to abnormal neuronal synchronization (as indexed by FC) within subcortical-cortical circuitry, complementing the dopamine hypothesis in SCZ on the regional level of resting-state activity.
Collapse
Affiliation(s)
- Matteo Martino
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Paola Magioncalda
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Hua Yu
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yajing Meng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Deng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinfei Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingli Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Timothy Lane
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Brain and Consciousness, Taipei, Taiwan
| | - Niall W Duncan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Brain and Consciousness, Taipei, Taiwan,Centre for Cognition and Brain Disorders (CCBD), Hangzhou Normal University, Hangzhou, China
| | - Georg Northoff
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Brain and Consciousness, Taipei, Taiwan,Centre for Cognition and Brain Disorders (CCBD), Hangzhou Normal University, Hangzhou, China,Mind, Brain Imaging and Neuroethics, Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, Canada,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada,National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan,Zhejiang University, Dept of Philosophy and Cognition, Faculty of Medicine, Hangzhou, China
| | - Tao Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China,To whom correspondence should be addressed; Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; tel: +86-2885423561, fax: +86-2885164019, e-mail:
| |
Collapse
|
33
|
Grabrucker S, Haderspeck JC, Sauer AK, Kittelberger N, Asoglu H, Abaei A, Rasche V, Schön M, Boeckers TM, Grabrucker AM. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder. Front Mol Neurosci 2018; 10:450. [PMID: 29379414 PMCID: PMC5775238 DOI: 10.3389/fnmol.2017.00450] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD) patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD) mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1) in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jasmin C Haderspeck
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, Ulm, Germany
| | - Ann Katrin Sauer
- Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, Limerick, Ireland.,WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, Ulm, Germany
| | - Nadine Kittelberger
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, Ulm, Germany
| | - Harun Asoglu
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany.,Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
34
|
Loui P, Patterson S, Sachs ME, Leung Y, Zeng T, Przysinda E. White Matter Correlates of Musical Anhedonia: Implications for Evolution of Music. Front Psychol 2017; 8:1664. [PMID: 28993748 PMCID: PMC5622186 DOI: 10.3389/fpsyg.2017.01664] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
Recent theoretical advances in the evolution of music posit that affective communication is an evolutionary function of music through which the mind and brain are transformed. A rigorous test of this view should entail examining the neuroanatomical mechanisms for affective communication of music, specifically by comparing individual differences in the general population with a special population who lacks specific affective responses to music. Here we compare white matter connectivity in BW, a case with severe musical anhedonia, with a large sample of control subjects who exhibit normal variability in reward sensitivity to music. We show for the first time that structural connectivity within the reward system can predict individual differences in musical reward in a large population, but specific patterns in connectivity between auditory and reward systems are special in an extreme case of specific musical anhedonia. Results support and extend the Mixed Origins of Music theory by identifying multiple neural pathways through which music might operate as an affective signaling system.
Collapse
Affiliation(s)
- Psyche Loui
- Music, Imaging and Neural Dynamics Lab, Department of Psychology, Program in Neuroscience and Behavior, Wesleyan University, MiddletownCT, United States
| | - Sean Patterson
- Music, Imaging and Neural Dynamics Lab, Department of Psychology, Program in Neuroscience and Behavior, Wesleyan University, MiddletownCT, United States
| | - Matthew E. Sachs
- Department of Psychology, Brain and Creativity Institute, University of Southern California, Los AngelesCA, United States
| | - Yvonne Leung
- Music, Imaging and Neural Dynamics Lab, Department of Psychology, Program in Neuroscience and Behavior, Wesleyan University, MiddletownCT, United States
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, PenrithNSW, Australia
| | - Tima Zeng
- Music, Imaging and Neural Dynamics Lab, Department of Psychology, Program in Neuroscience and Behavior, Wesleyan University, MiddletownCT, United States
| | - Emily Przysinda
- Music, Imaging and Neural Dynamics Lab, Department of Psychology, Program in Neuroscience and Behavior, Wesleyan University, MiddletownCT, United States
| |
Collapse
|
35
|
Campus P, Canterini S, Orsini C, Fiorenza MT, Puglisi-Allegra S, Cabib S. Stress-Induced Reduction of Dorsal Striatal D2 Dopamine Receptors Prevents Retention of a Newly Acquired Adaptive Coping Strategy. Front Pharmacol 2017; 8:621. [PMID: 28955227 PMCID: PMC5601053 DOI: 10.3389/fphar.2017.00621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/24/2017] [Indexed: 11/14/2022] Open
Abstract
The inability to learn an adaptive coping strategy in a novel stressful condition leads to dysfunctional stress coping, a marker of mental disturbances. This study tested the involvement of dorsal striatal dopamine receptors in the dysfunctional coping with the Forced Swim test fostered by a previous experience of reduced food availability. Adult male mice were submitted to a temporary (12 days) reduction of food availability [food-restricted (FR)] or continuously free-fed (FF). Different groups of FF and FR mice were used to evaluate: (1) dorsal striatal mRNA levels of the two isoforms of the dopamine D2 receptor (D2S, D2L). (2) Forced Swim-induced c-fos expression in the dorsal striatum; (3) acquisition and 24 h retention of passive coping with Forced Swim. Additional groups of FF mice were tested for 24 h retention of passive coping acquired during a first experience with Forced Swim immediately followed by intra-striatal infusion of vehicle or two doses of the dopamine D2/D3 receptors antagonist sulpiride or the D1/D5 receptors antagonist SCH23390. Previous restricted feeding selectively reduced mRNA levels of both D2 isoforms and abolished Forced Swim-induced c-fos expression in the left Dorsolateral Striatum and selectively prevented 24 h retention of the coping strategy acquired in a first experience of Forced Swim. Finally, temporary blockade of left Dorsolateral Striatum D2/D3 receptors immediately following the first Forced Swim experience selectively reproduced the behavioral effect of restricted feeding in FF mice. In conclusion, the present results demonstrate that mice previously exposed to a temporary reduction of food availability show low striatal D2 receptors, a known marker of addiction-associated aberrant neuroplasticity, as well as liability to relapse into maladaptive stress coping strategies. Moreover, they offer strong support to a causal relationship between reduction of D2 receptors in the left Dorsolateral Striatum and impaired consolidation of newly acquired adaptive coping.
Collapse
Affiliation(s)
- Paolo Campus
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Department of Psychiatry, University of Michigan, Ann ArborMI, United States
| | - Sonia Canterini
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy
| | - Cristina Orsini
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Maria Teresa Fiorenza
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Simona Cabib
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| |
Collapse
|
36
|
Banegas I, Prieto I, Segarra AB, Vives F, de Gasparo M, Duran R, de Dios Luna J, Ramírez-Sánchez M. Bilateral distribution of enkephalinase activity in the medial prefrontal cortex differs between WKY and SHR rats unilaterally lesioned with 6-hydroxydopamine. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:213-218. [PMID: 28232066 DOI: 10.1016/j.pnpbp.2017.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 11/26/2022]
Abstract
Changes in the basal brain bilateral morphologic, neurochemical and/or functional patterns may be partly responsible for some brain disorders such as those involving mood. WKY and SHR strains as well as 6-hydroxydopamine (6-OHDA)-lesioned animals are validated models for the study of mood disorders. Because dopamine and enkephalins are involved in anxiety-related behaviors, the aim of our study was to analyze enkephalinase activity, assayed as aminopeptidase M activity, in the left and right medial prefrontal cortex (mPFC) of WKY and SHR treated with saline (sham group) or following left or right intrastriatal injections of the neurotoxic 6-OHDA. Sham left and sham right WKY exhibited a significant left predominance. Left 6-OHDA-lesioned rats inverted the left predominance of sham to right predominance. In right 6-OHDA-lesioned rats, the left predominance in sham right rats disappeared. Sham left as well as sham right SHR did not show any bilateral differences. In contrast, while the left lesion demonstrated a highly significant left predominance, the right lesion showed a slight but significant right predominance. A significant negative correlation between enkephalinase activity of the right mPFC and blood pressure and heart rate was observed only in left-lesioned SHR. Our results demonstrate that unilateral nigrostriatal injections of 6-OHDA influence the bilateral distribution of enkephalinase activity depending on both the side of the lesion and the strain analyzed. These results support the hypothesis that DA pathways may interact asymmetrically with enkephalins in the mPFC and that enkephalinase activity may play a role in the regulatory mechanisms underlying this interaction.
Collapse
Affiliation(s)
- Inmaculada Banegas
- Unit of Physiology,Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Isabel Prieto
- Unit of Physiology,Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Ana B Segarra
- Unit of Physiology,Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Francisco Vives
- Institute of Neurosciences, "Federico Olóriz" University of Granada, Granada, Spain
| | - Marc de Gasparo
- Cardiovascular and Metabolic Syndrome Adviser, Rue es Planches 5, 2842 Rossemaison, Switzerland
| | - Raquel Duran
- Institute of Neurosciences, "Federico Olóriz" University of Granada, Granada, Spain
| | - Juan de Dios Luna
- Department of Biostatistic, Medical School, University of Granada, Granada, Spain
| | - Manuel Ramírez-Sánchez
- Unit of Physiology,Department of Health Sciences, University of Jaén, 23071 Jaén, Spain.
| |
Collapse
|
37
|
Zhang S, Hu S, Chao HH, Li CSR. Hemispheric lateralization of resting-state functional connectivity of the ventral striatum: an exploratory study. Brain Struct Funct 2017; 222:2573-2583. [PMID: 28110447 DOI: 10.1007/s00429-016-1358-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023]
Abstract
Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The ventral striatum (VS) is critical to motivated behavior, with extant studies suggesting functional hemispheric asymmetry. The current work investigated differences in rsFC between the left (L) and right (R) VS and explored gender differences in the extent of functional lateralization. In 106 adults, we computed a laterality index (fcLI) to query whether a target region shows greater or less connectivity to the L vs R VS. A total of 45 target regions with hemispheric masks were examined from the Automated Anatomic Labeling atlas. One-sample t test was performed to explore significant laterality in the whole sample and in men and women separately. Two-sample t test was performed to examine gender differences in fcLI. At a corrected threshold (p < 0.05/45 = 0.0011), the dorsomedial prefrontal cortex (dmPFC) and posterior cingulate cortex (pCC) showed L lateralization and the intraparietal sulcus (IPS) and supramarginal gyrus (SMG) showed R lateralization in VS connectivity. Except for the pCC, these findings were replicated in a different data set (n = 97) from the Human Connectome Project. Furthermore, the fcLI of VS-pCC was negatively correlated with a novelty seeking trait in women but not in men. Together, the findings may suggest a more important role of the L VS in linking saliency response to self control and other internally directed processes. Right lateralization of VS connectivity to the SMG and IPS may support attention and action directed to external behavioral contingencies.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA
| | - Herta H Chao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Veterans Administration Medical Center, West Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA. .,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Bischoff-Grethe A, Connolly CG, Jordan SJ, Brown GG, Paulus MP, Tapert SF, Heaton RK, Woods SP, Grant I. Altered reward expectancy in individuals with recent methamphetamine dependence. J Psychopharmacol 2017; 31:17-30. [PMID: 27649775 PMCID: PMC5225125 DOI: 10.1177/0269881116668590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic methamphetamine use may lead to changes in reward-related function of the ventral striatum and caudate nucleus. Whether methamphetamine-dependent individuals show heightened reactivity to positively valenced stimuli (i.e. positive reinforcement mechanisms), or an exaggerated response to negatively valenced stimuli (i.e. driven by negative reinforcement mechanisms) remains unclear. This study investigated neural functioning of expectancy and receipt for gains and losses in adults with (METH+) and without (METH-) histories of methamphetamine dependence. METHODS Participants (17 METH+; 23 METH-) performed a probabilistic feedback expectancy task during blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). Participants were given visual cues probabilistically associated with monetary gain, loss, or neutral outcomes. General linear models examined the BOLD response to: (1) anticipation of gains and losses, and (2) gain and loss monetary outcomes. RESULTS METH+ had less BOLD response to loss anticipation than METH- in the ventral striatum and posterior caudate. METH+ also showed more BOLD response to loss outcomes than to gain outcomes in the anterior and posterior caudate, whereas METH- did not show differential responses to the valence of outcomes. DISCUSSION METH+ individuals showed attenuated neural response to anticipated gains and losses, but their response to loss outcomes was greater than to gain outcomes. A decreased response to loss anticipation, along with a greater response to loss outcomes, suggests an altered ability to evaluate future risks and benefits based upon prior experience, which may underlie suboptimal decision-making in METH+ individuals that increases the likelihood of risky behavior.
Collapse
Affiliation(s)
| | - Colm G Connolly
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Stephan J Jordan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Gregory G Brown
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Martin P Paulus
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Steven P Woods
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Igor Grant
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | | |
Collapse
|
39
|
Aberg KC, Doell KC, Schwartz S. The “Creative Right Brain” Revisited: Individual Creativity and Associative Priming in the Right Hemisphere Relate to Hemispheric Asymmetries in Reward Brain Function. Cereb Cortex 2016; 27:4946-4959. [DOI: 10.1093/cercor/bhw288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
|
40
|
Karim AKMR, Proulx MJ, Likova LT. Anticlockwise or clockwise? A dynamic Perception-Action-Laterality model for directionality bias in visuospatial functioning. Neurosci Biobehav Rev 2016; 68:669-693. [PMID: 27350096 DOI: 10.1016/j.neubiorev.2016.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 02/03/2023]
Abstract
Orientation bias and directionality bias are two fundamental functional characteristics of the visual system. Reviewing the relevant literature in visual psychophysics and visual neuroscience we propose here a three-stage model of directionality bias in visuospatial functioning. We call this model the 'Perception-Action-Laterality' (PAL) hypothesis. We analyzed the research findings for a wide range of visuospatial tasks, showing that there are two major directionality trends in perceptual preference: clockwise versus anticlockwise. It appears these preferences are combinatorial, such that a majority of people fall in the first category demonstrating a preference for stimuli/objects arranged from left-to-right rather than from right-to-left, while people in the second category show an opposite trend. These perceptual biases can guide sensorimotor integration and action, creating two corresponding turner groups in the population. In support of PAL, we propose another model explaining the origins of the biases - how the neurogenetic factors and the cultural factors interact in a biased competition framework to determine the direction and extent of biases. This dynamic model can explain not only the two major categories of biases in terms of direction and strength, but also the unbiased, unreliably biased or mildly biased cases in visuosptial functioning.
Collapse
Affiliation(s)
- A K M Rezaul Karim
- Envision Research Institute, 610 N. Main St, Wichita, KS 67203, USA; The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St, San Francisco, CA 94115, USA; Department of Psychology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, BA2 7AY, UK.
| | - Lora T Likova
- The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St, San Francisco, CA 94115, USA.
| |
Collapse
|
41
|
Carpenter KLH, Li W, Wei H, Wu B, Xiao X, Liu C, Worley G, Egger HL. Magnetic susceptibility of brain iron is associated with childhood spatial IQ. Neuroimage 2016; 132:167-174. [PMID: 26899787 DOI: 10.1016/j.neuroimage.2016.02.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/23/2016] [Accepted: 02/09/2016] [Indexed: 02/09/2023] Open
Abstract
Iron is an essential micronutrient for healthy brain function and development. Because of the importance of iron in the brain, iron deficiency results in widespread and lasting effects on behavior and cognition. We measured iron in the basal ganglia of young children using a novel MRI method, quantitative susceptibility mapping, and examined the association of brain iron with age and cognitive performance. Participants were a community sample of 39 young children recruited from pediatric primary care who were participating in a 5-year longitudinal study of child brain development and anxiety disorders. The children were ages 7 to 11years old (mean age: 9.5years old) at the time of the quantitative susceptibility mapping scan. The differential abilities scale was administered when the children were 6years old to provide a measure of general intelligence and verbal (receptive and expressive), non-verbal, and spatial performance. Magnetic susceptibility values, which are linearly related to iron concentration in iron-rich areas, were extracted from regions of interest within iron-rich deep gray matter nuclei from the basal ganglia, including the caudate, putamen, substantia nigra, globus pallidus, and thalamus. Controlling for scan age, there was a significant positive association between iron in the basal ganglia and spatial IQ, with this effect being driven by iron in the right caudate We also replicated previous findings of a significant positive association between iron in the bilateral basal ganglia and age. Our finding of a positive association between spatial IQ and mean iron in the basal ganglia, and in the caudate specifically, suggests that iron content in specific regions of the iron-rich deep nuclei of the basal ganglia influences spatial intelligence. This provides a potential neurobiological mechanism linking deficits in spatial abilities reported in children who were severely iron deficient as infants to decreased iron within the caudate.
Collapse
Affiliation(s)
- Kimberly L H Carpenter
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Wei Li
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA; Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| | - Hongjiang Wei
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| | - Bing Wu
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA; GE Healthcare, Beijing, China
| | - Xue Xiao
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA; Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Gordon Worley
- Program in Neurodevelopmental Disabilities, Division of Pediatric Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Helen Link Egger
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
42
|
Wong JE, Cao J, Dorris DM, Meitzen J. Genetic sex and the volumes of the caudate-putamen, nucleus accumbens core and shell: original data and a review. Brain Struct Funct 2015; 221:4257-4267. [PMID: 26666530 DOI: 10.1007/s00429-015-1158-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
Sex differences are widespread across vertebrate nervous systems. Such differences are sometimes reflected in the neural substrate via neuroanatomical differences in brain region volume. One brain region that displays sex differences in its associated functions and pathologies is the striatum, including the caudate-putamen (dorsal striatum), nucleus accumbens core and shell (ventral striatum). The extent to which these differences can be attributed to alterations in volume is unclear. We thus tested whether the volumes of the caudate-putamen, nucleus accumbens core, and nucleus accumbens shell differed by region, sex, and hemisphere in adult Sprague-Dawley rats. As a positive control for detecting sex differences in brain region volume, we measured the sexually dimorphic nucleus of the medial preoptic area (SDN-POA). As expected, SDN-POA volume was larger in males than in females. No sex differences were detected in the volumes of the caudate-putamen, nucleus accumbens core or shell. Nucleus accumbens core volume was larger in the right than left hemisphere across males and females. These findings complement previous reports of lateralized nucleus accumbens volume in humans, and suggest that this may possibly be driven via hemispheric differences in nucleus accumbens core volume. In contrast, striatal sex differences seem to be mediated by factors other than striatal region volume. This conclusion is presented within the context of a detailed review of studies addressing sex differences and similarities in striatal neuroanatomy.
Collapse
Affiliation(s)
- Jordan E Wong
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA. .,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA. .,Center for Human Health and the Environment, Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
43
|
Moustafa AA, Bar-Gad I, Korngreen A, Bergman H. Basal ganglia: physiological, behavioral, and computational studies. Front Syst Neurosci 2014; 8:150. [PMID: 25191233 PMCID: PMC4139593 DOI: 10.3389/fnsys.2014.00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ahmed A Moustafa
- Department of Veterans Affairs, New Jersey Health Care System, School of Social Sciences and Psychology, Marcs Institute for Brain and Behaviour, University of Western Sydney Sydney, NSW, Australia
| | - Izhar Bar-Gad
- Gonda Brain Research Center, Bar-Ilan University Ramat Gan, Israel
| | - Alon Korngreen
- Gonda Brain Research Center, Bar-Ilan University Ramat Gan, Israel ; Everard Goodman Faculty of life sciences, Bar-Ilan University Ramat Gan, Israel
| | - Hagai Bergman
- Department of Neurobiology (Physiology), Faculty of Medicine, Edemond and Lily Safra Center for Brain Research, Institue of Medical Research Israel-Canada, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|