1
|
Iriah SC, Rodriguez N, Febo M, Morrissette M, Strandwitz P, Kulkarni P, Ferris CF. The microbiome's influence on the neurobiology of opioid addiction and brain connectivity. Brain Res Bull 2025; 220:111159. [PMID: 39645048 DOI: 10.1016/j.brainresbull.2024.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Opioids are the most effective and potent analgesics available for acute pain management. With no viable alternative for treating chronic or post operative pain, it is not surprising that over 10 million people misuse opioids. This study explores the developmental influence of the microbiome on resistance to opioid addictive behavior and functional connectivity. METHODS Female germ free reared (GFR) mice were compared to wild-type (WT) mice, before and after conventionalization using conditioned place preference (CPP) with oxycodone (OXY) exposure. Functional connectivity data were collected providing site-specific analysis for over 140 different brain areas. RESULTS GFR mice showed significant reduction in CPP after OXY exposure. When GFR mice are conventionalized CPP reward behavior mirrors WT mice. Functional connectivity data shows significant differences across several brain regions e.g., thalamus, hippocampus, and sensory cortices between GFR and WT before and after conventionalization. Prior to conventionalization GFR mice showed hyperconnectivity that became less organized and more global after conventionalization. Sequencing of the fecal microbiome of the GFR mice before conventionalization showed an absence of normal murine gut microbiome members, but the presence of Corynebacterium, Staphylococcus, Paenibacillus, and Turicibacter. CONCLUSION The implications suggest the microbiome has a direct impact on the development of reward seeking behavior. With the widespread number of opioid receptors found in the gut, studying the interaction between the microbiota and substance use disorder may lead to a better understanding of the mechanisms that lead to the development of addiction as well as potential treatments.
Collapse
Affiliation(s)
- Sade C Iriah
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States.
| | - Nicholas Rodriguez
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | | | | | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States; Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.
| |
Collapse
|
2
|
Balaji S, Woodward TJ, Richter E, Chang A, Otiz R, Kulkarni PP, Balaji K, Bradshaw HB, Ferris CF. Palmitoylethanolamide causes dose-dependent changes in brain function and the lipidome. Front Neurosci 2024; 18:1506352. [PMID: 39664446 PMCID: PMC11631868 DOI: 10.3389/fnins.2024.1506352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
The present studies were undertaken to understand the effects of the commonly used nutraceutical PEA on brain function and lipid chemistry. These studies using MRI and broad-scale lipidomics are without precedent in animal or human research. During the MRI scanning session awake rats were given one of three doses of PEA (3, 10, or 30 mg/kg) or vehicle and imaged for changes in BOLD signal and functional connectivity. There was an inverse dose-response for negative BOLD suggesting a decrease in brain activity affecting the prefrontal ctx, sensorimotor cortices, basal ganglia and thalamus. However, there was a dose-dependent increase in functional connectivity in these same brain areas. Plasma and CNS levels of PEA and over 80 endogenous lipids (endolipids) were determined post treatment. While levels of PEA in the CNS were significantly higher after 30 mg/kg treatment, levels of the endocannabinoid, Anandamide, and at least 20 additional endolipids, were significantly lower across the CNS. Of the 78 endolipids that were detected in all CNS regions evaluated, 51 of them were modulated in at least one of the regions. Taken together, the functional connectivity and lipidomics changes provide evidence that PEA treatment drives substantial changes in CNS activity.
Collapse
Affiliation(s)
- Shreyas Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Taylor J. Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Emily Richter
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Otiz
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| | - Praveen P. Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Kaashyap Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University Boston, Boston, MA, United States
| |
Collapse
|
3
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
4
|
Brems BM, Sullivan EE, Connolly JG, Zhang J, Chang A, Ortiz R, Cantwell L, Kulkarni P, Thakur GA, Ferris CF. Dose-dependent effects of GAT107, a novel allosteric agonist-positive allosteric modulator (ago-PAM) for the α7 nicotinic cholinergic receptor: a BOLD phMRI and connectivity study on awake rats. Front Neurosci 2023; 17:1196786. [PMID: 37424993 PMCID: PMC10326388 DOI: 10.3389/fnins.2023.1196786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background Alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonists have been developed to treat schizophrenia but failed in clinical trials due to rapid desensitization. GAT107, a type 2 allosteric agonist-positive allosteric modulator (ago-PAM) to the α7 nAChR was designed to activate the α7 nAChR while reducing desensitization. We hypothesized GAT107 would alter the activity of thalamocortical neural circuitry associated with cognition, emotion, and sensory perception. Methods The present study used pharmacological magnetic resonance imaging (phMRI) to evaluate the dose-dependent effect of GAT107 on brain activity in awake male rats. Rats were given a vehicle or one of three different doses of GAT107 (1, 3, and 10 mg/kg) during a 35 min scanning session. Changes in BOLD signal and resting state functional connectivity were evaluated and analyzed using a rat 3D MRI atlas with 173 brain areas. Results GAT107 presented with an inverted-U dose response curve with the 3 mg/kg dose having the greatest effect on the positive BOLD volume of activation. The primary somatosensory cortex, prefrontal cortex, thalamus, and basal ganglia, particularly areas with efferent connections from the midbrain dopaminergic system were activated as compared to vehicle. The hippocampus, hypothalamus, amygdala, brainstem, and cerebellum showed little activation. Forty-five min post treatment with GAT107, data for resting state functional connectivity were acquired and showed a global decrease in connectivity as compared to vehicle. Discussion GAT107 activated specific brain regions involved in cognitive control, motivation, and sensory perception using a BOLD provocation imaging protocol. However, when analyzed for resting state functional connectivity there was an inexplicable, general decrease in connectivity across all brain areas.
Collapse
Affiliation(s)
- Brittany M. Brems
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Erin E. Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Jenna G. Connolly
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Jingchun Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
5
|
Gaynor LS, Ravi M, Zequeira S, Hampton AM, Pyon WS, Smith S, Colon-Perez LM, Pompilus M, Bizon JL, Maurer AP, Febo M, Burke SN. Touchscreen-Based Cognitive Training Alters Functional Connectivity Patterns in Aged But Not Young Male Rats. eNeuro 2023; 10:ENEURO.0329-22.2023. [PMID: 36754628 PMCID: PMC9961373 DOI: 10.1523/eneuro.0329-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Age-related cognitive decline is related to cellular and systems-level disruptions across multiple brain regions. Because age-related cellular changes within different structures do not show the same patterns of dysfunction, interventions aimed at optimizing function of large-scale brain networks may show greater efficacy at improving cognitive outcomes in older adults than traditional pharmacotherapies. The current study aimed to leverage a preclinical rat model of aging to determine whether cognitive training in young and aged male rats with a computerized paired-associates learning (PAL) task resulted in changes in global resting-state functional connectivity. Moreover, seed-based functional connectivity was used to examine resting state connectivity of cortical areas involved in object-location associative memory and vulnerable in old age, namely the medial temporal lobe (MTL; hippocampal cortex and perirhinal cortex), retrosplenial cortex (RSC), and frontal cortical areas (prelimbic and infralimbic cortices). There was an age-related increase in global functional connectivity between baseline and post-training resting state scans in aged, cognitively trained rats. This change in connectivity following cognitive training was not observed in young animals, or rats that traversed a track for a reward between scan sessions. Relatedly, an increase in connectivity between perirhinal and prelimbic cortices, as well as reduced reciprocal connectivity within the RSC, was found in aged rats that underwent cognitive training, but not the other groups. Subnetwork activation was associated with task performance across age groups. Greater global functional connectivity and connectivity between task-relevant brain regions may elucidate compensatory mechanisms that can be engaged by cognitive training.
Collapse
Affiliation(s)
- Leslie S Gaynor
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158
| | - Meena Ravi
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sabrina Zequeira
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Andreina M Hampton
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Wonn S Pyon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Samantha Smith
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Luis M Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
6
|
Wang HJ, Su CH, Chen YM, Yu CC, Chuang YC. Molecular Effects of Low-Intensity Shock Wave Therapy on L6 Dorsal Root Ganglion/Spinal Cord and Blood Oxygenation Level-Dependent (BOLD) Functional Magnetic Resonance Imaging (fMRI) Changes in Capsaicin-Induced Prostatitis Rat Models. Int J Mol Sci 2022; 23:ijms23094716. [PMID: 35563108 PMCID: PMC9105485 DOI: 10.3390/ijms23094716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Neurogenic inflammation and central sensitization play a role in chronic prostatitis/chronic pelvic pain syndrome. We explore the molecular effects of low-intensity shock wave therapy (Li-ESWT) on central sensitization in a capsaicin-induced prostatitis rat model. Male Sprague–Dawley rats underwent intraprostatic capsaicin (10 mM, 0.1 cm3) injections. After injection, the prostate received Li-ESWT twice, one day apart. The L6 dorsal root ganglion (DRG)/spinal cord was harvested for histology and Western blotting on days 3 and 7. The brain blood oxygenation level-dependent (BOLD) functional images were evaluated using 9.4 T fMRI before the Li-ESWT and one day after. Intraprostatic capsaicin injection induced increased NGF-, BDNF-, and COX-2-positive neurons in the L6 DRG and increased COX-2, NGF, BDNF, receptor Trk-A, and TRPV1 protein expression in the L6 DRG and the dorsal horn of the L6 spinal cord, whose effects were significantly downregulated after Li-ESWT on the prostate. Intraprostatic capsaicin injection increased activity of BOLD fMRI responses in brain regions associated with pain-related responses, such as the caudate putamen, periaqueductal gray, and thalamus, whose BOLD signals were reduced after Li-ESWT. These findings suggest a potential mechanism of Li-ESWT on modulation of peripheral and central sensitization for treating CP/CPPS.
Collapse
Affiliation(s)
- Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (H.-J.W.); (Y.-M.C.)
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-H.S.); (C.-C.Y.)
| | - Yu-Ming Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (H.-J.W.); (Y.-M.C.)
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-H.S.); (C.-C.Y.)
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (H.-J.W.); (Y.-M.C.)
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8094)
| |
Collapse
|
7
|
Ferris CF. Applications in Awake Animal Magnetic Resonance Imaging. Front Neurosci 2022; 16:854377. [PMID: 35450017 PMCID: PMC9017993 DOI: 10.3389/fnins.2022.854377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
There are numerous publications on methods and applications for awake functional MRI across different species, e.g., voles, rabbits, cats, dogs, and rhesus macaques. Each of these species, most obviously rhesus monkey, have general or unique attributes that provide a better understanding of the human condition. However, much of the work today is done on rodents. The growing number of small bore (≤30 cm) high field systems 7T- 11.7T favor the use of small animals. To that point, this review is primarily focused on rodents and their many applications in awake function MRI. Applications include, pharmacological MRI, drugs of abuse, sensory evoked stimuli, brain disorders, pain, social behavior, and fear.
Collapse
|
8
|
Projections from the lateral parabrachial nucleus to the lateral and ventral lateral periaqueductal gray subregions mediate the itching sensation. Pain 2021; 162:1848-1863. [PMID: 33449512 DOI: 10.1097/j.pain.0000000000002193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Lateral and ventral lateral subregions of the periaqueductal gray (l/vlPAG) have been proved to be pivotal components in descending circuitry of itch processing, and their effects are related to the subclassification of neurons that were meditated. In this study, lateral parabrachial nucleus (LPB), one of the most crucial relay stations in the ascending pathway, was taken as the input nucleus to examine the modulatory effect of l/vlPAG neurons that received LPB projections. Anatomical tracing, chemogenetic, optogenetic, and local pharmacological approaches were used to investigate the participation of the LPB-l/vlPAG pathway in itch and pain sensation in mice. First, morphological evidence for projections from vesicular glutamate transporter-2-containing neurons in the LPB to l/vlPAG involved in itch transmission has been provided. Furthermore, chemogenetic and optogenetic activation of the LPB-l/vlPAG pathway resulted in both antipruritic effect and analgesic effect, whereas pharmacogenetic inhibition strengthened nociceptive perception without affecting spontaneous scratching behavior. Finally, in vivo pharmacology was combined with optogenetics which revealed that AMPA receptor-expressing neurons in l/vlPAG might play a more essential role in pathway modulation. These findings provide a novel insight about the connections between 2 prominent transmit nuclei, LPB and l/vlPAG, in both pruriceptive and nociceptive sensations and deepen the understanding of l/vlPAG modulatory roles in itch sensation by chosen LPB as source of ascending efferent projections.
Collapse
|
9
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
10
|
Elevation of Transient Receptor Potential Vanilloid 1 Function in the Lateral Habenula Mediates Aversive Behaviors in Alcohol-withdrawn Rats. Anesthesiology 2020; 130:592-608. [PMID: 30676422 DOI: 10.1097/aln.0000000000002615] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Chronic alcohol use and withdrawal leads to increased pain perception, anxiety, and depression. These aberrant behaviors are accompanied by increased excitatory glutamatergic transmission to, and activity of, the lateral habenula neurons.Vanilloid type 1, or TRPV1, channels are expressed in the habenula and they facilitate glutamatergic transmission. Whether TRPV1 channel plays a role in habenula hyperactivity is not clear. WHAT THIS ARTICLE TELLS US THAT IS NEW Glutamatergic transmission in the lateral habenula was inhibited by TRPV1 channel antagonists. In vivo, local administration of TRPV1 antagonists into the lateral habenula attenuated hyperalgesia, anxiety, and relapse-like drinking in rats who chronically consumed alcohol.The data suggest that enhanced TRPV1 channel function during withdrawal may contribute to aberrant behavior that promotes relapse alcohol consumption. BACKGROUND Recent rat studies indicate that alcohol withdrawal can trigger a negative emotional state including anxiety- and depression-like behaviors and hyperalgesia, as well as elevated glutamatergic transmission and activity in lateral habenula neurons. TRPV1, a vanilloid receptor expressed in the habenula, is involved in pain, alcohol dependence, and glutamatergic transmission. The authors therefore hypothesized that TRPV1 contributes to the changes in both the behavioral phenotypes and the habenula activity in alcohol-withdrawn rats. METHODS Adult male Long-Evans rats (n = 110 and 280 for electrophysiology and behaviors, respectively), randomly assigned into the alcohol and water (Naïve) groups, were trained to consume either alcohol or water-only using an intermittent-access procedure. Slice electrophysiology was used to measure spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons. The primary outcome was the change in alcohol-related behaviors and lateral habenula activity induced by pharmacologic manipulation of TRPV1 activity. RESULTS The basal frequency of spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons in alcohol-withdrawn rats was significantly increased. The TRPV1 antagonist capsazepine (10 µM) induced a stronger inhibition on spontaneous excitatory postsynaptic currents (mean ± SD; by 26.1 ± 27.9% [n = 11] vs. 6.7 ± 18.6% [n = 17], P = 0.027) and firing (by 23.4 ± 17.6% [n = 9] vs. 11.9 ± 16.3% [n = 12], P = 0.025) in Withdrawn rats than Naive rats. By contrast, the TRPV1 agonist capsaicin (3 μM) produced a weaker potentiation in Withdrawn than Naïve rats (spontaneous excitatory postsynaptic currents: by 203.6 ± 124.7% [n = 20] vs. 415.2 ± 424.3% [n = 15], P < 0.001; firing: 38.1 ± 14.7% [n = 11] vs. 73.9 ± 41.9% [n = 11], P < 0.001). Conversely, capsaicin's actions in Naïve but not in Withdrawn rats were significantly attenuated by the pretreatment of TRPV1 endogenous agonist N-Oleoyldopamine. In Withdrawn rats, intra-habenula infusion of TRPV1 antagonists attenuated hyperalgesia and anxiety-like behaviors, decreased alcohol consumption upon resuming drinking, and elicited a conditioned place preference. CONCLUSIONS Enhanced TRPV1 function may contribute to increased glutamatergic transmission and activity of lateral habenula neurons, resulting in the aberrant behaviors during ethanol withdrawal.
Collapse
|
11
|
Colon-Perez LM, Turner SM, Lubke KN, Pompilus M, Febo M, Burke SN. Multiscale Imaging Reveals Aberrant Functional Connectome Organization and Elevated Dorsal Striatal Arc Expression in Advanced Age. eNeuro 2019; 6:ENEURO.0047-19.2019. [PMID: 31826916 PMCID: PMC6978920 DOI: 10.1523/eneuro.0047-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The functional connectome reflects a network architecture enabling adaptive behavior that becomes vulnerable in advanced age. The cellular mechanisms that contribute to altered functional connectivity in old age, however, are not known. Here we used a multiscale imaging approach to link age-related changes in the functional connectome to altered expression of the activity-dependent immediate-early gene Arc as a function of training to multitask on a working memory (WM)/biconditional association task (BAT). Resting-state fMRI data were collected from young and aged rats longitudinally at three different timepoints during cognitive training. After imaging, rats performed the WM/BAT and were immediately sacrificed to examine expression levels of Arc during task performance. Aged behaviorally impaired, but not young, rats had a subnetwork of increased connectivity between the anterior cingulate cortex (ACC) and dorsal striatum (DS) that was correlated with the use of a suboptimal response-based strategy during cognitive testing. Moreover, while young rats had stable rich-club organization across three scanning sessions, the rich-club organization of old rats increased with cognitive training. In a control group of young and aged rats that were longitudinally scanned at similar time intervals, but without cognitive training, ACC-DS connectivity and rich-club organization did not change between scans in either age group. These findings suggest that aberrant large-scale functional connectivity in aged animals is associated with altered cellular activity patterns within individual brain regions.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Sean M Turner
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Katelyn N Lubke
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marjory Pompilus
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marcelo Febo
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
12
|
Life without a brain: Neuroradiological and behavioral evidence of neuroplasticity necessary to sustain brain function in the face of severe hydrocephalus. Sci Rep 2019; 9:16479. [PMID: 31712649 PMCID: PMC6848215 DOI: 10.1038/s41598-019-53042-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
A two-year old rat, R222, survived a life-time of extreme hydrocephaly affecting the size and organization of its brain. Much of the cortex was severely thinned and replaced by cerebrospinal fluid, yet R222 had normal motor function, could hear, see, smell, and respond to tactile stimulation. The hippocampus was malformed and compressed into the lower hindbrain together with the hypothalamus midbrain and pons, yet R222 showed normal spatial memory as compared to age-matched controls. BOLD MRI was used to study the reorganization of R222’s brain function showing global activation to visual, olfactory and tactile stimulation, particularly in the brainstem/cerebellum. The results are discussed in the context of neuroadaptation in the face of severe hydrocephaly and subsequent tissue loss, with an emphasis on what is the “bare minimum” for survival.
Collapse
|
13
|
Arimura D, Shinohara K, Takahashi Y, Sugimura YK, Sugimoto M, Tsurugizawa T, Marumo K, Kato F. Primary Role of the Amygdala in Spontaneous Inflammatory Pain- Associated Activation of Pain Networks - A Chemogenetic Manganese-Enhanced MRI Approach. Front Neural Circuits 2019; 13:58. [PMID: 31632244 PMCID: PMC6779784 DOI: 10.3389/fncir.2019.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a major health problem, affecting 10–30% of the population in developed countries. While chronic pain is defined as “a persistent complaint of pain lasting for more than the usual period for recovery,” recently accumulated lines of evidence based on human brain imaging have revealed that chronic pain is not simply a sustained state of nociception, but rather an allostatic state established through gradually progressing plastic changes in the central nervous system. To visualize the brain activity associated with spontaneously occurring pain during the shift from acute to chronic pain under anesthetic-free conditions, we used manganese-enhanced magnetic resonance imaging (MEMRI) with a 9.4-T scanner to visualize neural activity-dependent accumulation of manganese in the brains of mice with hind paw inflammation. Time-differential analysis between 2- and 6-h after formalin injection to the left hind paw revealed a significantly increased MEMRI signal in various brain areas, including the right insular cortex, right nucleus accumbens, right globus pallidus, bilateral caudate putamen, right primary/secondary somatosensory cortex, bilateral thalamus, right amygdala, bilateral substantial nigra, and left ventral tegmental area. To analyze the role of the right amygdala in these post-formalin MEMRI signals, we repeatedly inhibited right amygdala neurons during this 2–6-h period using the “designer receptors exclusively activated by designer drugs” (DREADD) technique. Pharmacological activation of inhibitory DREADDs expressed in the right amygdala significantly attenuated MEMRI signals in the bilateral infralimbic cortex, bilateral nucleus accumbens, bilateral caudate putamen, right globus pallidus, bilateral ventral tegmental area, and bilateral substantia nigra, suggesting that the inflammatory pain-associated activation of these structures depends on the activity of the right amygdala and DREADD-expressing adjacent structures. In summary, the combined use of DREADD and MEMRI is a promising approach for revealing regions associated with spontaneous pain-associated brain activities and their causal relationships.
Collapse
Affiliation(s)
- Daigo Arimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Kei Shinohara
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yae K Sugimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Sugimoto
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan.,NeuroSpin, CEA-Saclay, Gif-sur-Yvette, France
| | - Keishi Marumo
- Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Desjardins M, Kılıç K, Thunemann M, Mateo C, Holland D, Ferri CGL, Cremonesi JA, Li B, Cheng Q, Weldy KL, Saisan PA, Kleinfeld D, Komiyama T, Liu TT, Bussell R, Wong EC, Scadeng M, Dunn AK, Boas DA, Sakadžić S, Mandeville JB, Buxton RB, Dale AM, Devor A. Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:533-542. [PMID: 30691968 DOI: 10.1016/j.bpsc.2018.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/26/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) in awake behaving mice is well positioned to bridge the detailed cellular-level view of brain activity, which has become available owing to recent advances in microscopic optical imaging and genetics, to the macroscopic scale of human noninvasive observables. However, though microscopic (e.g., two-photon imaging) studies in behaving mice have become a reality in many laboratories, awake mouse fMRI remains a challenge. Owing to variability in behavior among animals, performing all types of measurements within the same subject is highly desirable and can lead to higher scientific rigor. METHODS We demonstrated blood oxygenation level-dependent fMRI in awake mice implanted with long-term cranial windows that allowed optical access for microscopic imaging modalities and optogenetic stimulation. We started with two-photon imaging of single-vessel diameter changes (n = 1). Next, we implemented intrinsic optical imaging of blood oxygenation and flow combined with laser speckle imaging of blood flow obtaining a mesoscopic picture of the hemodynamic response (n = 16). Then we obtained corresponding blood oxygenation level-dependent fMRI data (n = 5). All measurements could be performed in the same mice in response to identical sensory and optogenetic stimuli. RESULTS The cranial window did not deteriorate the quality of fMRI and allowed alternation between imaging modalities in each subject. CONCLUSIONS This report provides a proof of feasibility for multiscale imaging approaches in awake mice. In the future, this protocol could be extended to include complex cognitive behaviors translatable to humans, such as sensory discrimination or attention.
Collapse
Affiliation(s)
- Michèle Desjardins
- Department of Radiology, University of California, San Diego, La Jolla, California.
| | - Kıvılcım Kılıç
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Martin Thunemann
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Celine Mateo
- Department of Physics, University of California, San Diego, La Jolla, California
| | - Dominic Holland
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Christopher G L Ferri
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Jonathan A Cremonesi
- Biology Undergraduate Program, University of California, San Diego, La Jolla, California
| | - Baoqiang Li
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Qun Cheng
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Kimberly L Weldy
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Payam A Saisan
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California; Section of Neurobiology, University of California, San Diego, La Jolla, California; Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California
| | - Takaki Komiyama
- Department of Neurosciences, University of California, San Diego, La Jolla, California; Section of Neurobiology, University of California, San Diego, La Jolla, California
| | - Thomas T Liu
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Robert Bussell
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Eric C Wong
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Miriam Scadeng
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Joseph B Mandeville
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Richard B Buxton
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Anna Devor
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| |
Collapse
|
15
|
Ironside M, Kumar P, Kang MS, Pizzagalli DA. Brain mechanisms mediating effects of stress on reward sensitivity. Curr Opin Behav Sci 2018; 22:106-113. [PMID: 30349872 PMCID: PMC6195323 DOI: 10.1016/j.cobeha.2018.01.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Acute and chronic stress have dissociable effects on reward sensitivity, and a better understanding of these effects promises to elucidate the pathophysiology of stress-related disorders, particularly depression. Recent preclinical and human findings suggest that stress particularly affects reward anticipation; chronic stress perturbates dopamine signaling in the medial prefrontal cortex and ventral striatum; and such effects are further moderated by early adversities. Additionally, a systems-level approach is uncovering the interplay among striatal, limbic and control networks giving rise to stress-related, blunted reward sensitivity. Together, this cross-species confluence has not only enriched our understanding of stress-reward links but also highlighted the role of neuropeptides and opioid receptors in such effects, and thereby identified novel targets for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Ironside
- McLean Hospital, 115 Mill St, Belmont, MA 02476, USA Telephone: +1 800-333-0338; Fax: +1 617-855-4231
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Poornima Kumar
- McLean Hospital, 115 Mill St, Belmont, MA 02476, USA Telephone: +1 800-333-0338; Fax: +1 617-855-4231
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Min-Su Kang
- McLean Hospital, 115 Mill St, Belmont, MA 02476, USA Telephone: +1 800-333-0338; Fax: +1 617-855-4231
| | - Diego A. Pizzagalli
- McLean Hospital, 115 Mill St, Belmont, MA 02476, USA Telephone: +1 800-333-0338; Fax: +1 617-855-4231
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| |
Collapse
|
16
|
Madularu D, Yee JR, Kulkarni P, Ferris CF. System-specific activity in response to Δ 9 -tetrahydrocannabinol: a functional magnetic resonance imaging study in awake male rats. Eur J Neurosci 2017; 46:2893-2900. [PMID: 29057576 DOI: 10.1111/ejn.13754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/01/2023]
Abstract
The aim of this study was to assess the effects of two doses of Δ9 -tetrahydrocannabinol (THC, cannabis' main psychoactive agent) and vehicle on blood-oxygen-level dependent (BOLD) activity in drug-naïve, awake rats, in an effort to obtain a THC-specific map of activation in clinically-relevant regions and systems. Intraperitoneal injections of low dose of THC resulted in increased positive and negative BOLD signals compared to vehicle and high dose in areas rich in cannabinoid receptor 1, as well as throughout the pain and hippocampal neural systems. These results offer unique maps of activity, or 'fingerprints', associated with systemic THC administration, allowing for further comparisons with either additional doses or compounds, or between THC administration modalities (i.e. systemic vs. ingested vs. inhaled), which ultimately adds to the translatability assessment of THC-induced BOLD between animal and human studies.
Collapse
Affiliation(s)
- Dan Madularu
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, 6875 Lasalle Blvd., Montreal, QC, H4H 1R3, Canada.,Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Jason R Yee
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Occhieppo VB, Marchese NA, Rodríguez ID, Basmadjian OM, Baiardi G, Bregonzio C. Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central AT1receptor activation. Eur J Neurosci 2017; 45:1586-1593. [DOI: 10.1111/ejn.13594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Victoria Belén Occhieppo
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Natalia Andrea Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Iara Diamela Rodríguez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Osvaldo Martin Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología (IIBYT-CONICET); Universidad Nacional de Córdoba Facultad de Ciencias Químicas; Universidad Católica de Córdoba; Córdoba Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| |
Collapse
|
18
|
Hwang SH, Wagner K, Xu J, Yang J, Li X, Cao Z, Morisseau C, Lee KSS, Hammock BD. Chemical synthesis and biological evaluation of ω-hydroxy polyunsaturated fatty acids. Bioorg Med Chem Lett 2016; 27:620-625. [PMID: 28025003 DOI: 10.1016/j.bmcl.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/17/2023]
Abstract
ω-Hydroxy polyunsaturated fatty acids (PUFAs), natural metabolites from arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were prepared via convergent synthesis approach using two key steps: Cu-mediated CC bond formation to construct methylene skipped poly-ynes and a partial alkyne hydrogenation where the presence of excess 2-methyl-2-butene as an additive that is proven to be critical for the success of partial reduction of the poly-ynes to the corresponding cis-alkenes without over-hydrogenation. The potential biological function of ω-hydroxy PUFAs in pain was evaluated in naive rats. Following intraplantar injection, 20-hydroxyeicosatetraenoic acid (20-HETE, ω-hydroxy ARA) generated an acute decrease in paw withdrawal thresholds in a mechanical nociceptive assay indicating pain, but no change was observed from rats which received either 20-hydroxyeicosapentaenoic acid (20-HEPE, ω-hydroxy EPA) or 22-hydroxydocosahexaenoic acid (22-HDoHE, ω-hydroxy DHA). We also found that both 20-HEPE and 22-HDoHE are more potent than 20-HETE to activate murine transient receptor potential vanilloid receptor1 (mTRPV1).
Collapse
Affiliation(s)
- Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jian Xu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Development, China Pharmaceutical University, 639, Longmian Ave, Jiangning District, Nanjing, Jiangsu 211198, PR China
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xichun Li
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Development, China Pharmaceutical University, 639, Longmian Ave, Jiangning District, Nanjing, Jiangsu 211198, PR China
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Development, China Pharmaceutical University, 639, Longmian Ave, Jiangning District, Nanjing, Jiangsu 211198, PR China
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Fattori V, Hohmann MSN, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016; 21:E844. [PMID: 27367653 PMCID: PMC6273101 DOI: 10.3390/molecules21070844] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Miriam S N Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Ana C Rossaneis
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
20
|
Tucker AB, Stocker SD. Hypernatremia-induced vasopressin secretion is not altered in TRPV1-/- rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R451-6. [PMID: 27335281 DOI: 10.1152/ajpregu.00483.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/17/2016] [Indexed: 11/22/2022]
Abstract
Changes in osmolality or extracellular NaCl concentrations are detected by specialized neurons in the hypothalamus to increase vasopressin (VP) and stimulate thirst. Recent in vitro evidence suggests this process is mediated by an NH2-terminal variant of the transient receptor potential vanilloid type 1 (TRPV1) channel expressed by osmosensitive neurons of the lamina terminalis and vasopressinergic neurons of the supraoptic nucleus. The present study tested this hypothesis in vivo by analysis of plasma VP levels during acute hypernatremia in awake control and TRPV1(-/-) rats. TRPV1(-/-) rats were produced by a Zinc-finger-nuclease 2-bp deletion in exon 13. Intravenous injection of the TRPV1 agonist capsaicin produced hypotension and bradycardia in control rats, but this response was absent in TRPV1(-/-) rats. Infusion of 2 M NaCl (1 ml/h iv) increased plasma osmolality, electrolytes, and VP levels in both control and TRPV1(-/-) rats. However, plasma VP levels did not differ between strains at any time. Furthermore, a linear regression between plasma VP versus osmolality revealed a significant correlation in both control and TRPV1(-/-) rats, but the slope of the regression lines was not attenuated in TRPV1(-/-) versus control rats. Hypotension produced by intravenous injection of minoxidil decreased blood pressure and increased plasma VP levels similarly in both groups. Finally, both treatments stimulated thirst; however, cumulative water intakes in response to hypernatremia or hypotension were not different between control and TRPV1(-/-) rats. These findings suggest that TRPV1 channels are not necessary for VP secretion and thirst stimulated by hypernatremia.
Collapse
Affiliation(s)
- Andrew Blake Tucker
- Department of Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sean D Stocker
- Department of Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
21
|
Yee JR, Kenkel WM, Kulkarni P, Moore K, Perkeybile AM, Toddes S, Amacker JA, Carter CS, Ferris CF. BOLD fMRI in awake prairie voles: A platform for translational social and affective neuroscience. Neuroimage 2016; 138:221-232. [PMID: 27238726 DOI: 10.1016/j.neuroimage.2016.05.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
The advancement of neuroscience depends on continued improvement in methods and models. Here, we present novel techniques for the use of awake functional magnetic resonance imaging (fMRI) in the prairie vole (Microtus ochrogaster) - an important step forward in minimally-invasive measurement of neural activity in a non-traditional animal model. Imaging neural responses in prairie voles, a species studied for its propensity to form strong and selective social bonds, is expected to greatly advance our mechanistic understanding of complex social and affective processes. The use of ultra-high-field fMRI allows for recording changes in region-specific activity throughout the entire brain simultaneously and with high temporal and spatial resolutions. By imaging neural responses in awake animals, with minimal invasiveness, we are able to avoid the confound of anesthesia, broaden the scope of possible stimuli, and potentially make use of repeated scans from the same animals. These methods are made possible by the development of an annotated and segmented 3D vole brain atlas and software for image analysis. The use of these methods in the prairie vole provides an opportunity to broaden neuroscientific investigation of behavior via a comparative approach, which highlights the ethological relevance of pro-social behaviors shared between voles and humans, such as communal breeding, selective social bonds, social buffering of stress, and caregiving behaviors. Results using these methods show that fMRI in the prairie vole is capable of yielding robust blood oxygen level dependent (BOLD) signal changes in response to hypercapnic challenge (inhaled 5% CO2), region-specific physical challenge (unilateral whisker stimulation), and presentation of a set of novel odors. Complementary analyses of repeated restraint sessions in the imaging hardware suggest that voles do not require acclimation to this procedure. Taken together, awake vole fMRI represents a new arena of neurobiological study outside the realm of traditional rodent models.
Collapse
Affiliation(s)
- J R Yee
- Dept. of Psychology, Northeastern University, United States; Kinsey Institute, Indiana University, United States.
| | - W M Kenkel
- Dept. of Psychology, Northeastern University, United States; Kinsey Institute, Indiana University, United States
| | - P Kulkarni
- Dept. of Psychology, Northeastern University, United States
| | - K Moore
- Dept. of Psychology, Northeastern University, United States
| | - A M Perkeybile
- Dept. of Psychology, Northeastern University, United States
| | - S Toddes
- Dept. of Psychology, Northeastern University, United States
| | - J A Amacker
- Dept. of Psychology, Northeastern University, United States
| | - C S Carter
- Kinsey Institute, Indiana University, United States
| | - C F Ferris
- Dept. of Psychology, Northeastern University, United States
| |
Collapse
|
22
|
Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit. Transl Psychiatry 2016; 6:e763. [PMID: 27003189 PMCID: PMC4872441 DOI: 10.1038/tp.2016.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/06/2015] [Accepted: 01/19/2016] [Indexed: 01/19/2023] Open
Abstract
Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.
Collapse
|
23
|
Amirmohseni S, Segelcke D, Reichl S, Wachsmuth L, Görlich D, Faber C, Pogatzki-Zahn E. Characterization of incisional and inflammatory pain in rats using functional tools of MRI. Neuroimage 2016; 127:110-122. [DOI: 10.1016/j.neuroimage.2015.11.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
|