1
|
Kravets VG, Clark TK. An experimentally informed computational model of neurovestibular adaptation to altered gravity. Exp Physiol 2024. [PMID: 38625533 DOI: 10.1113/ep091817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Transitions to altered gravity environments result in acute sensorimotor impairment for astronauts, leading to serious mission and safety risks in the crucial first moments in a new setting. Our understanding of the time course and severity of impairment in the early stages of adaptation remains limited and confounded by unmonitored head movements, which are likely to impact the rate of adaptation. Here, we aimed to address this gap by using a human centrifuge to simulate the first hour of hypergravity (1.5g) exposure and the subsequent 1g readaptation period, with precisely controlled head tilt activity. We quantified head tilt overestimation via subjective visual vertical and found ∼30% tilt overestimation that did not decrease over the course of 1 h of exposure to the simulated gravity environment. These findings extended the floor of the vestibular adaptation window (with controlled vestibular cueing) to 1 h of exposure to altered gravity. We then used the empirical data to inform a computational model of neurovestibular adaptation to changes in the magnitude of gravity, which can offer insight into the adaptation process and, with further tuning, can be used to predict the temporal dynamics of vestibular-mediated misperceptions in altered gravity.
Collapse
Affiliation(s)
- Victoria G Kravets
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA
| | - Torin K Clark
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
2
|
Vimal VP, Panic AS, Lackner JR, DiZio P. Vibrotactile feedback as a countermeasure for spatial disorientation. Front Physiol 2023; 14:1249962. [PMID: 38028769 PMCID: PMC10657135 DOI: 10.3389/fphys.2023.1249962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Spaceflight can make astronauts susceptible to spatial disorientation which is one of the leading causes of fatal aircraft accidents. In our experiment, blindfolded participants used a joystick to balance themselves while inside a multi-axis rotation device (MARS) in either the vertical or horizontal roll plane. On Day 1, in the vertical roll plane (Earth analog condition) participants could use gravitational cues and therefore had a good sense of their orientation. On Day 2, in the horizontal roll plane (spaceflight analog condition) participants could not use gravitational cues and rapidly became disoriented and showed minimal learning and poor performance. One potential countermeasure for spatial disorientation is vibrotactile feedback that conveys body orientation provided by small vibrating devices applied to the skin. Orientation-dependent vibrotactile feedback provided to one group enhanced performance in the spaceflight condition but the participants reported a conflict between the accurate vibrotactile cues and their erroneous perception of their orientation. Specialized vibrotactile training on Day 1 provided to another group resulted in significantly better learning and performance in the spaceflight analog task with vibrotactile cueing. In this training, participants in the Earth analog condition on Day 1 were required to disengage from the task of aligning with the gravitational vertical encoded by natural vestibular/somatosensory afference and had to align with randomized non-vertical directions of balance signaled by vibrotactile feedback. At the end of Day 2, we deactivated the vibrotactile feedback after both vibration-cued groups had practiced with it in the spaceflight analog condition. They performed as well as the group who did not have any vibrotactile feedback. We conclude that after appropriate training, vibrotactile orientation feedback augments dynamic spatial orientation and does not lead to any negative dependence.
Collapse
Affiliation(s)
- Vivekanand Pandey Vimal
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Alexander Sacha Panic
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, MA, United States
| | - James R. Lackner
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
- Psychology Department, Brandeis University, Waltham, MA, United States
| | - Paul DiZio
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
- Psychology Department, Brandeis University, Waltham, MA, United States
| |
Collapse
|
3
|
Wang Y, Tang J, Vimal VP, Lackner JR, DiZio P, Hong P. Crash Prediction Using Deep Learning in a Disorienting Spaceflight Analog Balancing Task. Front Physiol 2022; 13:806357. [PMID: 35153834 PMCID: PMC8832067 DOI: 10.3389/fphys.2022.806357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Were astronauts forced to land on the surface of Mars using manual control of their vehicle, they would not have familiar gravitational cues because Mars’ gravity is only 0.38 g. They could become susceptible to spatial disorientation, potentially causing mission ending crashes. In our earlier studies, we secured blindfolded participants into a Multi-Axis Rotation System (MARS) device that was programmed to behave like an inverted pendulum. Participants used a joystick to stabilize around the balance point. We created a spaceflight analog condition by having participants dynamically balance in the horizontal roll plane, where they did not tilt relative to the gravitational vertical and therefore could not use gravitational cues to determine their position. We found 90% of participants in our spaceflight analog condition reported spatial disorientation and all of them showed it in their data. There was a high rate of crashing into boundaries that were set at ± 60° from the balance point. Our goal was to see whether we could use deep learning to predict the occurrence of crashes before they happened. We used stacked gated recurrent units (GRU) to predict crash events 800 ms in advance with an AUC (area under the curve) value of 99%. When we prioritized reducing false negatives we found it resulted in more false positives. We found that false negatives occurred when participants made destabilizing joystick deflections that rapidly moved the MARS away from the balance point. These unpredictable destabilizing joystick deflections, which occurred in the duration of time after the input data, are likely a result of spatial disorientation. If our model could work in real time, we calculated that immediate human action would result in the prevention of 80.7% of crashes, however, if we accounted for human reaction times (∼400 ms), only 30.3% of crashes could be prevented, suggesting that one solution could be an AI taking temporary control of the spacecraft during these moments.
Collapse
Affiliation(s)
- Yonglin Wang
- Computer Science Department, Brandeis University, Waltham, MA, United States
| | - Jie Tang
- Computer Science Department, Brandeis University, Waltham, MA, United States
| | - Vivekanand Pandey Vimal
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
- *Correspondence: Vivekanand Pandey Vimal,
| | - James R. Lackner
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
- Psychology Department, Brandeis University, Waltham, MA, United States
| | - Paul DiZio
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
- Psychology Department, Brandeis University, Waltham, MA, United States
| | - Pengyu Hong
- Computer Science Department, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| |
Collapse
|
4
|
Gravano S, Lacquaniti F, Zago M. Mental imagery of object motion in weightlessness. NPJ Microgravity 2021; 7:50. [PMID: 34862387 PMCID: PMC8642442 DOI: 10.1038/s41526-021-00179-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Mental imagery represents a potential countermeasure for sensorimotor and cognitive dysfunctions due to spaceflight. It might help train people to deal with conditions unique to spaceflight. Thus, dynamic interactions with the inertial motion of weightless objects are only experienced in weightlessness but can be simulated on Earth using mental imagery. Such training might overcome the problem of calibrating fine-grained hand forces and estimating the spatiotemporal parameters of the resulting object motion. Here, a group of astronauts grasped an imaginary ball, threw it against the ceiling or the front wall, and caught it after the bounce, during pre-flight, in-flight, and post-flight experiments. They varied the throwing speed across trials and imagined that the ball moved under Earth's gravity or weightlessness. We found that the astronauts were able to reproduce qualitative differences between inertial and gravitational motion already on ground, and further adapted their behavior during spaceflight. Thus, they adjusted the throwing speed and the catching time, equivalent to the duration of virtual ball motion, as a function of the imaginary 0 g condition versus the imaginary 1 g condition. Arm kinematics of the frontal throws further revealed a differential processing of imagined gravity level in terms of the spatial features of the arm and virtual ball trajectories. We suggest that protocols of this kind may facilitate sensorimotor adaptation and help tuning vestibular plasticity in-flight, since mental imagery of gravitational motion is known to engage the vestibular cortex.
Collapse
Affiliation(s)
- Silvio Gravano
- grid.417778.a0000 0001 0692 3437Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine and Center of Space BioMedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy. .,Department of Systems Medicine and Center of Space BioMedicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy. .,Department of Civil Engineering and Computer Science Engineering & Center of Space BioMedicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
5
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
6
|
Kravets VG, Dixon JB, Ahmed NR, Clark TK. COMPASS: Computations for Orientation and Motion Perception in Altered Sensorimotor States. Front Neural Circuits 2021; 15:757817. [PMID: 34720889 PMCID: PMC8553968 DOI: 10.3389/fncir.2021.757817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Reliable perception of self-motion and orientation requires the central nervous system (CNS) to adapt to changing environments, stimuli, and sensory organ function. The proposed computations required of neural systems for this adaptation process remain conceptual, limiting our understanding and ability to quantitatively predict adaptation and mitigate any resulting impairment prior to completing adaptation. Here, we have implemented a computational model of the internal calculations involved in the orientation perception system’s adaptation to changes in the magnitude of gravity. In summary, we propose that the CNS considers parallel, alternative hypotheses of the parameter of interest (in this case, the CNS’s internal estimate of the magnitude of gravity) and uses the associated sensory conflict signals (i.e., difference between sensory measurements and the expectation of them) to sequentially update the posterior probability of each hypothesis using Bayes rule. Over time, an updated central estimate of the internal magnitude of gravity emerges from the posterior probability distribution, which is then used to process sensory information and produce perceptions of self-motion and orientation. We have implemented these hypotheses in a computational model and performed various simulations to demonstrate quantitative model predictions of adaptation of the orientation perception system to changes in the magnitude of gravity, similar to those experienced by astronauts during space exploration missions. These model predictions serve as quantitative hypotheses to inspire future experimental assessments.
Collapse
Affiliation(s)
- Victoria G Kravets
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Jordan B Dixon
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Nisar R Ahmed
- COHRINT Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Torin K Clark
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
7
|
Vimal VP, DiZio P, Lackner JR. The role of spatial acuity in a dynamic balancing task without gravitational cues. Exp Brain Res 2021; 240:123-133. [PMID: 34652493 DOI: 10.1007/s00221-021-06239-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/30/2021] [Indexed: 11/25/2022]
Abstract
In earlier studies, blindfolded participants used a joystick to orient themselves to the direction of balance in the horizontal roll plane while in a device programmed to behave like an inverted pendulum. In this spaceflight analog situation, position relevant gravitational cues are absent. Most participants show minimal learning, positional drifting, and failure of path integration. However, individual differences are substantial, some participants show learning and others become progressively worse. In Experiment 1, our goal was to determine whether spatial acuity could explain these individual differences in active balancing. We exposed blindfolded participants to passive movement profiles, with different frequency components, in the vertical and horizontal roll planes. They pressed a joystick trigger to indicate every time they passed the start point. We found greater spatial acuity for higher frequencies but no relation between passive spatial accuracy and active balance control in the horizontal roll plane, suggesting that spatial acuity in the horizontal roll plane does not predict performance in a disorienting spaceflight condition. In Experiment 2, we found significant correlations between passive spatial acuity in the vertical roll plane, where participants have task relevant gravitational cues, and early active balancing in the horizontal roll plane. These correlations appeared after participants underwent brief provocative vestibular stimulation by making a pitch head movement during vertical yaw rotation. Our findings suggest that vestibular stimulation may be a valuable part of assessments of individual differences in performance during initial exposure to disorienting spaceflight conditions where there are no reliable gravity dependent positional cues.
Collapse
Affiliation(s)
- Vivekanand Pandey Vimal
- Ashton Graybiel Spatial Orientation Laboratory, MS 033, Brandeis University, Waltham, MA, 02245-9110, USA. .,Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02245-9110, USA.
| | - Paul DiZio
- Ashton Graybiel Spatial Orientation Laboratory, MS 033, Brandeis University, Waltham, MA, 02245-9110, USA.,Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02245-9110, USA.,Department of Psychology, Brandeis University, Waltham, MA, 02245-9110, USA
| | - James R Lackner
- Ashton Graybiel Spatial Orientation Laboratory, MS 033, Brandeis University, Waltham, MA, 02245-9110, USA.,Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02245-9110, USA.,Department of Psychology, Brandeis University, Waltham, MA, 02245-9110, USA
| |
Collapse
|
8
|
Dror AA, Taiber S, Sela E, Handzel O, Avraham KB. A mouse model for benign paroxysmal positional vertigo with genetic predisposition for displaced otoconia. GENES BRAIN AND BEHAVIOR 2020; 19:e12635. [PMID: 31898392 DOI: 10.1111/gbb.12635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022]
Abstract
Abnormal formation of otoconia, the biominerals of the inner ear, results in balance disorders. The inertial mass of otoconia activates the underlying mechanosensory hair cells in response to change in head position primarily during linear and rotational acceleration. Otoconia associate exclusively with the two gravity receptors, the utricle and saccule. The cristae sensory epithelium is associated with an extracellular gelatinous matrix known as cupula, equivalent to otoconia. During head rotation, the inertia of endolymphatic fluids within the semicircular canals deflects the cupula of the corresponding crista and activates the underlying mechanosensory hair cells. It is believed that detached free-floating otoconia particles travel ectopically to the semicircular canal and cristae and are the culprit for benign paroxysmal positional vertigo (BPPV). The Slc26a4 mouse mutant harbors a missense mutation in pendrin. This mutation leads to impaired transport activity of pendrin and to defects in otoconia composition and distribution. All Slc26a4 loop/loop homozygous mutant mice are profoundly deaf but show inconsistent vestibular deficiency. A panel of behavioral tests was utilized in order to generate a scoring method for vestibular function. A pathological finding of displaced otoconia was identified consistently in the inner ears of mutant mice with severe vestibular dysfunction. In this work, we present a mouse model with a genetic predisposition for ectopic otoconia with a clinical correlation to BPPV. This unique mouse model can serve as a platform for further investigation of BPPV pathophysiology, and for developing novel treatment approaches in a live animal model.
Collapse
Affiliation(s)
- Amiel A Dror
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Otolaryngology-Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Sela
- Department of Otolaryngology-Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Ophir Handzel
- Department of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Dixon JB, Clark TK. Sensorimotor impairment from a new analog of spaceflight-altered neurovestibular cues. J Neurophysiol 2020; 123:209-223. [PMID: 31747329 DOI: 10.1152/jn.00156.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to microgravity during spaceflight causes central reinterpretations of orientation sensory cues in astronauts, leading to sensorimotor impairment upon return to Earth. Currently there is no ground-based analog for the neurovestibular system relevant to spaceflight. We propose such an analog, which we term the "wheelchair head-immobilization paradigm" (WHIP). Subjects lie on their side on a bed fixed to a modified electric wheelchair, with their head restrained by a custom facemask. WHIP prevents any head tilt relative to gravity, which normally produces coupled stimulation to the otoliths and semicircular canals, but does not occur in microgravity. Decoupled stimulation is produced through translation and rotation on the wheelchair by the subject using a joystick. Following 12 h of WHIP exposure, subjects systematically felt illusory sensations of self-motion when making head tilts and had significant decrements in balance and locomotion function using tasks similar to those assessed in astronauts postspaceflight. These effects were not observed in our control groups without head restraint, suggesting the altered neurovestibular stimulation patterns experienced in WHIP lead to relevant central reinterpretations. We conclude by discussing the findings in light of postspaceflight sensorimotor impairment, WHIP's uses beyond a spaceflight analog, limitations, and future work.NEW & NOTEWORTHY We propose, implement, and demonstrate the feasibility of a new analog for spaceflight-altered neurovestibular stimulation. Following extended exposure to the analog, we found subjects reported illusory self-motion perception. Furthermore, they demonstrated decrements in balance and locomotion, using tasks similar to those used to assess astronaut sensorimotor performance postspaceflight.
Collapse
Affiliation(s)
- Jordan B Dixon
- Smead Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| | - Torin K Clark
- Smead Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| |
Collapse
|
10
|
Is Human Enhancement in Space a Moral Duty? Missions to Mars, Advanced AI and Genome Editing in Space. Camb Q Healthc Ethics 2019; 29:122-130. [PMID: 31858939 DOI: 10.1017/s0963180119000859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Any space program involving long-term human missions will have to cope with serious risks to human health and life. Because currently available countermeasures are insufficient in the long term, there is a need for new, more radical solutions. One possibility is a program of human enhancement for future deep space mission astronauts. This paper discusses the challenges for long-term human missions of a space environment, opening the possibility of serious consideration of human enhancement and a fully automated space exploration, based on highly advanced AI. The author argues that for such projects, there are strong reasons to consider human enhancement, including gene editing of germ line and somatic cells, as a moral duty.
Collapse
|
11
|
Pechenkova E, Nosikova I, Rumshiskaya A, Litvinova L, Rukavishnikov I, Mershina E, Sinitsyn V, Van Ombergen A, Jeurissen B, Jillings S, Laureys S, Sijbers J, Grishin A, Chernikova L, Naumov I, Kornilova L, Wuyts FL, Tomilovskaya E, Kozlovskaya I. Alterations of Functional Brain Connectivity After Long-Duration Spaceflight as Revealed by fMRI. Front Physiol 2019; 10:761. [PMID: 31333476 PMCID: PMC6621543 DOI: 10.3389/fphys.2019.00761] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
The present study reports alterations of task-based functional brain connectivity in a group of 11 cosmonauts after a long-duration spaceflight, compared to a healthy control group not involved in the space program. To elicit the postural and locomotor sensorimotor mechanisms that are usually most significantly impaired when space travelers return to Earth, a plantar stimulation paradigm was used in a block design fMRI study. The motor control system activated by the plantar stimulation involved the pre-central and post-central gyri, SMA, SII/operculum, and, to a lesser degree, the insular cortex and cerebellum. While no post-flight alterations were observed in terms of activation, the network-based statistics approach revealed task-specific functional connectivity modifications within a broader set of regions involving the activation sites along with other parts of the sensorimotor neural network and the visual, proprioceptive, and vestibular systems. The most notable findings included a post-flight increase in the stimulation-specific connectivity of the right posterior supramarginal gyrus with the rest of the brain; a strengthening of connections between the left and right insulae; decreased connectivity of the vestibular nuclei, right inferior parietal cortex (BA40) and cerebellum with areas associated with motor, visual, vestibular, and proprioception functions; and decreased coupling of the cerebellum with the visual cortex and the right inferior parietal cortex. The severity of space motion sickness symptoms was found to correlate with a post- to pre-flight difference in connectivity between the right supramarginal gyrus and the left anterior insula. Due to the complex nature and rapid dynamics of adaptation to gravity alterations, the post-flight findings might be attributed to both the long-term microgravity exposure and to the readaptation to Earth's gravity that took place between the landing and post-flight MRI session. Nevertheless, the results have implications for the multisensory reweighting and gravitational motor system theories, generating hypotheses to be tested in future research.
Collapse
Affiliation(s)
| | - Inna Nosikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alena Rumshiskaya
- Radiology Department, Federal Center of Treatment and Rehabilitation, Moscow, Russia
| | - Liudmila Litvinova
- Radiology Department, Federal Center of Treatment and Rehabilitation, Moscow, Russia
| | - Ilya Rukavishnikov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena Mershina
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Valentin Sinitsyn
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Angelique Van Ombergen
- Lab for Equilibrium Investigations and Aerospace, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Ben Jeurissen
- iMec/Vision Lab, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Steven Jillings
- Lab for Equilibrium Investigations and Aerospace, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Coma Science Group, GIGA Consciousness Research Centre, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness Research Centre, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Jan Sijbers
- iMec/Vision Lab, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | | | - Ludmila Chernikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Naumov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila Kornilova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Floris L. Wuyts
- Lab for Equilibrium Investigations and Aerospace, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Elena Tomilovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inessa Kozlovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
13
|
Lawson BD, Rupert AH, McGrath BJ. The Neurovestibular Challenges of Astronauts and Balance Patients: Some Past Countermeasures and Two Alternative Approaches to Elicitation, Assessment and Mitigation. Front Syst Neurosci 2016; 10:96. [PMID: 27920669 PMCID: PMC5118654 DOI: 10.3389/fnsys.2016.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/07/2016] [Indexed: 12/02/2022] Open
Abstract
Astronauts and vestibular patients face analogous challenges to orientation function due to adaptive exogenous (weightlessness-induced) or endogenous (pathology-induced) alterations in the processing of acceleration stimuli. Given some neurovestibular similarities between these challenges, both affected groups may benefit from shared research approaches and adaptation measurement/improvement strategies. This article reviews various past strategies and introduces two plausible ground-based approaches, the first of which is a method for eliciting and assessing vestibular adaptation-induced imbalance. Second, we review a strategy for mitigating imbalance associated with vestibular pathology and fostering readaptation. In discussing the first strategy (for imbalance assessment), we review a pilot study wherein imbalance was elicited (among healthy subjects) via an adaptive challenge that caused a temporary/reversible disruption. The surrogate vestibular deficit was caused by a brief period of movement-induced adaptation to an altered (rotating) gravitoinertial frame of reference. This elicited adaptation and caused imbalance when head movements were made after reentry into the normal (non-rotating) frame of reference. We also review a strategy for fall mitigation, viz., a prototype tactile sway feedback device for aiding balance/recovery after disruptions caused by vestibular pathology. We introduce the device and review a preliminary exploration of its effectiveness in aiding clinical balance rehabilitation (discussing the implications for healthy astronauts). Both strategies reviewed in this article represent cross-disciplinary research spin-offs: the ground-based vestibular challenge and tactile cueing display were derived from aeromedical research to benefit military aviators suffering from flight simulator-relevant aftereffects or inflight spatial disorientation, respectively. These strategies merit further evaluation using clinical and astronaut populations.
Collapse
Affiliation(s)
- Ben D Lawson
- U.S. Army Aeromedical Research Laboratory (USAARL) Fort Rucker, AL, USA
| | - Angus H Rupert
- U.S. Army Aeromedical Research Laboratory (USAARL) Fort Rucker, AL, USA
| | - Braden J McGrath
- Faculty of Education, Science, Technology and Maths, University of Canberra Canberra, ACT, Australia
| |
Collapse
|
14
|
Towards human exploration of space: the THESEUS review series on neurophysiology research priorities. NPJ Microgravity 2016; 2:16023. [PMID: 28725734 PMCID: PMC5515521 DOI: 10.1038/npjmgrav.2016.23] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 11/08/2022] Open
Abstract
The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.
Collapse
|
15
|
Macaulay TR, Macias BR, Lee SM, Boda WL, Watenpaugh DE, Hargens AR. Treadmill exercise within lower-body negative pressure attenuates simulated spaceflight-induced reductions of balance abilities in men but not women. NPJ Microgravity 2016; 2:16022. [PMID: 28725733 PMCID: PMC5515523 DOI: 10.1038/npjmgrav.2016.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/09/2022] Open
Abstract
Spaceflight causes sensorimotor adaptations that result in balance deficiencies on return to a gravitational environment. Treadmill exercise within lower-body negative pressure (LBNP) helps protect physiological function during microgravity as simulated by bed rest. Therefore, we hypothesized that treadmill exercise within LBNP would prevent balance losses in both male and female identical twins during 30 days of 6° head-down tilt bed rest. Fifteen (seven female and eight male) identical twin sets participated in this simulation of microgravity. Within each twin pair, one twin was randomly assigned to an exercise group that performed 40 min of supine treadmill exercise within LBNP set to generate 1.0–1.2 body weight, followed by 5 min of static feet-supported LBNP, 6 days per week. Their identical sibling was assigned to a non-exercise control group with all other bed rest conditions equivalent. Before and immediately after bed rest, subjects completed standing and walking rail balance tests with eyes open and eyes closed. In control subjects, standing rail balance times (men: −42%, women: −40%), rail walk distances (men: −44%, women: −32%) and rail walk times (men: −34%, women: −31%) significantly decreased after bed rest. Compared with controls, treadmill exercise within LBNP significantly attenuated losses of standing rail balance time by 63% in men, but the 41% attenuation in women was not significant. Treadmill exercise within LBNP did not affect rail walk abilities in men or women. Treadmill exercise within LBNP during simulated spaceflight attenuates loss of balance control in men but not in women.
Collapse
Affiliation(s)
- Timothy R Macaulay
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, USA
| | - Brandon R Macias
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, USA
| | - Stuart Mc Lee
- Cardiovascular Laboratory, Wyle Science, Technology and Engineering Group, Houston, TX, USA
| | - Wanda L Boda
- Department of Kinesiology, Sonoma State University, Rohnert Park, CA, USA
| | - Donald E Watenpaugh
- Department of Integrated Physiology, University of North Texas, Fort Worth, TX, USA
| | - Alan R Hargens
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|