1
|
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L. An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context. Learn Mem 2024; 31:a053918. [PMID: 38876486 PMCID: PMC11199956 DOI: 10.1101/lm.053918.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
The brain constantly compares past and present experiences to predict the future, thereby enabling instantaneous and future behavioral adjustments. Integration of external information with the animal's current internal needs and behavioral state represents a key challenge of the nervous system. Recent advancements in dissecting the function of the Drosophila mushroom body (MB) at the single-cell level have uncovered its three-layered logic and parallel systems conveying positive and negative values during associative learning. This review explores a lesser-known role of the MB in detecting and integrating body states such as hunger, thirst, and sleep, ultimately modulating motivation and sensory-driven decisions based on the physiological state of the fly. State-dependent signals predominantly affect the activity of modulatory MB input neurons (dopaminergic, serotoninergic, and octopaminergic), but also induce plastic changes directly at the level of the MB intrinsic and output neurons. Thus, the MB emerges as a tightly regulated relay station in the insect brain, orchestrating neuroadaptations due to current internal and behavioral states leading to short- but also long-lasting changes in behavior. While these adaptations are crucial to ensure fitness and survival, recent findings also underscore how circuit motifs in the MB may reflect fundamental design principles that contribute to maladaptive behaviors such as addiction or depression-like symptoms.
Collapse
Affiliation(s)
- Raquel Suárez-Grimalt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Lisa Scheunemann
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
2
|
Silva C, Rebelo M, Chendo I. Managing antipsychotic-related sexual dysfunction in patients with schizophrenia. Expert Rev Neurother 2023; 23:1147-1155. [PMID: 37941377 DOI: 10.1080/14737175.2023.2281399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Schizophrenia is a psychotic disorder and one of the most severe and impactful mental illnesses. Sexual dysfunction is highly prevalent in patients with schizophrenia but remains underdiagnosed and undertreated. Sexual dysfunction is frequently attributed to antipsychotics which may reduce medication adherence, but negative symptoms can also reduce sexual drive. AREAS COVERED This review provides an overview of the current knowledge about sexual dysfunction in patients with schizophrenia. The authors first review the literature concerning the mechanisms of sexual dysfunction and explore the impact of antipsychotics on sexual function. Finally, they present the available non-pharmacological and pharmacological treatment strategies for sexual dysfunction in patients with schizophrenia. EXPERT OPINION Sexual dysfunction in patients with schizophrenia is still underrated by clinicians despite having a negative impact on the quality of life and therapeutic adherence. Antipsychotic treatment is still perceived as a major cause of sexual impairment. Psychiatrists must be aware of this condition and actively question the patients. A comprehensive approach, addressing pharmacological and non-pharmacological aspects, is fundamental for managing sexual dysfunction in schizophrenia. Pharmacological strategies include (1) Serum-level adjustment of the antipsychotic dose, if possible (2) switching to a well-tolerable antipsychotic (aripiprazole, brexpiprazole) and (3) adding a coadjuvant drug (phosphodiesterase-5 inhibitors).
Collapse
Affiliation(s)
- Carlos Silva
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Rebelo
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
| | - Inês Chendo
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
4
|
Jannini TB, Sansone A, Rossi R, Di Lorenzo G, Toscano M, Siracusano A, Jannini EA. Pharmacological strategies for sexual recovery in men undergoing antipsychotic treatment. Expert Opin Pharmacother 2022; 23:1065-1080. [PMID: 35470768 DOI: 10.1080/14656566.2022.2071124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION : First- and second-generation antipsychotics are highly accountable for causing a plethora of medical side effects, ranging from metabolic imbalances to sexual dysfunction (SD), that frequently undermine patient-doctor relationships. Nevertheless, to date antipsychotics are one of the best treatment options for dealing with numerous either acute or chronic conditions like agitation, suicidality, depression, dementia, and of course psychosis. For these reasons, clinicians need to handle them wisely to preserve patients' sexual health, avoid poor therapeutic adherence and prevent high rates of therapy drop-out. AREAS COVERED : This article reviews the literature on pharmacologic approaches for management strategies in men who are administered with antipsychotics and developed SD. The etiology of antipsychotic-induced SD is also discussed. EXPERT OPINION : Clinicians must consider sexual life as a major health domain. To do so, a first step would be to measure and monitor sexual function by means of psychometric tools. Secondly, primary prevention should be conducted when choosing antipsychotics, i.e., picking sex-sparing compounds like aripiprazole or brexpiprazole. Thirdly, if sexolytic compounds cannot be dismissed, such as first-generation antipsychotics, risperidone, paliperidone, or amisulpride, then aripiprazole 5-20 mg/day adjunctive therapy has proven to be most effective in normalizing prolactin levels and consequently treating antipsychotic-induced SD.
Collapse
Affiliation(s)
- Tommaso B Jannini
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rodolfo Rossi
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giorgio Di Lorenzo
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Massimiliano Toscano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Alberto Siracusano
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Franco LM, Yaksi E. Experience-dependent plasticity modulates ongoing activity in the antennal lobe and enhances odor representations. Cell Rep 2021; 37:110165. [PMID: 34965425 PMCID: PMC8739562 DOI: 10.1016/j.celrep.2021.110165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
Ongoing neural activity has been observed across several brain regions and is thought to reflect the internal state of the brain. Yet, it is important to understand how ongoing neural activity interacts with sensory experience and shapes sensory representations. Here, we show that the projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity. After repeated exposure to odors, we observe a gradual and cumulative decrease in the amplitude and number of calcium events occurring in the absence of odor stimulation, as well as a reorganization of correlations between olfactory glomeruli. Accompanying these plastic changes, we find that repeated odor experience decreases trial-to-trial variability and enhances the specificity of odor representations. Our results reveal an odor-experience-dependent modulation of ongoing and sensory-evoked activity at peripheral levels of the fruit fly olfactory system. The fruit fly antennal lobe exhibits spatiotemporally organized ongoing activity Repeated odor experience decreases the amplitude and number of ongoing calcium events Odor experience enhances the robustness and the specificity of odor representations Representations of different odors become more dissimilar upon repeated exposure
Collapse
Affiliation(s)
- Luis M Franco
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Emre Yaksi
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim 7030, Norway.
| |
Collapse
|
6
|
Li YH, Zhao K, Wang MQ, Wang J, Gao BL. Effects of stereotactic radiofrequency thermocoagulation in the globus pallidus internus on refractory tic disorders. Int J Hyperthermia 2021; 37:1404-1411. [PMID: 33342326 DOI: 10.1080/02656736.2020.1859145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To investigate the effect of stereotactic radiofrequency thermocoagulation in the globus pallidus internus on refractory tic disorders. MATERIALS AND METHODS Forty patients with refractory tic disorders were enrolled between January 2015 and July 2017 to experience stereotactic radiofrequency thermocoagulation in the globus pallidus internus. All clinical data, Yale Global Tic Severity Scale (YGTSS) scores, serum dopamine (SDA), and 5-hydroxytryptamine (5-HT) were analyzed. RESULTS Radiofrequency thermocoagulation was successfully performed in all patients. Periprocedural complications occurred in two patients (5.0%), one with fever (2.5%) and one with a urination disorder (2.5%); both returned to normal after treatment. After 12 months of follow-ups, excellent improvement was exhibited in 18 patients (45.0%), marked improvement in 10 (25.0%), good improvement in 9 (22.5%), and invalid in 3 (7.5%), with a total efficacy rate of 92.5% (37/40). Twenty-eight patients (70%) showed excellent or marked improvement without additional treatment after surgery. YGTSS scores were significantly (p < 0.05) decreased after compared with before thermocoagulation. SDA was significantly (p < 0.05) decreased 6 months (80.78 ± 18.82 ng/ml) and 12 months (75.65 ± 15.23 ng/ml) after compared with before (125.63 ± 35.26 ng/ml) surgery, whereas 5-HT was significantly (p < 0.05) increased 6 months (58.93 ± 16.88 ng/ml) and 12 months (62.63 ± 15.21 ng/ml) after compared with before (35.62 ± 3.41 ng/ml) surgery. CONCLUSION Stereotactic radiofrequency thermocoagulation can be safely applied in the globus pallidus internus to treat refractory tic disorders, resulting in significant tic symptom relief and a decrease in SDA but increase in 5-HT.
Collapse
Affiliation(s)
- Yu-Hui Li
- Department of Neurosurgery, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Kai Zhao
- Department of Neurosurgery, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Mei-Qing Wang
- Department of Neurosurgery, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jing Wang
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Bu-Lang Gao
- Department of Medical Research, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
7
|
Liao S, Amcoff M, Nässel DR. Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103495. [PMID: 33171202 DOI: 10.1016/j.ibmb.2020.103495] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Excess consumption of high-fat diet (HFD) is likely to result in obesity and increases the predisposition to associated health disorders. Drosophila melanogaster has emerged as an important model to study the effects of HFD on metabolism, gut function, behavior, and ageing. In this study, we investigated the effects of HFD on physiology and behavior of female flies at different time-points over several weeks. We found that HFD decreases lifespan, and also with age leads to accelerated decline of climbing ability in both virgins and mated flies. In virgins HFD also increased sleep fragmentation with age. Furthermore, long-term exposure to HFD results in elevated adipokinetic hormone (AKH) transcript levels and an enlarged crop with increased lipid stores. We detected no long-term effects of HFD on body mass, or levels of triacylglycerides (TAG), glycogen or glucose, although fecundity was diminished. However, one week of HFD resulted in decreased body mass and elevated TAG levels in mated flies. Finally, we investigated the role of AKH in regulating effects of HFD during aging. Both with normal diet (ND) and HFD, Akh mutant flies displayed increased longevity compared to control flies. However, both mutants and controls showed shortened lifespan on HFD compared to ND. In flies exposed to ND, fecundity is decreased in Akh mutants compared to controls after one week, but increased after three weeks. However, HFD leads to a similar decrease in fecundity in both genotypes after both exposure times. Thus, long-term exposure to HFD increases AKH signaling, impairs lifespan and fecundity and augments age-related behavioral senescence.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
8
|
Yamagata N, Ezaki T, Takahashi T, Wu H, Tanimoto H. Presynaptic inhibition of dopamine neurons controls optimistic bias. eLife 2021; 10:64907. [PMID: 34061730 PMCID: PMC8169112 DOI: 10.7554/elife.64907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/16/2021] [Indexed: 01/04/2023] Open
Abstract
Regulation of reward signaling in the brain is critical for appropriate judgement of the environment and self. In Drosophila, the protocerebral anterior medial (PAM) cluster dopamine neurons mediate reward signals. Here, we show that localized inhibitory input to the presynaptic terminals of the PAM neurons titrates olfactory reward memory and controls memory specificity. The inhibitory regulation was mediated by metabotropic gamma-aminobutyric acid (GABA) receptors clustered in presynaptic microdomain of the PAM boutons. Cell type-specific silencing the GABA receptors enhanced memory by augmenting internal reward signals. Strikingly, the disruption of GABA signaling reduced memory specificity to the rewarded odor by changing local odor representations in the presynaptic terminals of the PAM neurons. The inhibitory microcircuit of the dopamine neurons is thus crucial for both reward values and memory specificity. Maladaptive presynaptic regulation causes optimistic cognitive bias.
Collapse
Affiliation(s)
| | - Takahiro Ezaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Hongyang Wu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Siju KP, De Backer JF, Grunwald Kadow IC. Dopamine modulation of sensory processing and adaptive behavior in flies. Cell Tissue Res 2021; 383:207-225. [PMID: 33515291 PMCID: PMC7873103 DOI: 10.1007/s00441-020-03371-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Behavioral flexibility for appropriate action selection is an advantage when animals are faced with decisions that will determine their survival or death. In order to arrive at the right decision, animals evaluate information from their external environment, internal state, and past experiences. How these different signals are integrated and modulated in the brain, and how context- and state-dependent behavioral decisions are controlled are poorly understood questions. Studying the molecules that help convey and integrate such information in neural circuits is an important way to approach these questions. Many years of work in different model organisms have shown that dopamine is a critical neuromodulator for (reward based) associative learning. However, recent findings in vertebrates and invertebrates have demonstrated the complexity and heterogeneity of dopaminergic neuron populations and their functional implications in many adaptive behaviors important for survival. For example, dopaminergic neurons can integrate external sensory information, internal and behavioral states, and learned experience in the decision making circuitry. Several recent advances in methodologies and the availability of a synaptic level connectome of the whole-brain circuitry of Drosophila melanogaster make the fly an attractive system to study the roles of dopamine in decision making and state-dependent behavior. In particular, a learning and memory center-the mushroom body-is richly innervated by dopaminergic neurons that enable it to integrate multi-modal information according to state and context, and to modulate decision-making and behavior.
Collapse
Affiliation(s)
- K. P. Siju
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jean-Francois De Backer
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ilona C. Grunwald Kadow
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
10
|
Dopamine Receptor Dop1R2 Stabilizes Appetitive Olfactory Memory through the Raf/MAPK Pathway in Drosophila. J Neurosci 2020; 40:2935-2942. [PMID: 32102921 DOI: 10.1523/jneurosci.1572-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, dopamine signaling to the mushroom body intrinsic neurons, Kenyon cells (KCs), is critical to stabilize olfactory memory. Little is known about the downstream intracellular molecular signaling underlying memory stabilization. Here we address this question in the context of sugar-rewarded olfactory long-term memory (LTM). We show that associative training increases the phosphorylation of MAPK in KCs, via Dop1R2 signaling. Consistently, the attenuation of Dop1R2, Raf, or MAPK expression in KCs selectively impairs LTM, but not short-term memory. Moreover, we show that the LTM deficit caused by the knockdown of Dop1R2 can be rescued by expressing active Raf in KCs. Thus, the Dop1R2/Raf/MAPK pathway is a pivotal downstream effector of dopamine signaling for stabilizing appetitive olfactory memory.SIGNIFICANCE STATEMENT Dopaminergic input to the Kenyon cells (KCs) is pivotal to stabilize memory in Drosophila This process is mediated by dopamine receptors like Dop1R2. Nevertheless, little is known for its underlying molecular mechanism. Here we show that the Raf/MAPK pathway is specifically engaged in appetitive long-term memory in KCs. With combined biochemical and behavioral experiments, we reveal that activation of the Raf/MAPK pathway is regulated through Dop1R2, shedding light on how dopamine modulates intracellular signaling for memory stabilization.
Collapse
|
11
|
Neurochemical Organization of the Drosophila Brain Visualized by Endogenously Tagged Neurotransmitter Receptors. Cell Rep 2020; 30:284-297.e5. [DOI: 10.1016/j.celrep.2019.12.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 10/19/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
|
12
|
Onodera Y, Ichikawa R, Terao K, Tanimoto H, Yamagata N. Courtship behavior induced by appetitive olfactory memory. J Neurogenet 2019; 33:143-151. [PMID: 30955396 DOI: 10.1080/01677063.2019.1593978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reinforcement signals such as food reward and noxious punishment can change diverse behaviors. This holds true in fruit flies, Drosophila melanogaster, which can be conditioned by an odor and sugar reward or electric shock punishment. Despite a wide variety of behavior modulated by learning, conditioned responses have been traditionally measured by altered odor preference in a choice, and other memory-guided behaviors have been only scarcely investigated. Here, we analyzed detailed conditioned odor responses of flies after sugar associative learning by employing a video recording and semi-automated processing pipeline. Trajectory analyses revealed that multiple behavioral components were altered along with conditioned approach to the rewarded odor. Notably, we found that lateral wing extension, a hallmark of courtship behavior of D. melanogaster, was robustly increased specifically in the presence of the rewarded odor. Strikingly, genetic disruption of the mushroom body output did not impair conditioned courtship increase, while markedly weakening conditioned odor approach. Our results highlight the complexity of conditioned responses and their distinct regulatory mechanisms that may underlie coordinated yet complex memory-guided behaviors in flies.
Collapse
Affiliation(s)
- Yuya Onodera
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Rino Ichikawa
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Kanta Terao
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Hiromu Tanimoto
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Nobuhiro Yamagata
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| |
Collapse
|
13
|
Lozano-Montes L, Astori S, Abad S, Guillot de Suduiraut I, Sandi C, Zalachoras I. Latency to Reward Predicts Social Dominance in Rats: A Causal Role for the Dopaminergic Mesolimbic System. Front Behav Neurosci 2019; 13:69. [PMID: 31024272 PMCID: PMC6460316 DOI: 10.3389/fnbeh.2019.00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Reward signals encoded in the mesolimbic dopaminergic system guide approach/seeking behaviors to all varieties of life-supporting stimuli (rewards). Differences in dopamine (DA) levels have been found between dominant and submissive animals. However, it is still unclear whether these differences arise as a consequence of the rewarding nature of the acquisition of a dominant rank, or whether they preexist and favor dominance by promoting reward-seeking behavior. Given that acquisition of a social rank determines animals' priority access to resources, we hypothesized that differences in reward-seeking behavior might affect hierarchy establishment and that modulation of the dopaminergic system could affect the outcome of a social competition. We characterized reward-seeking behaviors based on rats' latency to get a palatable-reward when given temporary access to it. Subsequently, rats exhibiting short (SL) and long (LL) latency to get the rewards cohabitated for more than 2 weeks, in order to establish a stable hierarchy. We found that SL animals exhibited dominant behavior consistently in social competition tests [for palatable-rewards and two water competition tests (WCTs)] after hierarchy was established, indicating that individual latency to rewards predicted dominance. Moreover, because SL animals showed higher mesolimbic levels of DA than LL rats, we tested whether stimulation of mesolimbic DA neurons could affect the outcome of a social competition. Indeed, a combination of optical stimulation of mesolimbic DA neurons during individual training and during a social competition test for palatable rewards resulted in improved performance on this test.
Collapse
Affiliation(s)
- Laura Lozano-Montes
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sonia Abad
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Petruccelli E, Kaun KR. Insights from intoxicated Drosophila. Alcohol 2019; 74:21-27. [PMID: 29980341 DOI: 10.1016/j.alcohol.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Our understanding of alcohol use disorder (AUD), particularly alcohol's effects on the nervous system, has unquestionably benefited from the use of model systems such as Drosophila melanogaster. Here, we briefly introduce the use of flies in alcohol research, and highlight the genetic accessibility and neurobiological contribution that flies have made to our understanding of AUD. Future fly research offers unique opportunities for addressing unresolved questions in the alcohol field, such as the neuromolecular and circuit basis for cravings and alcohol-induced neuroimmune dysfunction. This review strongly advocates for interdisciplinary approaches and translational collaborations with the united goal of confronting the major health problems associated with alcohol abuse and addiction.
Collapse
|
15
|
Augustine F, Singer HS. Merging the Pathophysiology and Pharmacotherapy of Tics. Tremor Other Hyperkinet Mov (N Y) 2019; 8:595. [PMID: 30643668 PMCID: PMC6329776 DOI: 10.7916/d8h14jtx] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background Anatomically, cortical-basal ganglia-thalamo-cortical (CBGTC) circuits have an essential role in the expression of tics. At the biochemical level, the proper conveyance of messages through these circuits requires several functionally integrated neurotransmitter systems. In this manuscript, evidence supporting proposed pathophysiological abnormalities, both anatomical and chemical is reviewed. In addition, the results of standard and emerging tic-suppressing therapies affecting nine separate neurotransmitter systems are discussed. The goal of this review is to integrate our current understanding of the pathophysiology of Tourette syndrome (TS) with present and proposed pharmacotherapies for tic suppression. Methods For this manuscript, literature searches were conducted for both current basic science and clinical information in PubMed, Google-Scholar, and other scholarly journals to September 2018. Results The precise primary site of abnormality for tics remains undetermined. Although many pathophysiologic hypotheses favor a specific abnormality of the cortex, striatum, or globus pallidus, others recognize essential influences from regions such as the thalamus, cerebellum, brainstem, and ventral striatum. Some prefer an alteration within direct and indirect pathways, whereas others believe this fails to recognize the multiple interactions within and between CBGTC circuits. Although research and clinical evidence supports involvement of the dopaminergic system, additional data emphasizes the potential roles for several other neurotransmitter systems. Discussion A greater understanding of the primary neurochemical defect in TS would be extremely valuable for the development of new tic-suppressing therapies. Nevertheless, recognizing the varied and complex interactions that exist in a multi-neurotransmitter system, successful therapy may not require direct targeting of the primary abnormality.
Collapse
Affiliation(s)
- Farhan Augustine
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey S. Singer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Manciu FS, Manciu M, Ciubuc JD, Sundin EM, Ochoa K, Eastman M, Durrer WG, Guerrero J, Lopez B, Subedi M, Bennet KE. Simultaneous Detection of Dopamine and Serotonin-A Comparative Experimental and Theoretical Study of Neurotransmitter Interactions. BIOSENSORS-BASEL 2018; 9:bios9010003. [PMID: 30587770 PMCID: PMC6468865 DOI: 10.3390/bios9010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
With the goal of accurately detecting and quantifying the amounts of dopamine (DA) and serotonin (5-HT) in mixtures of these neurotransmitters without using any labelling, we present a detailed, comparative computational and Raman experimental study. Although discrimination between these two analytes is achievable in such mixtures for concentrations in the millimolar range, their accurate quantification remains unattainable. As shown for the first time in this work, the formation of a new composite resulting from their interactions with each other is the main reason for this lack of quantification. While this new hydrogen-bonded complex further complicates potential analyte discrimination and quantification at concentrations characteristic of physiological levels (i.e., nanomolar concentrations), it can also open new avenues for its use in drug delivery and pharmaceutical research. This remark is based not only on chemical interactions analyzed here from both theoretical and experimental approaches, but also on biological relationship, with consideration of both functional and neural proximity perspectives. Thus, this research constitutes an important contribution toward better understanding of neural processes, as well as toward possible future development of label-free biosensors.
Collapse
Affiliation(s)
- Felicia S Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Marian Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - John D Ciubuc
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Emma M Sundin
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Katia Ochoa
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Michael Eastman
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - William G Durrer
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Jose Guerrero
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Brayant Lopez
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Mahendra Subedi
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Kevin E Bennet
- Division of Engineering, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Grunwald Kadow IC. State-dependent plasticity of innate behavior in fruit flies. Curr Opin Neurobiol 2018; 54:60-65. [PMID: 30219668 DOI: 10.1016/j.conb.2018.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/28/2018] [Indexed: 01/27/2023]
Abstract
Behaviors are often categorized into innate or learned. Innate behaviors are thought to be genetically encoded and hardwired into the brain, while learned behavior is a product of the interaction between experience and the plasticity of synapses and neurons. Recent work in different models show that innate behavior, too, is plastic and depends on the current behavioral context and the internal state of an animal. Furthermore, these studies suggest that the neural circuits underpinning innate and learned behavior interact and even overlap. For instance, hunger modulates several innate behaviors relying in part on neural circuits required for learning and memory such as the mushroom body in the fruit fly. These new findings suggest that state-dependent innate behavior and learning rely on functionally and anatomically overlapping and shared neural circuits indicating a common evolutionary history.
Collapse
Affiliation(s)
- Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, ZIEL, Liesel-Beckmann-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
18
|
Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018; 7. [PMID: 30254737 PMCID: PMC6127742 DOI: 10.12688/f1000research.15097.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The hypocretins (Hcrts) are two alternatively spliced neuropeptides (Hcrt1/Ox-A and Hcrt2/Ox-B) that are synthesized exclusively in the hypothalamus. Data collected in the 20 years since their discovery have supported the view that the Hcrts play a broad role in the control of arousal with a particularly important role in the maintenance of wakefulness and sleep-to-wake transitions. While this latter point has received an overwhelming amount of research attention, a growing literature has begun to broaden our understanding of the many diverse roles that the Hcrts play in physiology and behavior. Here, we review recent advances in the neurobiology of Hcrt in three sections. We begin by surveying findings on Hcrt function within normal sleep/wake states as well as situations of aberrant sleep (that is, narcolepsy). In the second section, we discuss research establishing a role for Hcrt in mood and affect (that is, anxiety, stress, and motivation). Finally, in the third section, we briefly discuss future directions for the field and place an emphasis on analytical modeling of Hcrt neural activity. We hope that the data discussed here provide a broad overview of recent progress in the field and make clear the diversity of roles played by these neuromodulators.
Collapse
Affiliation(s)
- Natalie Nevárez
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Luis de Lecea
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Tsao CH, Chen CC, Lin CH, Yang HY, Lin S. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior. eLife 2018; 7:35264. [PMID: 29547121 PMCID: PMC5910021 DOI: 10.7554/elife.35264] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022] Open
Abstract
The fruit fly can evaluate its energy state and decide whether to pursue food-related cues. Here, we reveal that the mushroom body (MB) integrates hunger and satiety signals to control food-seeking behavior. We have discovered five pathways in the MB essential for hungry flies to locate and approach food. Blocking the MB-intrinsic Kenyon cells (KCs) and the MB output neurons (MBONs) in these pathways impairs food-seeking behavior. Starvation bi-directionally modulates MBON responses to a food odor, suggesting that hunger and satiety controls occur at the KC-to-MBON synapses. These controls are mediated by six types of dopaminergic neurons (DANs). By manipulating these DANs, we could inhibit food-seeking behavior in hungry flies or promote food seeking in fed flies. Finally, we show that the DANs potentially receive multiple inputs of hunger and satiety signals. This work demonstrates an information-rich central circuit in the fly brain that controls hunger-driven food-seeking behavior.
Collapse
Affiliation(s)
- Chang-Hui Tsao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Chun Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-Han Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Life Sciences and the Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Yu Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Life Sciences and the Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|