1
|
Otten J, Dan S, Rostin L, Profetto AE, Lardenoije R, Klengel T. Spatial transcriptomics reveals modulation of transcriptional networks across brain regions after auditory threat conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614979. [PMID: 39386587 PMCID: PMC11463379 DOI: 10.1101/2024.09.25.614979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Prior research has demonstrated genome-wide transcriptional changes related to fear and anxiety across species, often focusing on individual brain regions or cell types. However, the extent of gene expression differences across brain regions and how these changes interact at the level of transcriptional connectivity remains unclear. To address this, we performed spatial transcriptomics RNAseq analyses in an auditory threat conditioning paradigm in mice. We generated a spatial transcriptomic atlas of a coronal mouse brain section covering cortical and subcortical regions, corresponding to histologically defined regions. Our finding revealed widespread transcriptional responses across all brain regions examined, particularly in the medial and lateral habenula, and the choroid plexus. Network analyses highlighted altered transcriptional connectivity between cortical and subcortical regions, emphasizing the role of steroidogenic factor 1. These results provide new insights into the transcriptional networks involved in auditory threat conditioning, enhancing our understanding of molecular and neural mechanisms underlying fear and anxiety disorders.
Collapse
|
2
|
Botterill JJ, Khlaifia A, Appings R, Wilkin J, Violi F, Premachandran H, Cruz-Sanchez A, Canella AE, Patel A, Zaidi SD, Arruda-Carvalho M. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacology 2024; 49:993-1006. [PMID: 38233571 PMCID: PMC11039686 DOI: 10.1038/s41386-024-01795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ryan Appings
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Francesca Violi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Arely Cruz-Sanchez
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Anna Elisabete Canella
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - S Danyal Zaidi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
3
|
Campos-Cardoso R, Desa ZR, Fitzgerald BL, Moore AG, Duhon JL, Landar VA, Clem RL, Cummings KA. The mouse dorsal peduncular cortex encodes fear memory. Cell Rep 2024; 43:114097. [PMID: 38613783 PMCID: PMC11135038 DOI: 10.1016/j.celrep.2024.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
The rodent medial prefrontal cortex (mPFC) is functionally organized across the dorsoventral axis, where dorsal and ventral subregions promote and suppress fear, respectively. As the ventral-most subregion, the dorsal peduncular cortex (DP) is hypothesized to function in fear suppression. However, this role has not been explicitly tested. Here, we demonstrate that the DP paradoxically functions as a fear-encoding brain region and plays a minimal role in fear suppression. By using multimodal analyses, we demonstrate that DP neurons exhibit fear-learning-related plasticity and acquire cue-associated activity across learning and memory retrieval and that DP neurons activated by fear memory acquisition are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of DP fear-related neural ensembles drive the promotion and suppression of freezing, respectively. Overall, our results suggest that the DP plays a role in fear memory encoding. Moreover, our findings redefine our understanding of the functional organization of the rodent mPFC.
Collapse
Affiliation(s)
- Rodrigo Campos-Cardoso
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zephyr R Desa
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Brianna L Fitzgerald
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alana G Moore
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jace L Duhon
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Victoria A Landar
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Roger L Clem
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirstie A Cummings
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
4
|
Cardoso RC, Desa ZR, Fitzgerald BL, Moore A, Duhon J, Landar VA, Clem RL, Cummings KA. The mouse dorsal peduncular cortex encodes fear memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550408. [PMID: 37546717 PMCID: PMC10402043 DOI: 10.1101/2023.07.24.550408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The rodent medial prefrontal cortex (mPFC) is a locus for both the promotion and suppression (e.g. extinction) of fear and is composed of four anatomically distinct subregions, including anterior cingulate 1 (Cg1), prelimbic (PL), infralimbic (IL), and the dorsal peduncular (DP) cortex. A vast majority of studies have focused on Cg1, PL, and IL. The Cg1 and PL have been implicated in the promotion of fear, while the IL has been linked to a role in the suppression, or extinction, of fear. Due to its anatomical location ventral to IL, the DP has been hypothesized to function as a fear-suppressing brain region however, no studies have explicitly tested its role in this function or in the regulation of memory generally. Moreover, some studies have pointed towards a dichotomous role for ventral mPFC in the dual suppression and promotion of fear, but the mechanisms underlying these opposing observations remains unclear. Here, we provide evidence that the DP paradoxically functions as a cued fear-encoding brain region and plays little to no role in fear memory extinction. By using a combination of cFos immunohistochemistry, whole-cell brain slice electrophysiology, fiber photometry, and activity-dependent neural tagging, we demonstrate that DP neurons exhibit learning-related plasticity, acquire cue-associated activity across learning and memory retrieval, and that DP neurons activated by learning are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of fear learning-related DP neural ensembles drives the promotion and suppression of freezing, respectively. Overall, these data suggest that the DP plays an unexpected role in fear memory encoding. More broadly, our results reveal new principles of organization across the dorsoventral axis of the mPFC.
Collapse
|
5
|
Dorst KE, Senne RA, Diep AH, de Boer AR, Suthard RL, Leblanc H, Ruesch EA, Pyo AY, Skelton S, Carstensen LC, Malmberg S, McKissick OP, Bladon JH, Ramirez S. Hippocampal Engrams Generate Variable Behavioral Responses and Brain-Wide Network States. J Neurosci 2024; 44:e0340232023. [PMID: 38050098 PMCID: PMC10860633 DOI: 10.1523/jneurosci.0340-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we optogenetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reactivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reactivation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not observed in control conditions. Additionally, regions spanning putative "fear" and "defense" systems were recruited as hub regions in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns, it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Ryan A Senne
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Anh H Diep
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Antje R de Boer
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Rebecca L Suthard
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Sara Skelton
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Lucas C Carstensen
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Samantha Malmberg
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Olivia P McKissick
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - John H Bladon
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| |
Collapse
|
6
|
Ryherd GL, Bunce AL, Edwards HA, Baumgartner NE, Lucas EK. Sex differences in avoidance behavior and cued threat memory dynamics in mice: Interactions between estrous cycle and genetic background. Horm Behav 2023; 156:105439. [PMID: 37813043 PMCID: PMC10810684 DOI: 10.1016/j.yhbeh.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Anxiety disorders are the most prevalent mental illnesses worldwide, exhibit high heritability, and affect twice as many women as men. To evaluate potential interactions between genetic background and cycling ovarian hormones on sex differences in susceptibility to negative valence behaviors relevant to anxiety disorders, we assayed avoidance behavior and cued threat memory dynamics in gonadally-intact adult male and female mice across four common inbred mouse strains: C57Bl/6J, 129S1/SVlmJ, DBA/2J, and BALB/cJ. Independent of sex, C57Bl/6J mice exhibited low avoidance but high threat memory, 129S1/SvlmJ mice high avoidance and high threat memory, DBA/2J mice low avoidance and low threat memory, and BALB/cJ mice high avoidance but low threat memory. Within-strain comparisons revealed reduced avoidance behavior in the high hormone phase of the estrous cycle (proestrus) compared to all other estrous phases in all strains except DBA/2J, which did not exhibit cycle-dependent behavioral fluctuations. Robust and opposing sex differences in threat conditioning and extinction training were found in the C57Bl/6J and 129S1/SvlmJ lines, whereas no sex differences were observed in the DBA/2J or BALB/cJ lines. C57Bl/6J males exhibited enhanced acute threat memory, whereas 129S1/SvlmJ females exhibited enhanced sustained threat memory, compared to their sex-matched littermates. These effects were not mediated by estrous cycle stage or sex differences in active versus passive defensive behavioral responses. Our data demonstrate that core features of behavioral endophenotypes relevant to anxiety disorders, such as avoidance and threat memory, are genetically driven yet dissociable and can be influenced further by cycling ovarian hormones.
Collapse
Affiliation(s)
- Garret L Ryherd
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Averie L Bunce
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Haley A Edwards
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Nina E Baumgartner
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth K Lucas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Baumgartner NE, Biraud MC, Lucas EK. Sex differences in socioemotional behavior and changes in ventral hippocampal transcription across aging in C57Bl/6J mice. Neurobiol Aging 2023; 130:141-153. [PMID: 37524006 PMCID: PMC10629502 DOI: 10.1016/j.neurobiolaging.2023.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 08/02/2023]
Abstract
Socioemotional health is positively correlated with improved cognitive and physical aging. Despite known sex differences in socioemotional behaviors and the trajectory of aging, the interactive effects between sex and aging on socioemotional outcomes are poorly understood. We performed the most comprehensive assessment of sex differences in socioemotional behaviors in C57Bl/6J mice across aging to date. Compared to males, females exhibited decreased anxiety-like behavior and social preference but increased social recognition. With age, anxiety-like behavior, cued threat memory generalization, and social preference increased in both sexes. To investigate potential neural mechanisms underlying these behavioral changes, we analyzed transcriptional neuropathology markers in the ventral hippocampus and found age-related changes in genes related to activated microglia, angiogenesis, and cytokines. Sex differences emerged in the timing, direction, and magnitude of these changes, independent of reproductive senescence in aged females. Interestingly, female-specific upregulation of autophagy-related genes correlated with age-related behavioral changes selectively in females. These novel findings reveal critical sex differences in trajectories of ventral hippocampal aging that may contribute to sex- and age-related differences in socioemotional outcomes.
Collapse
Affiliation(s)
- Nina E Baumgartner
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Mandy C Biraud
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Elizabeth K Lucas
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
8
|
Huckleberry KA, Calitri R, Li AJ, Mejdell M, Singh A, Bhutani V, Laine MA, Nastase AS, Morena M, Hill MN, Shansky RM. CB1R blockade unmasks TRPV1-mediated contextual fear generalization in female, but not male rats. Neuropsychopharmacology 2023; 48:1500-1508. [PMID: 37460772 PMCID: PMC10425366 DOI: 10.1038/s41386-023-01650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Increasing evidence suggests that the neurobiological processes that govern learning and memory can be different in males and females, but many of the specific mechanisms underlying these sex differences have not been fully defined. Here we investigated potential sex differences in endocannabinoid (eCB) modulation of Pavlovian fear conditioning and extinction, examining multiple defensive behaviors, including shock responsivity, conditioned freezing, and conditioned darting. We found that while systemic administration of drugs acting on eCB receptors did not influence the occurrence of darting, females that were classified as Darters responded differently to the drug administration than those classified as Non-darters. Most notably, CB1R antagonist AM251 produced an increase in cue-elicited freezing and context generalization selectively in female Non-darters that persisted across extinction and extinction retrieval tests but was prevented by co-administration of TRPV1R antagonist Capsazepine. To identify a potential synaptic mechanism for these sex differences, we next employed biochemical and neuroanatomical tracing techniques to quantify anandamide (AEA), TRPV1R, and perisomatic CB1R expression, focusing on the ventral hippocampus (vHip) given its known role in mediating contextual fear generalization. These assays identified sex-specific effects of both fear conditioning-elicited AEA release and vHip-BLA circuit structure. Together, our data support a model in which sexual dimorphism in vHip-BLA circuitry promotes a female-specific dependence on CB1Rs for context processing that is sensitive to TRPV1-mediated disruption when CB1Rs are blocked.
Collapse
Affiliation(s)
| | - Roberto Calitri
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Anna J Li
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Mackenna Mejdell
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Ashna Singh
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Vasvi Bhutani
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Mikaela A Laine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Andrei S Nastase
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
9
|
Huckleberry KA, Calitri R, Li AJ, Mejdell M, Singh A, Bhutani V, Laine MA, Nastase AS, Morena M, Hill MN, Shansky RM. CB1R blockade unmasks TRPV1-mediated contextual fear generalization in female, but not male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536625. [PMID: 37090594 PMCID: PMC10120634 DOI: 10.1101/2023.04.12.536625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Increasing evidence suggests that the neurobiological processes that govern learning and memory can be different in males and females, and here we asked specifically whether the endocannabinoid (eCB) system could modulate Pavlovian fear conditioning in a sex-dependent manner. Systemic (i.p.) injection of CB1R antagonist AM251 in adult male and female Sprague Dawley rats prior to auditory cued fear conditioning produced a female-specific increase in freezing that persisted across extinction and extinction retrieval tests but was prevented by co-administration of TRPV1R antagonist Capsazepine. Notably, AM251 also produced robust freezing in a novel context prior to auditory cue presentation the day following drug administration, but not the day of, suggesting that CB1R blockade elicited contextual fear generalization in females. To identify a potential synaptic mechanism for these sex differences, we next used liquid chromatography/tandem mass spectrometry, Western Blot, and confocal-assisted immunofluorescence techniques to quantify anandamide (AEA), TRPV1R, and perisomatic CB1R expression, respectively, focusing on the ventral hippocampus (vHip). Fear conditioning elicited increased vHip AEA levels in females only, and in both sexes, CB1R expression around vHip efferents targeting the basolateral amygdala (BLA) was twice that at neighboring vHip neurons. Finally, quantification of the vHip-BLA projections themselves revealed that females have over twice the number of neurons in this pathway that males do. Together, our data support a model in which sexual dimorphism in vHip-BLA circuitry promotes a female-specific dependence on CB1Rs for context processing that is sensitive to TRPV1-mediated disruption when CB1Rs are blocked.
Collapse
|
10
|
Terstege DJ, Epp JR. Network Neuroscience Untethered: Brain-Wide Immediate Early Gene Expression for the Analysis of Functional Connectivity in Freely Behaving Animals. BIOLOGY 2022; 12:34. [PMID: 36671727 PMCID: PMC9855808 DOI: 10.3390/biology12010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Studying how spatially discrete neuroanatomical regions across the brain interact is critical to advancing our understanding of the brain. Traditional neuroimaging techniques have led to many important discoveries about the nature of these interactions, termed functional connectivity. However, in animal models these traditional neuroimaging techniques have generally been limited to anesthetized or head-fixed setups or examination of small subsets of neuroanatomical regions. Using the brain-wide expression density of immediate early genes (IEG), we can assess brain-wide functional connectivity underlying a wide variety of behavioural tasks in freely behaving animal models. Here, we provide an overview of the necessary steps required to perform IEG-based analyses of functional connectivity. We also outline important considerations when designing such experiments and demonstrate the implications of these considerations using an IEG-based network dataset generated for the purpose of this review.
Collapse
Affiliation(s)
| | - Jonathan R. Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|