1
|
Chmiel J, Stępień-Słodkowska M, Ramik-Mażewska I. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Neuropsychiatric Symptoms in Substance Use Disorder (SUD)-A Review and Insights into Possible Mechanisms of Action. J Clin Med 2025; 14:1337. [PMID: 40004867 PMCID: PMC11856849 DOI: 10.3390/jcm14041337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction: Substance use disorder (SUD) is a significant global clinical issue marked by the excessive consumption of alcohol, nicotine, and various psychoactive substances, leading to impaired social, cognitive, and occupational functioning. Individuals with SUD frequently experience depression and anxiety disorders, which exacerbate their prognosis and contribute to substantial health and social burdens. The pathophysiology of SUD and its associated conditions is multifaceted, involving multiple dysfunctions in the brain. This complexity underscores an urgent need for the development of noninvasive treatments that can directly target the brain. One of them is transcranial direct current stimulation (tDCS), an intensively studied technique for safely modulating cortical excitability. The aim of this study is to investigate the effectiveness of tDCS in treating symptoms of depression and anxiety in SUD. Methods: With an emphasis on the underlying mechanisms of action, this mechanistic review investigates the effectiveness of tDCS in treating anxiety and depression in SUD patients. Literature searches were conducted using the PubMed/Medline, ResearchGate, Cochrane, and Google Scholar databases. Results: The review identified 12 relevant studies. The results showed that left dorsolateral prefrontal cortex (DLPFC) stimulation is an effective treatment option for depression in SUD. In anxiety disorders, left and right DLPFC stimulation is effective, with better results observed with right DLPFC stimulation. However, the included studies differed in their methodology, sample characteristics, and measurement methods, which could have influenced the final results of the analysis. The central focus of this mechanistic review is to discuss the potential mechanisms of action of tDCS in treating depression and anxiety in SUD. These mechanisms include the modulation of brain networks, a reduction in neuroinflammation, an enhancement in neuroplasticity, and an increase in P300 amplitude. We also discuss the limitations of the included studies and propose ways to address them in future research. Conclusions: This review provides evidence that tDCS is an effective treatment option for anxiety and depression in SUD. Stimulation of the left DLPFC reduces symptoms of depression, while stimulation of the right DLPFC reduces symptoms of anxiety. However, future research is required to confirm these findings and to deepen our understanding of the mechanisms through which tDCS exerts its effects in this context. Neuroimaging methods (fMRI and EEG) and blood tests could be particularly useful.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Physical Culture Sciences, Faculty of Physical Culture and Health, University of Szczecin, Al. Piastów 40B, Block 6, 71-065 Szczecin, Poland
- Doctoral School, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Institute of Physical Culture Sciences, Faculty of Physical Culture and Health, University of Szczecin, Al. Piastów 40B, Block 6, 71-065 Szczecin, Poland
| | - Irena Ramik-Mażewska
- Institute of Pedagogy, University of Szczecin, ul. Ogińskiego 16/17, 71-415 Szczecin, Poland
| |
Collapse
|
2
|
Sabé M, Hyde J, Cramer C, Eberhard AL, Crippa A, Brunoni AR, Aleman A, Kaiser S, Baldwin DS, Garner M, Sentissi O, Fiedorowicz JG, Brandt V, Cortese S, Solmi M. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation Across Mental Disorders: A Systematic Review and Dose-Response Meta-Analysis. JAMA Netw Open 2024; 7:e2412616. [PMID: 38776083 PMCID: PMC11112448 DOI: 10.1001/jamanetworkopen.2024.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/25/2024] Open
Abstract
Importance Noninvasive brain stimulation (NIBS) interventions have been shown to be efficacious in several mental disorders, but the optimal dose stimulation parameters for each disorder are unknown. Objective To define NIBS dose stimulation parameters associated with the greatest efficacy in symptom improvement across mental disorders. Data Sources Studies were drawn from an updated (to April 30, 2023) previous systematic review based on a search of PubMed, OVID, and Web of Knowledge. Study Selection Randomized clinical trials were selected that tested transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) for any mental disorder in adults aged 18 years or older. Data Extraction and Synthesis Two authors independently extracted the data. A 1-stage dose-response meta-analysis using a random-effects model was performed. Sensitivity analyses were conducted to test robustness of the findings. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Main Outcomes and Measures The main outcome was the near-maximal effective doses of total pulses received for TMS and total current dose in coulombs for tDCS. Results A total of 110 studies with 4820 participants (2659 men [61.4%]; mean [SD] age, 42.3 [8.8] years) were included. The following significant dose-response associations emerged with bell-shaped curves: (1) in schizophrenia, high-frequency (HF) TMS on the left dorsolateral prefrontal cortex (LDLPFC) for negative symptoms (χ2 = 9.35; df = 2; P = .009) and TMS on the left temporoparietal junction for resistant hallucinations (χ2 = 36.52; df = 2; P < .001); (2) in depression, HF-DLPFC TMS (χ2 = 14.49; df = 2; P < .001); (3) in treatment-resistant depression, LDLPFC tDCS (χ2 = 14.56; df = 2; P < .001); and (4) in substance use disorder, LDLPFC tDCS (χ2 = 33.63; df = 2; P < .001). The following significant dose-response associations emerged with plateaued or ascending curves: (1) in depression, low-frequency (LF) TMS on the right DLPFC (RDLPFC) with ascending curve (χ2 = 25.67; df = 2; P = .001); (2) for treatment-resistant depression, LF TMS on the bilateral DLPFC with ascending curve (χ2 = 5.86; df = 2; P = .004); (3) in obsessive-compulsive disorder, LF-RDLPFC TMS with ascending curve (χ2 = 20.65; df = 2; P < .001) and LF TMS on the orbitofrontal cortex with a plateaued curve (χ2 = 15.19; df = 2; P < .001); and (4) in posttraumatic stress disorder, LF-RDLPFC TMS with ascending curve (χ2 = 54.15; df = 2; P < .001). Sensitivity analyses confirmed the main findings. Conclusions and Relevance The study findings suggest that NIBS yields specific outcomes based on dose parameters across various mental disorders and brain regions. Clinicians should consider these dose parameters when prescribing NIBS. Additional research is needed to prospectively validate the findings in randomized, sham-controlled trials and explore how other parameters contribute to the observed dose-response association.
Collapse
Affiliation(s)
- Michel Sabé
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joshua Hyde
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, United Kingdom
| | - Catharina Cramer
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Antonia-Leonie Eberhard
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Alessio Crippa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - André Russowsky Brunoni
- Departamento e Instituto de Psiquiatria da Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, Brazil
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - David S. Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
- University Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Matthew Garner
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, United Kingdom
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, United Kingdom
| | - Othman Sentissi
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jess G. Fiedorowicz
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ontario, Canada
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, United Kingdom
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, United Kingdom
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, United Kingdom
- Hassenfeld Children’s Hospital at New York University Langone, New York University Child Study Center, New York, New York
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, United Kingdom
- DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Solmi
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ontario, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Department of Mental Health, The Ottawa Hospital, Ontario, Canada
- SIENCES Laboratory, Department of Psychiatry, University of Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Jiang Y, Ramasawmy P, Antal A. Uncorking the limitation-improving dual tasking using transcranial electrical stimulation and task training in the elderly: a systematic review. Front Aging Neurosci 2024; 16:1267307. [PMID: 38650865 PMCID: PMC11033383 DOI: 10.3389/fnagi.2024.1267307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction With aging, dual task (DT) ability declines and is more cognitively demanding than single tasks. Rapidly declining DT performance is regarded as a predictor of neurodegenerative disease. Task training and non-invasive transcranial electrical stimulation (tES) are methods applied to optimize the DT ability of the elderly. Methods A systematic search was carried out in the PUBMED, TDCS (transcranial direct current stimulation) databases, as well as Web of Science, and a qualitative analysis was conducted in 56 included studies. Aiming to summarize the results of studies that implemented tES, task training, or the combination for improving DT ability and related performance changes in healthy elderly and geriatric patients. For different approaches, the training procedures, parameters, as well as outcomes were discussed. Results Task training, particularly cognitive-motor DT training, has more notable effects on improving DT performance in the elderly when compared to the neuromodulation method. Discussion Anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (L-DLPFC), or its combination with task training could be promising tools. However, additional evidence is required from aged healthy people and patients, as well as further exploration of electrode montage.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Neurology, University Medical Center, Georg August University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
4
|
Chan YH, Chang HM, Lu ML, Goh KK. Targeting cravings in substance addiction with transcranial direct current stimulation: insights from a meta-analysis of sham-controlled trials. Psychiatry Res 2024; 331:115621. [PMID: 38043411 DOI: 10.1016/j.psychres.2023.115621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/06/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Addiction is a substantial health concern; craving-the core symptom of addiction-is strongly associated with relapse. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that reduces cravings by altering cortical excitability and connectivity in brain regions. This systematic review and meta-analysis was conducted (following the PRISMA guidelines) to evaluate the efficacy of tDCS in reducing cravings for substances. Our analysis included 43 randomized, sham-controlled trials involving 1,095 and 913 participants receiving tDCS and sham stimulation, respectively. We analyzed the changes in craving scores and found that tDCS led to a moderate reduction in cravings compared with the sham effects. This effect was particularly pronounced when bilateral stimulation was used, the anodal electrode was placed on the right dorsolateral prefrontal cortex, current intensities ranged from 1.5 to 2 mA, stimulation sessions lasted 20 minutes, and the electrodes size was ≥35 cm². Notably, tDCS effectively reduced cravings for opioids, methamphetamine, cocaine, and tobacco but not for alcohol or cannabis. Our findings indicate tDCS as a promising, noninvasive, and low-risk intervention for reducing cravings for opioids, methamphetamine, cocaine, and tobacco. Additional studies are warranted to refine stimulation parameters and evaluate the long-term efficacy of tDCS in managing substance cravings.
Collapse
Affiliation(s)
- Yi-Hsun Chan
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hu-Ming Chang
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kah Kheng Goh
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan; The Innovative and Translational Research Center for Brain Consciousness, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
6
|
Soleimani G, Nitsche MA, Bergmann TO, Towhidkhah F, Violante IR, Lorenz R, Kuplicki R, Tsuchiyagaito A, Mulyana B, Mayeli A, Ghobadi-Azbari P, Mosayebi-Samani M, Zilverstand A, Paulus MP, Bikson M, Ekhtiari H. Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments. Transl Psychiatry 2023; 13:279. [PMID: 37582922 PMCID: PMC10427701 DOI: 10.1038/s41398-023-02565-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Romy Lorenz
- Department of Psychology, Stanford University, Stanford, CA, USA
- MRC CBU, University of Cambridge, Cambridge, UK
- Department of Neurophysics, MPI, Leipzig, Germany
| | | | | | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Ahmad Mayeli
- University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Hamed Ekhtiari
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
7
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. A Systematic Review and Large-Scale tES and TMS Electric Field Modeling Study Reveals How Outcome Measure Selection Alters Results in a Person- and Montage-Specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529540. [PMID: 36865243 PMCID: PMC9980068 DOI: 10.1101/2023.02.22.529540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Background Electric field (E-field) modeling is a potent tool to examine the cortical effects of transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the high variability in efficacy observed in the literature. However, outcome measures used to report E-field magnitude vary considerably and have not yet been compared in detail. Objectives The goal of this two-part study, encompassing a systematic review and modeling experiment, was to provide an overview of the different outcome measures used to report the magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures across different stimulation montages. Methods Three electronic databases were searched for tES and/or TMS studies reporting E-field magnitude. We extracted and discussed outcome measures in studies meeting the inclusion criteria. Additionally, outcome measures were compared via models of four common tES and two TMS modalities in 100 healthy younger adults. Results In the systematic review, we included 118 studies using 151 outcome measures related to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-based whole-brain analyses were used most often. In the modeling analyses, we found that there was an average of only 6% overlap between ROI and percentile-based whole-brain analyses in the investigated volumes within the same person. The overlap between ROI and whole-brain percentiles was montage- and person-specific, with more focal montages such as 4Ã-1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap between ROI and percentile approaches respectively. However, even in these cases, 27% or more of the analyzed volume still differed between outcome measures in every analyses. Conclusions The choice of outcome measures meaningfully alters the interpretation of tES and TMS E-field models. Well-considered outcome measure selection is imperative for accurate interpretation of results, valid between-study comparisons, and depends on stimulation focality and study goals. We formulated four recommendations to increase the quality and rigor of E-field modeling outcome measures. With these data and recommendations, we hope to guide future studies towards informed outcome measure selection, and improve the comparability of studies.
Collapse
|