1
|
Basak S, Kumar Dixit A, Kumar Dey R, Roy S, Singh R, Nair PG, Kumar S, Babu G. Rodent models in polycystic ovarian syndrome: Dissecting reproductive and metabolic phenotypes for therapeutic advancements. Steroids 2024; 211:109489. [PMID: 39117289 DOI: 10.1016/j.steroids.2024.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The most prevalent reason for female infertility is polycystic ovarian syndrome (PCOS) exhibiting two of three phenotypes including biochemical or clinical hyperandrogenism, anovulation and polycystic ovaries. Insulin resistance and obesity are common in PCOS-afflicted women. Androgens are thought to be the primary cause of PCOS causing symptoms including anovulation, follicles that resemble cysts, higher levels of the luteinizing hormone (LH), increased adiposity, and insulin resistance. However, due to the heterogeneity of PCOS, it is challenging to establish a single model that accurately mimics all the reproductive and metabolic phenotypes seen in PCOS patients. In this review, we aimed to investigate rodent models of PCOS and related phenotypes with or without direct hormonal treatments and to determine the underlying mechanisms to comprehend PCOS better. We summarized rodent models of PCOS that includes direct and indirect hormone intervention and discussed the aetiology of PCOS and related phenotypes produced in rodent models. We presented combined insights on multiple rodent models of PCOS and compared their reproductive and/or metabolic phenotypes. Our review indicates that there are various models for studying PCOS and one should select a model most suitable for their purpose. This review will be helpful for consideration of rodent models for PCOS which are not conventionally used to determine mechanisms at the molecular/cellular levels encouraging development of novel treatments and control methods for PCOS.
Collapse
Affiliation(s)
- Smarto Basak
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India.
| | - Ranjit Kumar Dey
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Susmita Roy
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Rahul Singh
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Parvathy G Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Kerala, India
| | - Sanjay Kumar
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| | - Gajji Babu
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Nguyen HD, Oh H, Kim MS. Higher intakes of fruits, vegetables, and multiple individual nutrients is associated with a lower risk of metabolic syndrome among adults with comorbidities. Nutr Res 2022; 99:1-12. [DOI: 10.1016/j.nutres.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
|
3
|
Parikh M, Kura B, Garg B, Austria JA, Yu L, Maddaford TG, Proctor SD, Netticadan T, Pierce GN. Dietary flaxseed reduces Myocardial Ischemic Lesions, improves cardiac function and lowers cholesterol levels despite the presence of severe obesity in JCR:LA-cp Rats. J Nutr Biochem 2021; 98:108829. [PMID: 34358644 DOI: 10.1016/j.jnutbio.2021.108829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/09/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Previous work has shown that dietary flaxseed can significantly reduce cardiac damage from a coronary artery ligation-induced myocardial infarction. However, this model uses healthy animals and the ligation creates the infarct in an artificial manner. The purpose of this study was to determine if dietary flaxseed can protect the hearts of JCR:LA-cp rats, a model of genetic obesity and metabolic syndrome, from naturally occurring myocardial ischemic lesions. Male and female obese rats were randomized into four groups (n = 8 each) to receive, for 12 weeks, either a) control diet (Con), b) control diet supplemented with 10% ground flaxseed (CFlax), c) a high-fat, high sucrose (HFHS) diet, or d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. In male obese rats, serum total cholesterol and LDL-C were significantly lower in CFlax compared to Con. Obese rats on HFHS exhibited increased myocardial ischemic lesions and diastolic dysfunction regardless of sex. HFlax significantly lowered the frequency of cardiac lesions and improved diastolic function in male and female obese rats compared to HFHS. Blood pressures were similar in obese and lean rats. No aortic atherosclerotic lesions were detectable in any group. Collectively, this study shows that a HFHS diet increased myocardial ischemic lesion frequency and abolished the protective effect of female sex on cardiac function. More importantly, the data demonstrates dietary flaxseed protected against the development of small spontaneous cardiac infarcts despite the ingestion of a HFHS diet and the presence of morbid obesity.
Collapse
Affiliation(s)
- Mihir Parikh
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Bhavana Garg
- Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - J Alejandro Austria
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Liping Yu
- Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Thane G Maddaford
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Spencer D Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Avenue, Winnipeg, Manitoba's, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba's, Canada; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), 351 Taché Avenue, Winnipeg, Manitoba's, Canada; The Institute of Cardiovascular Sciences, 351 Taché Avenue, Winnipeg, Manitoba's, Canada.
| |
Collapse
|
4
|
The Influence of Diet and Sex on the Gut Microbiota of Lean and Obese JCR:LA- cp Rats. Microorganisms 2021; 9:microorganisms9051037. [PMID: 34066029 PMCID: PMC8151891 DOI: 10.3390/microorganisms9051037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
There is an increased interest in the gut microbiota as it relates to health and obesity. The impact of diet and sex on the gut microbiota in conjunction with obesity also demands extensive systemic investigation. Thus, the influence of sex, diet, and flaxseed supplementation on the gut microbiota was examined in the JCR:LA-cp rat model of genetic obesity. Male and female obese rats were randomized into four groups (n = 8) to receive, for 12 weeks, either (a) control diet (Con), (b) control diet supplemented with 10% ground flaxseed (CFlax), (c) a high-fat, high sucrose (HFHS) diet, or (d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. Illumine MiSeq sequencing revealed a richer microbiota in rats fed control diets rather than HFHS diets. Obese female rats had lower alpha-diversity than lean female; however, both sexes of obese and lean JCR rats differed significantly in β-diversity, as their gut microbiota was composed of different abundances of bacterial types. The feeding of an HFHS diet affected the diversity by increasing the phylum Bacteroidetes and reducing bacterial species from phylum Firmicutes. Fecal short-chain fatty acids such as acetate, propionate, and butyrate-producing bacterial species were correspondingly impacted by the HFHS diet. Flax supplementation improved the gut microbiota by decreasing the abundance of Blautia and Eubacterium dolichum. Collectively, our data show that an HFHS diet results in gut microbiota dysbiosis in a sex-dependent manner. Flaxseed supplementation to the diet had a significant impact on gut microbiota diversity under both flax control and HFHS dietary conditions.
Collapse
|
5
|
Holmannova D, Borsky P, Borska L, Andrys C, Hamakova K, Rehacek V, Svadlakova T, Malkova A, Beranek M, Palicka V, Krejsek J, Fiala Z. Metabolic Syndrome, Clusterin and Elafin in Patients with Psoriasis Vulgaris. Int J Mol Sci 2020; 21:ijms21165617. [PMID: 32764517 PMCID: PMC7460615 DOI: 10.3390/ijms21165617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Psoriasis is a pathological condition characterized by immune system dysfunction and inflammation. Patients with psoriasis are more likely to develop a wide range of disorders associated with inflammation. Serum levels of various substances and their combinations have been associated with the presence of the disease (psoriasis) and have shown the potential to reflect its activity. The aim of the present study is to contribute to the elucidation of pathophysiological links between psoriasis, its pro-inflammatory comorbidity metabolic syndrome (MetS), and the expression of clusterin and elafin, which are reflected in the pathophysiological “portfolio” of both diseases. Material and methods: Clinical examinations (PASI score), ELISA (clusterin, elafin), and biochemical analyses (parameters of MetS) were performed. Results: We found that patients with psoriasis were more often afflicted by MetS, compared to the healthy controls. Clusterin and elafin levels were higher in the patients than in the controls but did not correlate to the severity of psoriasis. Conclusion: Our data suggest that patients with psoriasis are more susceptible to developing other systemic inflammatory diseases, such as MetS. The levels of clusterin and elafin, which are tightly linked to inflammation, were significantly increased in the patients, compared to the controls, but the presence of MetS in patients did not further increase these levels.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
| | - Pavel Borsky
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
- Correspondence:
| | - Lenka Borska
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, 50005 Hradec Králové, Czech Republic;
| | - Vit Rehacek
- Transfusion Center, University Hospital, 50005 Hradec Kralove, Czech Republic;
| | - Tereza Svadlakova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Andrea Malkova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
| | - Martin Beranek
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic;
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic;
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Zdenek Fiala
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
| |
Collapse
|
6
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Shakya A, Chaudary SK, Garabadu D, Bhat HR, Kakoti BB, Ghosh SK. A Comprehensive Review on Preclinical Diabetic Models. Curr Diabetes Rev 2020; 16:104-116. [PMID: 31074371 DOI: 10.2174/1573399815666190510112035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Preclinical experimental models historically play a critical role in the exploration and characterization of disease pathophysiology. Further, these in-vivo and in-vitro preclinical experiments help in target identification, evaluation of novel therapeutic agents and validation of treatments. INTRODUCTION Diabetes mellitus (DM) is a multifaceted metabolic disorder of multidimensional aetiologies with the cardinal feature of chronic hyperglycemia. To avoid or minimize late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic manifestations, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. METHODS The study included electronic databases such as Pubmed, Web of Science and Scopus. The datasets were searched for entries of studies up to June, 2018. RESULTS A large number of in-vivo and in-vitro models have been presented for evaluating the mechanism of anti-hyperglycaemic effect of drugs in hormone-, chemically-, pathogen-induced animal models of diabetes mellitus. The advantages and limitations of each model have also been addressed in this review. CONCLUSION This review encompasses the wide pathophysiological and molecular mechanisms associated with diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. This review may further contribute to discover a novel drug to treat diabetes more efficaciously with minimum or no side effects. Furthermore, it also highlights ongoing research and considers the future perspectives in the field of diabetes.
Collapse
Affiliation(s)
- Anshul Shakya
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Sushil Kumar Chaudary
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Debapriya Garabadu
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, Uttar Pradesh, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| |
Collapse
|
8
|
Casanova MF, Frye RE, Gillberg C, Casanova EL. Editorial: Comorbidity and Autism Spectrum Disorder. Front Psychiatry 2020; 11:617395. [PMID: 33329163 PMCID: PMC7714785 DOI: 10.3389/fpsyt.2020.617395] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Manuel F Casanova
- University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| | | | | | - Emily L Casanova
- University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| |
Collapse
|
9
|
Basu D, Bornfeldt KE. Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Front Endocrinol (Lausanne) 2020; 11:504. [PMID: 32849290 PMCID: PMC7423973 DOI: 10.3389/fendo.2020.00504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Human studies support a strong association between hypertriglyceridemia and atherosclerotic cardiovascular disease (CVD). However, whether a causal relationship exists between hypertriglyceridemia and increased CVD risk is still unclear. One plausible explanation for the difficulty establishing a clear causal role for hypertriglyceridemia in CVD risk is that lipolysis products of triglyceride-rich lipoproteins (TRLs), rather than the TRLs themselves, are the likely mediators of increased CVD risk. This hypothesis is supported by studies of rare mutations in humans resulting in impaired clearance of such lipolysis products (remnant lipoprotein particles; RLPs). Several animal models of hypertriglyceridemia support this hypothesis and have provided additional mechanistic understanding. Mice deficient in lipoprotein lipase (LPL), the major vascular enzyme responsible for TRL lipolysis and generation of RLPs, or its endothelial anchor GPIHBP1, are severely hypertriglyceridemic but develop only minimal atherosclerosis as compared with animal models deficient in apolipoprotein (APO) E, which is required to clear TRLs and RLPs. Likewise, animal models convincingly show that increased clearance of TRLs and RLPs by LPL activation (achieved by inhibition of APOC3, ANGPTL3, or ANGPTL4 action, or increased APOA5) results in protection from atherosclerosis. Mechanistic studies suggest that RLPs are more atherogenic than large TRLs because they more readily enter the artery wall, and because they are enriched in cholesterol relative to triglycerides, which promotes pro-atherogenic effects in lesional cells. Other mechanistic studies show that hepatic receptors (LDLR and LRP1) and APOE are critical for RLP clearance. Thus, studies in animal models have provided additional mechanistic insight and generally agree with the hypothesis that RLPs derived from TRLs are highly atherogenic whereas hypertriglyceridemia due to accumulation of very large TRLs in plasma is not markedly atherogenic in the absence of TRL lipolysis products.
Collapse
Affiliation(s)
- Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Karin E. Bornfeldt
| |
Collapse
|
10
|
Chaves LO, Carraro JCC, Vidigal FDC, Bressan J. Higher Waist Circumference Is Related to Lower Plasma Polyunsaturated Fatty Acids in Healthy Participants: Metabolic Implications. J Am Coll Nutr 2019; 38:342-350. [DOI: 10.1080/07315724.2018.1518171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Larissa Oliveira Chaves
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
11
|
Frisbee JC, Lewis MT, Kasper JD, Chantler PD, Wiseman RW. Type 2 diabetes mellitus in the Goto-Kakizaki rat impairs microvascular function and contributes to premature skeletal muscle fatigue. J Appl Physiol (1985) 2018; 126:626-637. [PMID: 30571284 DOI: 10.1152/japplphysiol.00751.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite extensive investigation into the impact of metabolic disease on vascular function and, by extension, tissue perfusion and organ function, interpreting results for specific risk factors can be complicated by the additional risks present in most models. To specifically determine the impact of type 2 diabetes without obesity on skeletal muscle microvascular structure/function and on active hyperemia with elevated metabolic demand, we used 17-wk-old Goto-Kakizaki (GK) rats to study microvascular function at multiple levels of resolution. Gracilis muscle arterioles demonstrated blunted dilation to acetylcholine (both ex vivo proximal and in situ distal arterioles) and elevated shear (distal arterioles only). All other alterations to reactivity appeared to reflect compromised endothelial function associated with increased thromboxane (Tx)A2 production and oxidant stress/inflammation rather than alterations to vascular smooth muscle function. Structural changes to the microcirculation of GK rats were confined to reduced microvessel density of ~12%, with no evidence for altered vascular wall mechanics. Active hyperemia with either field stimulation of in situ cremaster muscle or electrical stimulation via the sciatic nerve for in situ gastrocnemius muscle was blunted in GK rats, primarily because of blunted functional dilation of skeletal muscle arterioles. The blunted active hyperemia was associated with impaired oxygen uptake (V̇o2) across the muscle and accelerated muscle fatigue. Acute interventions to reduce oxidant stress (TEMPOL) and TxA2 action (SQ-29548) or production (dazmegrel) improved muscle perfusion, V̇o2, and muscle performance. These results suggest that type 2 diabetes mellitus in GK rats impairs skeletal muscle arteriolar function apparently early in the progression of the disease and potentially via an increased reactive oxygen species/inflammation-induced TxA2 production/action on network function as a major contributing mechanism. NEW & NOTEWORTHY The impact of type 2 diabetes mellitus on vascular structure/function remains an area lacking clarity. Using diabetic Goto-Kakizaki rats before the development of other risk factors, we determined alterations to vascular structure/function and skeletal muscle active hyperemia. Type 2 diabetes mellitus reduced arteriolar endothelium-dependent dilation associated with increased thromboxane A2 generation. Although modest microvascular rarefaction was evident, there were no other alterations to vascular structure/function. Skeletal muscle active hyperemia was blunted, although it improved after antioxidant or anti-thromboxane A2 treatment.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Matthew T Lewis
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Robert W Wiseman
- Department of Physiology, Michigan State University , East Lansing, Michigan.,Department of Radiology, Michigan State University , East Lansing, Michigan
| |
Collapse
|