1
|
Bhutta MS, Shahid N, Ajmal S, Shakoor S, Khursheed Z, Salisu IB, Ahmad S, Azam S, Yasmeen A, Latif A, Rao AQ. Investigation of the toxicity and safety concerns of transgenic maize seeds expressing immunogenic F and HN protein genes against Newcastle disease virus. Toxicol Res (Camb) 2024; 13:tfae143. [PMID: 39296948 PMCID: PMC11406058 DOI: 10.1093/toxres/tfae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The presented study investigated the potential toxicity and safety concerns associated with transgenic maize seeds expressing immunogenic F and HN protein genes against Newcastle disease virus (NDV). Methodology The experiment involved feeding Sprague-Dawley rats with transgenic maize seeds formulated into standard diets at levels of 30% (w/w) for a duration of 90 days. The rats were divided into three groups, with 10 rats per group. We assessed various parameters including overall appearance, feed consumption, body weight, organ weight, hematological parameters, serum chemistry, and histopathology. Results The results of these assessments were compared between the control group and the treatment groups. The study findings revealed that there were no significant differences between the control and treatment groups in terms of overall appearance, feed consumption, body weight, organ weight, hematological parameters, serum chemistry, microscopic histopathology, and gross appearance of tissues. These observations suggest that the consumption of transgenic maize seeds did not lead to any treatment-related adverse effects or toxicological issues. Furthermore, the transgenic maize seeds were found to be nutritionally equivalent to their non-transgenic counterpart. Conclusion Overall, no physiological, pathological, or molecular toxicity was observed in the Rats fed with transgenic feed.However, it is important to note that this study focused specifically on the parameters measured and the outcomes observed in Sprague-Dawley rats, and further research and studies are necessary to fully evaluate the safety and potential applications of transgenic edible vaccines in humans or other animals.
Collapse
Affiliation(s)
- Muhammad Saad Bhutta
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan
| | - Naila Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan
| | - Sara Ajmal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan
| | - Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, Texas 79410, Unites States
| | - Zainab Khursheed
- Kinnaird college for women University, Lahore, Punjab 54000, Pakistan
| | - Ibrahim B Salisu
- Department of Animal Science, Federal University, Gida sitin, Dutse 720101, Jigawa, Nigeria
| | - Sheraz Ahmad
- Government College University Lahore, 54000, Punjab, Lahore
| | - Saira Azam
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan
| | - Aneela Yasmeen
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan
| | - Ayesha Latif
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan
| |
Collapse
|
2
|
Bhutta MS, Awais M, Raouf A, Anjum A, Azam S, Shahid N, Malik K, Shahid AA, Rao AQ. Biosafety and toxicity assessment of transgenic cotton-harboring insecticide and herbicide tolerant genes on albino mice. Toxicol Res (Camb) 2024; 13:tfae043. [PMID: 38525247 PMCID: PMC10960071 DOI: 10.1093/toxres/tfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Genetic engineering has revolutionized agriculture by transforming biotic and abiotic stress-resistance genes in plants. The biosafety of GM crops is a major concern for consumers and regulatory authorities. Methodology A 14-week biosafety and toxicity analysis of transgenic cotton, containing 5 transgenes ((Cry1Ac, Cry2A, CP4 EPSPS, VIP3Aa, and ASAL)), was conducted on albino mice. Thirty mice were divided into three groups (Conventional, Non-transgenic, without Bt, and transgenic, containing targeted crop) according to the feed given, with 10 mice in each group, with 5 male and 5 female mice in each group. Results During the study, no biologically significant changes were observed in the non-transgenic and transgenic groups compared to the control group in any of the study's parameters i.e. increase in weight of mice, physiological, pathological, and molecular analysis, irrespective of the gender of the mice. However, a statistically significant change was observed in the hematological parameters of the male mice, while no such change was observed in the female study group mice. The expression analysis, however, of the TNF gene increases many folds in the transgenic group as compared to the non-transgenic and conventional groups. Conclusion Overall, no physiological, pathological, or molecular toxicity was observed in the mice fed with transgenic feed. Therefore, it can be speculated that the targeted transgenic crop is biologically safe. However, more study is required to confirm the biosafety of the product on the animal by expression profiling.
Collapse
Affiliation(s)
- Muhammad Saad Bhutta
- Centre of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thokar Niaz Baig Sector 1، Lahore, Punjab 53700 Lahore, Pakistan
| | - Muhammad Awais
- Centre of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thokar Niaz Baig Sector 1، Lahore, Punjab 53700 Lahore, Pakistan
| | - Abdul Raouf
- Centre of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thokar Niaz Baig Sector 1، Lahore, Punjab 53700 Lahore, Pakistan
| | - Aqsa Anjum
- Department of Zoology, Government College Women University, Sialkot, 51310 Punjab, Pakistan
| | - Saira Azam
- Centre of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thokar Niaz Baig Sector 1، Lahore, Punjab 53700 Lahore, Pakistan
| | - Naila Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thokar Niaz Baig Sector 1، Lahore, Punjab 53700 Lahore, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thokar Niaz Baig Sector 1، Lahore, Punjab 53700 Lahore, Pakistan
| | - Ahmed Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thokar Niaz Baig Sector 1، Lahore, Punjab 53700 Lahore, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thokar Niaz Baig Sector 1، Lahore, Punjab 53700 Lahore, Pakistan
| |
Collapse
|
3
|
Guo YQ, Hu YR, Liu SR, Wang M, Xian ZY, Liu DW, Sun BL, Li YK, Liu GB, Deng M, Hu WF, Liu QS. Effects of the Oat Hay Feeding Method and Compound Probiotic Supplementation on the Growth, Antioxidant Capacity, Immunity, and Rumen Bacteria Community of Dairy Calves. Antioxidants (Basel) 2023; 12:1851. [PMID: 37891930 PMCID: PMC10604343 DOI: 10.3390/antiox12101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to investigate the effects of the oat hay feeding method and compound probiotics (CMP) on the growth, health, serum antioxidant and immune indicators, rumen fermentation, and bacteria community of dairy calves from 3 to 5 months of age. Forty-eight female Holstein calves (80 ± 7 days of age, 93.71 ± 5.33 kg BW) were selected and randomly divided into four groups. A 2 × 2 factorial design was adopted for the experiment, with the factors of the oat hay feeding method (fed as free-choice or 16.7% in the diet) and compound probiotics (CMP) inclusion (0.15% or 0%) in the pelleted starter. The results showed that, compared with giving oat hay as free-choice, feeding a diet of 16.7% oat hay increased the pelleted starter intake at 1-84 d (p < 0.05), with an average daily gain (ADG) at 61-84 d (p = 0.02); adding CMP to the pelleted starter did not significantly affect body weight, and reduced the fecal index (p < 0.05). Feeding 16.7% oat hay increased the concentration of IgA, IgG, and IgM (p < 0.01), while adding CMP increased the catalase (p < 0.01) and decreased the concentration of malondialdehyde (p < 0.01) in serum. Feeding 16.7% oat hay increased the ruminal concentration of propionic acid (p < 0.05) and isobutyric acid (p = 0.08), and decreased the ruminal pH (p = 0.08), the concentration of acetic acid (p < 0.05), and the ratio of acetic acid to propionic acid (p < 0.01). Feeding 16.7% oat hay reduced the relative abundance of ruminal Firmicutes, Unidentified-Bacteria, Actinobacteria, Prevotella, NK4A214-group, Olsenella, and Actinobacteriota (p < 0.05); adding CMP increased the relative abundance of ruminal Prevotella, Rikenellaceae-RC9-gut-group, Ruminococcus, NK4A214-group, and Ruminococcus (p < 0.05), and decreased the abundance of Desulfobacterora, Prevotella-7, and Erysipelotricaceae-UCG-002 (p < 0.05). In conclusion, feeding a diet of 16.7% oat hay increased the pelleted starter intake and average daily gain, while slightly reducing the ruminal pH values; adding CMP to the pelleted starter resulted in reduced diarrhea incidence, increased serum antioxidant capacity and immunity, as well as ruminal richness and diversity of microorganisms in dairy calves from 3 to 5 months of age.
Collapse
Affiliation(s)
- Yong-Qing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Ya-Ru Hu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Su-Ran Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Meng Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Zhen-Yu Xian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - De-Wu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Bao-Li Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Yao-Kun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Guang-Bin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Wen-Feng Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Qing-Shen Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| |
Collapse
|
4
|
Iqbal A, Ali MA, Ahmed S, Hassan S, Shahid N, Azam S, Rao AQ, Ali Q, Shahid AA. Engineered resistance and risk assessment associated with insecticidal and weeds resistant transgenic cotton using wister rat model. Sci Rep 2022; 12:2518. [PMID: 35169256 PMCID: PMC8847412 DOI: 10.1038/s41598-022-06568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Stacking multiple genes into cotton crop to cop up multiple biotic stresses such as insects and weeds is a promising tool to save crop from losses. Transgenic cotton variety, VH-289, with double Bt and cp4EPSPS genes under the control of 35S promoter was used for the expression analyses and biosafety studies. The transgenic cotton plants were screened through PCR amplification of fragments, 1.7 kb for Cry1Ac, 582 bp for Cry2A and 250 bp for cp4EPSPS; which confirmed the presence of all genes transformed in transgenic cotton. The Cry1Ac + Cry2A and cp4EPSPS proteins were quantified through ELISA in transgenic cotton plants. The Glyphosate assay performed by spraying 1900 mL per acre of glyphosate Roundup further confirmed complete survival of transgenic cotton plants as compared to the non-transgenic cotton plants and all weeds. Similarly, insect infestation data determined that almost 99% insect mortality was observed in controlled field grown transgenic cotton plants as compared to the non-transgenic control plants. Evaluation of effect of temperature and soil nutrients availability on transgene expression in cotton plants was done at two different cotton growing regions, Multan and Lahore, Pakistan and results suggested that despite of higher temperature in Multan field, an increased level of Cry and cp4EPSPS proteins was recorded due to higher soil organic matter availability compared to Lahore field. Before commercialization of any transgenic variety its biosafety study is mandatory so, a 90 days biosafety study of the transgenic cotton plants with 40% transgenic cottonseeds in standard diet showed no harmful effect on wister rat model when studied for liver function, renal function and serum electrolyte.
Collapse
Affiliation(s)
- Adnan Iqbal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), University of Lahore, Lahore, Pakistan.
| | - Muhammad Azam Ali
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Shafique Ahmed
- Allied Health Sciences, The Superior College, Lahore, Pakistan
| | - Samina Hassan
- Kinnaird College for Women University, Lahore, Pakistan
| | - Naila Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Saira Azam
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Qurban Ali
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), University of Lahore, Lahore, Pakistan.
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| |
Collapse
|
5
|
Hajimohammadi B, Eslami G, Loni E, Ehrampoush MH, Moshtaghioun SM, Fallahzadeh H, Ardakani SAY, Hosseini SS, Askari V. Relationship between Serum Tumor-Related Markers and Genetically Modified Rice Expressing Cry1Ab Protein in Sprague-Dawley Rats. Nutr Cancer 2021; 74:2581-2590. [PMID: 34875945 DOI: 10.1080/01635581.2021.2012210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genetically Modified (GM) foods are among the most important achievements of biotechnology. Given the safety importance of transgenic rice, this study was conducted to investigate the effect of GM rice consumption on serum concentrations of tumor markers in rats. In this experimental intervention, we used the blood serum samples from the Biobank taken from 60 males and 60 female Sprague-Dawley (SD) rats fed on three different diets, including rat's standard food, non-GM rice, and GM rice after 90 day. Tumor markers including Carcinogenic embryonic antigen (CEA), Alpha-Fito protein (AFP), Cancer Antigen 19-9 (CA19-9), Cancer Antigen 125 (CA125), and Cancer Antigen15-3 (CA15-3) were assessed by enzyme-linked immune sorbent assay (ELISA) method. Statistical analysis was conducted via SPSS software. The results show that the concentrations of tumor markers were within the normal range in the SD rats treated with diet, and since the concentration of tumor markers was lower than the acceptable index determined, according to the kit standard in both groups, no obvious carcinogenic effect was found. However, these findings are not enough to make a final decision regarding the safety assessment of GM rice consumption.
Collapse
Affiliation(s)
- Bahador Hajimohammadi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Loni
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Hossein Fallahzadeh
- Center for Healthcare Data Modeling, Departments of biostatistics and Epidemiology, School of public health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Ali Yasini Ardakani
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Saeedeh Sadat Hosseini
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahideh Askari
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Zhang X, Hou C, Liu S, Liu R, Yin X, Liu X, Ma H, Wen J, Zhou R, Yin N, Jian Y, Liu S, Wang J. Effects of transgenic Bacillus Thuringiensis maize (2A-7) on the growth and development in rats. Food Chem Toxicol 2021; 158:112694. [PMID: 34813927 DOI: 10.1016/j.fct.2021.112694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to determine the effects of genetically modified insect-resistant maize (2A-7) on the growth and development in developing rats. Rats were fed a diet formulated with 2A-7 maize and were compared with rats fed a diet formulated with non-transgenic maize (CK group) and rats fed AIN-93G diet (BC group). 2A-7 maize was formulated into diets at ratios of 82.4% (H group) and 20.6% (L group); non-transgenic maize was formulated into diets at a ratio of 82.4%. From the first day of pregnancy, adult rats were divided into four groups and fed with the above four diets, respectively. Weaning on postnatal day 21, the diets of offspring were consistent with their parents. The results showed that body weight, hematology, serum biochemistry, organ weight, organ coefficients and allergenicity of offspring fed with 2A-7 maize were comparable with those in the CK and BC groups. In physiological and behavioral development experiments, there was no statistically significant difference among groups. Although mCry1Ab proteins were detected in organs and serum, no histopathological changes were observed among groups. In conclusion, A-7 maize cause no treatment-related adverse effects on offspring, indicating that 2A-7 maize is safe for developing rats.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Chao Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Siqi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Xueqian Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Huijuan Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Jing Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Ruoyu Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Ning Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Yuanzhi Jian
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Shan Liu
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, 100021, Beijing, China.
| | - Junbo Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China; Beijing Key Laboratory of Food Safety Toxicology Research and Evaluation, 100191, Beijing, China.
| |
Collapse
|
7
|
Salisu IB, Shahid AA, Yaqoob A, Gul A, Rao AQ. Evaluation the effect of subchronic feeding of transgenic cotton line (CKC1) on the faecal microbiota of albino rabbits. J Anim Physiol Anim Nutr (Berl) 2020; 105:354-363. [PMID: 33381881 DOI: 10.1111/jpn.13471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022]
Abstract
Recent studies have demonstrated a strong relationship between the intestinal microbiota and the host health. As such, consumers are increasingly becoming more concerned about the potential effect of certain foods/feeds, particularly of transgenic origin on the gut microbiota. Although the European Food Safety Authority has recommended in their guidelines, to study the effect of transgenic food/feed on host-microbiota, yet, few studies have focused on the evaluation of such effects mainly due to culturing difficulties. Therefore, this study was intended to evaluate the potential adverse effects of transgenic diet consumption on some specific gut microflora (Lactobacillus group, Bifidobacterium genus, Escherichia coli subgroup and Enterococcus genus) of rabbits. A total of forty-eight rabbits were randomly assigned into four groups and fed a diet containing a variable proportion of transgenic cottonseeds at 0, 20, 30 and 40% inclusion level, respectively. Changes in the specific or total faecal bacterial population were monitored at five different experimental stages (i.e. 0, 45, 90, 135 and 180 days) using both the traditional plate count method (TM) and quantitative real-time PCR (qPCR). No significant differences (p > .05) were observed concerning numbers of specific bacteria or total bacteria between the control and experimental groups, though qPCR showed numerically higher values in terms of 16S rRNA gene copies as compared to the values obtained from TM. However, such numerical differences were biologically insignificant (p > .05). Similarly, no significant variations were noticed in the calculated B/E (log10 copies of Bifidobacterium per g faces/log10 copies of E. coli genome per g faeces) ratios in all the groups. All the ratios were in the range of 1.24 to 1.30 throughout the experiment, indicating a good balance of intestinal microflora and greater resistance to intestinal disorders. It is therefore concluded that feeding transgenic cottonseeds could not adversely affect the gut microflora of rabbits during a long-term study.
Collapse
Affiliation(s)
- Ibrahim Bala Salisu
- Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Dutse, Nigeria.,Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Amina Yaqoob
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ambreen Gul
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
A 90-day subchronic toxicity study of transgenic cotton expressing Cry1Ac, Cry2A and CP4-EPSPS proteins in Sprague-Dawley rats. Food Chem Toxicol 2020; 146:111783. [PMID: 32987108 DOI: 10.1016/j.fct.2020.111783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
Genetically engineered crops expressing insecticidal and herbicide-tolerant traits offer a new strategy for crop protection and enhanced production; however, at the same time present a challenge in terms of toxicology and safety. The current experiment presents the findings of a 90-day feeding study in Sprague-Dawley rats with transgenic cottonseed which is expressing insecticidal Cry proteins (Cry1Ac and Cry2A), and tolerant to the herbicide glyphosate. There were 100 rats in this experiment divided into 5 groups of 10 rats/sex/group. Cottonseed from transgenic and control (near-isogenic) lines was formulated into standard diets at levels of 10% and 30% (w/w). All formulated diets were nutritionally balanced. Overall appearance, feed consumption, body weight, organ weight, haematology, serum chemistry and urinalysis were comparable between control and treatment groups. In addition, there was no treatment-related difference in findings of microscopic histopathology and gross appearance of tissues. In conclusion, following the 13-week of feeding transgenic cottonseed, no treatment-related adverse effects were observed in any of the parameters measured in this experiment. Thus, this study demonstrated that transgenic cottonseeds do not cause toxicity and are nutritionally equivalent to its conventional counterpart.
Collapse
|
9
|
A Combinational Approach of Enhanced Methanol Production and Double Bt Genes for Broad Spectrum Insect Resistance in Transgenic Cotton. Mol Biotechnol 2020; 61:663-673. [PMID: 31228008 DOI: 10.1007/s12033-019-00192-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prevalence of insect resistance against Bt toxins has led to the idea of enhancing demethylation from cell wall pectin by pectin methylesterase enzyme for overproduction of methanol which is toxic to insects pests. The AtPME and AnPME fragments ligated into pCAMBIA1301 vector were confirmed through restriction digestion with EcoR1 and BamH1. Excision of 3363 bp fragment from 11,850 bp vector confirmed the ligation of both fragments into pCAMBIA1301 vector. Transformation of pectin methylesterase-producing genes, i.e., AtPME and AnPME from Arabidopsis thaliana and Aspergillus niger cloned in plant expression vector pCAMBIA1301 under 35S promoter into cotton variety CEMB-33 harboring two Bt genes Cry1Ac and Cry2A, respectively, was done by using shoot apex-cut Agrobacterium-mediated transformation method. The plantlets were screened on MS medium supplemented with hygromycin on initial basis. Amplification of 412 and 543 bp, respectively, through gene-specific primer has been obtained which confirmed the successful introduction of pCAMBIA AtPME and AnPME genes into cotton variety CEMB 33. Relative expression of AtPME and AnPME genes through real-time PCR determined the expression level of both gene ranges between 3- and 3.5-fold in different transgenic cotton lines along with quantity of methanol ranging from 0.8 to 0.9% of maximum while 0.5% to 0.6% of minimum but no expression was obtained in negative non-transgenic control cotton plant with least quantity of methanol, i.e., 0.1%. Almost 100% mortality was observed in insect bioassay for Helicoverpa armigera on detached leaves bioassay and 63% for Pink Bollworm (Pectinophora gossypiella) on growing transgenic cotton bolls as compared to positive control transgenic cotton with double Bt genes where mortality was found to be 82% for H. armigera and 50% for P. gossypiella while 0% in negative control non-transgenic plants.
Collapse
|
10
|
Shahid AA, Salisu IB, Yaqoob A, Rao AQ, Ullah I, Husnain T. Assessing the fate of recombinant plant DNA in rabbit's tissues fed genetically modified cotton. J Anim Physiol Anim Nutr (Berl) 2019; 104:343-351. [PMID: 31701592 DOI: 10.1111/jpn.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
Various feeding studies have been conducted with the different species of animals to evaluate the possible transfer of transgenic DNA (tDNA) from genetically modified (GM) feed into the animal tissues. However, the conclusions drawn from most of such studies are sometimes controversial. Thus, in the present study, an attempt has been made to evaluate the fate of tDNA in rabbits raised on GM cotton-based diet through PCR analysis of the DNA extracted specifically from blood, liver, kidney, heart and intestine (jejunum). A total of 48 rabbits were fed a mixed diet consisting variable proportions of transgenic cottonseeds meal (i.e. 0% w/w, 20% w/w, 30% w/w and 40% w/w) for 180 days. The presence of transgenic DNA fragments (Cry1Ac, Cry2A and CP4 EPSPS) or plant endogenous gene (Sad1) was traced in those specific tissues and organs. The presence of β-actin (ACTB) was also monitored as an internal control. Neither the transgenic fragments (459 bp of Cry1Ac gene, 167 bp of Cry2A gene and111 bp of CP4 EPSPS gene) nor cotton endogenous reference gene (155 bp of Sad1) could be detected in any of the DNA samples extracted from the rabbit's tissues in both control and transgenic groups. However, 155 bp fragment of the rabbit's reference gene (ACTB) was recovered in all the DNA samples extracted from rabbit tissues. The results obtained from this study revealed that both plant endogenous and transgenic DNA fragments have same fate in rabbit's tissues and were efficiently degraded in the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ibrahim Bala Salisu
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Dutse, Nigeria
| | - Amina Yaqoob
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Inayat Ullah
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|